

MAN1220 PUBLIC 1

Aculab Prosody™
API Guide

T.38 Gateway API guide

MAN1220

MAN1220 PUBLIC 2

PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab plc and may be the
subject of patents pending or granted, and must not be copied or disclosed without prior
written permission. It should not be used for commercial purposes without prior agreement in
writing.

All trademarks recognised and acknowledged.

Aculab plc endeavours to ensure that the information in this document is correct and fairly
stated but does not accept liability for any error or omission.

The development of Aculab’s products and services is continuous and published information
may not be up to date. It is important to check the current position with Aculab plc.

Copyright © Aculab plc. 2006-2023 all rights reserved.

Document Revision

Rev Date By Detail
0.0.1 13/09/06 PJB Initial documentation for early beta release

0.0.2 19/09/06 PJB Update for additional status information

0.0.3 12/06/07 DC Added ECM disable.

0.0.4 13/06/07 DC Corrected ‘T38GW_TDM_MODEM’.

 27/06/07 DC
Changed status ‘tSMT38JobStatusStopped’ to
 ‘tSMT38JobStatusTerminated’ for
‘sm_t38gw_destroy_job()’. Added LINUX section.

0.0.5 17/08/07 DC Addition to 5.1.5

0.0.6 14/05/08 DC Added static link library option to 3.1

0.0.7 18/06/08 DC Added T38 Gateway trace section.

0.0.8 26/09/08 DC Trace input and output data logging.

0.0.9 20/01/09 DC Removed ‘subject to change’ from 2.2.

0.1.0 07/04/09 DC Highlighted sections in destroy session/job.

0.1.1 24/02/11 DC Added fsk tx power.

0.1.2 24/05/11 DC Added reference to T.38 Gateway introduction.

0.1.3 22/06/11 DC Added ‘sm_t38gw_destroy_job_info’ and ‘information field’.

0.1.4 04/07/11 DC Added ‘spoofing disable’ for g57.

0.1.5 19/08/11 DC Added 32/64 for g58.

0.1.6 29/04/13 PGD Added max packet length call and “.so” ref

1.0 20/05/13 EBJ Updated to corporate fonts

1.1 13/10/22 PGD Correct some typos, add MAN number

1.2 11/11/22 PGD Reformatting

1.3 18/1/23 PGD Correct PDF title

MAN1220 PUBLIC 3

CONTENTS

1 Introduction ... 4

2 Overviews .. 5
2.1 Supported T.38 modes ... 5
2.2 T.38 and the Session Initiation Protocol (SIP) ... 5
2.3 API Concepts .. 5
2.4 Limitations .. 7

3 API header files and libraries ... 8
3.1 Microsoft Windows Operating System ... 8
3.2 Linux Operating System. ... 8

4 Data Types... 9

5 API call descriptions .. 10
5.1 sm_t38gw_create_session .. 10
5.2 sm_t38gw_stop_session ... 10
5.3 sm_t38gw_destroy_session .. 11
5.4 sm_t38gw_worker_fn ... 11
5.5 sm_t38gw_create_job .. 11
5.6 sm_t38gw_set_job_mpl ... 15
5.7 sm_t38gw_add_job .. 15
5.8 sm_t38gw_job_status .. 16
5.9 sm_t38gw_abort_job.. 18
5.10 sm_t38gw_destroy_job .. 18
5.11 sm_t38gw_destroy_job_info ... 19
5.12 T.38 Gateway job information field. .. 19

6 T38.Gateway trace. ... 21
6.1 T.38 Gateway Input and Output data logging. ... 22

7 Appendix A : References ... 23

8 Appendix B: Firmware Requirements ... 24

MAN1220 PUBLIC 4

1 Introduction
This guide is designed to assist developers using the T.38 gateway API. The T.38
gateway API is a high-level approach to performing the required conversion between
a T.30 device on the public switch telephone network and a T.38 device on an IP
network. This guide covers the basic concepts used in the T.38 gateway API and
provides a description of the available API functions.

This document should be read in conjunction with the Aculab T.38 Gateway
introduction [4] and the Aculab T.38 Gateway logging description [5].

MAN1220 PUBLIC 5

2 Overviews

2.1 Supported T.38 modes
The Aculab T.38 implementation supports T.38 over UDP using the facsimile UDP
transport layer (UDP/TL) only.

The V.34 modem type is not supported.

2.2 T.38 and the Session Initiation Protocol (SIP)
The ITU T.38 recommendation [2] defines several T.38 specific parameters that may
be negotiated using the Session Description Protocol (SDP) during the establishment
of a SIP call. The table below lists a subset of these parameters and indicates
suitable values for use with the Aculab T.38 implementation. Please refer to [4] [2] for
descriptions of the parameters.

SDP Parameter Supported Values

T38FaxVersion 0, 1 and 2

T38MaxBitRate
14400,12000,9600,7200,4800 and
2400 *

T38FaxRateManagement TransferredTCF

T38FaxMaxBuffer 2048 (max)

T38FaxMaxDatagram [4]

T38FaxUdpEC t38UDPRedundancy

NOTE

*The T38MaxBitRate parameter should be set to the fastest speed that can be
sustained over the T.30 (see [3]) side of a call. This value will vary based on
which firmware modems have been loaded.

2.3 API Concepts

The T.38 gateway API allows a T.30 fax originating on the public switched telephone
network to be transferred over an IP network to a T.38 fax device. The transfer can
also occur in the opposite direction with a T.38 fax device as the originator.

The T.38 gateway is organised in terms of controller tasks, referred to as sessions
and individual gateway tasks, referred to as jobs. There may be multiple sessions at a
given time and each session is capable of managing multiple jobs. The user is
required to provide four Prosody end-points when creating a job. Each end-point must
be correctly connected to the outside world using the Prosody 2 TiNG API[1]. End-
points must not be reconfigured once control of a job has been handed to the T.38
gateway API.

MAN1220 PUBLIC 6

2.3.1 End-points

The Prosody 2 TiNG [1] defines three distinct end-point types:

• TDM

o TDM[tx] Sends data to a TDM stream and timeslot

o TDM[rx] Receives data from a TDM stream and timeslot

• VMP**

o VMP[tx] Sends data using RTP to a remote device

o VMP[rx] Receives data using RTP from a remote device

• FMP

o FMP[tx] Sends data using UDP/TL to a remote device

o FMP[rx] Receives data using UDP/TL from a remote device

NOTE

**VMP end-points do not support T.38 fax but may be used to send a T.30 fax
over RTP.

Allocation and configuration of these end-points is beyond the scope of this
document. It is the responsibility of the user to correctly configure the appropriate
end-points prior to creating a T.38 job.

Generally, a T.38 gateway requires TDM end-points for the T.30 side of a call and
FMP end-points for T.38. In some cases it is possible to send a T.30 fax over RTP, in
this case VMP end-points can be used in place of TDM end-points. All end-points
must be allocated on the same tSMModuleId.

2.3.2 Sessions

A session is responsible for managing instances of a T.38 gateway, referred to as
jobs. A session identifier is used to describe each session. This identifier is required
each time a job is added to a session and when the session is started or stopped.
The session can manage multiple jobs each of which are added by the user. A job will
begin executing either as it is added to an already executing session or when the
session it is being added to is started. In order to start a session, the session identifier
is passed into the session worker function. Once the worker function has been
invoked a session is said to have started. Each session should run in it's own thread,
it is the responsibility of the user to start a thread for each session with attributes
appropriate to the user's application and for that thread to call the session worker

function. A session is stopped by calling sm_t38gw_stop_session(). This will instruct a
session to stop all remaining jobs and terminate as soon as all jobs belonging to the
session have completed. When the session worker function returns, the session is
said to have stopped and the session identifier can be destroyed.

MAN1220 PUBLIC 7

2.3.3 Jobs

A job encapsulates a single instance of a T.38 gateway. Jobs are managed by a
session. Each job acts independently within a given session and may be configured
differently to other jobs in the same session. Individual jobs perform all necessary
conversions between the T.30 and T.38 end-points, the direction of the conversion is
specified by the user during creation of the job. The user must provide, correctly
configured, end-points in order to create a job.

A job identifier is created for each job. The identifier is used to add a job to a session
or to abort a running job. Once a job has been created, no further configuration
changes are permitted on any of the end-points until the job has been destroyed.
Adding a job to a session hands control of that job to the library. Once control of a job
has been handed to the library, the user may interrogate the current status of, or
abort, a running job. After receiving notification that a job has terminated, the user is
responsible for destroying the job. Destruction of a job returns control of the end-
points to the user.

2.3.4 Workers

Each T.38 gateway session requires a worker thread. Users must start a thread with
appropriate attributes which must then call the worker function,

sm_t38gw_worker_fn().

2.3.5 Call-backs

The T.38 gateway library uses a call-back function to notify the user of state changes
to a T.38 gateway job. The user is required to provide a function will not block or
perform any action that is permitted to block when it is executed.

NOTE

The T.38 Gateway API functions may block and should not be used in a call-back

2.4 Limitations

2.4.1 Connecting calls via the T.38 Gateway API

It is neither possible nor desirable to connect two T.30 devices using the T.38
Gateway API. It is the responsibility of the user to detect that both parties are T.30
devices and to connect them directly. The same restrictions apply to T.38 devices.
Where both parties in a call are using T.38 there is no need to use theT.38 Gateway
API, instead the two devices must be connected directly by the user. Directly
connecting two parties in this way removes any delay imposed by the gateway and
allows the two endpoints to use the best possible transfer methods that they mutually
support, rather than a subset supported by the T.38 Gateway API.

MAN1220 PUBLIC 8

3 API header files and libraries

3.1 Microsoft Windows Operating System
Required header files:

 ‘smt38gwlib.h’

NOTE

‘smt38gwlib.h’ requires ‘t38gwtypes.h’ to be locatable when compiling
applications, however, users do not need to include this file.

Required libraries and DLLs (DLL library)

 ‘smt38gwlib.lib’

 ‘smt38gwlib.dll’

Required libraries (Static link library – available on request)

 ‘smt38gwlibstat.lib’

Note:- When using the static library add T38API="" to application compile
defines.

NOTE

The T.38 Gateway API requires Aculab’s TiNG.dll

3.2 Linux Operating System.
Required header files:

 ‘smt38gwlib.h’

NOTE

‘smt38gwlib.h’ requires ‘t38gwtypes.h’ to be locatable when compiling
applications, however, users do not need to include this file.

Required libraries (Shared object library)

 ‘libsmt38gwlib.so’

Required libraries (Static link library)

 ‘libsmt38gwlib.a’

NOTE

The T.38 Gateway API requires Aculab’s libTiNGshared.so

MAN1220 PUBLIC 9

4 Data Types
These are the data types defined by the Prosody T.38 Gateway API:

Data Type Description

tSMT38GWSessionId

A session identifier for T.38 gateway
sessions. This type is created by
sm_t38gw_create_session() and
destroyed by
sm_t38gw_destroy_session().

tSMT38GWJobId

A job identifier for T.38 gateway jobs.
This type is created by
sm_t38gw_create_job() and destroyed
by sm_t38gw_destroy_job().

struct tSMT38GWEndpoint
A description of the Prosody end-points
to be used in a T.38 gateway job. See
sm_t38gw_create_job() for its definition.

T30TDM_EP
Describes an end-point that will carry
T.30 data over the TDM, used by struct
tSMT38GWEndpoint.

T30VMP_EP
Describes an end-point that will carry
T.30 data over RTP, used by struct
tSMT38GWEndpoint.

T38FMP_EP
Describes an end-point that will carry
T.38 data over UDP, used by struct
tSMT38GWEndpoint.

SM_T38GW_JOB_CONTEXT_PARMS

Defines the information that is available
in the user-defined call-back function,
job_notify(). See
sm_t38gw_create_job().

The Prosody T.38 Gateway API also uses the following data types defined in the
Prosody 2 TiNG API guide.

 tSMModuleId

 tSMTDMtxId

 tSMTDMrxId

 tSMVMPtxId

 tSMVMPrxId

 tSMFMPtxId

 tSMFMPrxId

MAN1220 PUBLIC 10

5 API call descriptions

5.1 sm_t38gw_create_session

Prototype Definition
int sm_t38gw_create_session(struct sm_t38gw_session_parms *session_parms)

Parameters
*session_parms

a structure of the following type:

typedef struct sm_t38gw_session_parms {

tSMT38GWSessionId session;/* out */

} SM_T38GW_SESSION_PARMS;

Description

Creates a T.38 Gateway session. The created session is able to manage multiple
T.38 jobs.

Fields

session

The newly created tSMT38GWSessionId.

Returns

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

5.2 sm_t38gw_stop_session

Prototype Definition
int sm_t38gw_stop_session(struct sm_t38gw_stop_session_parms

*stop_session_parms)

Parameters
*stop_session_parms

a structure of the following type:

typedef struct sm_t38gw_stop_session_parms {

tSMT38GWSessionId session;/* in */

} SM_T38GW_STOP_SESSION_PARMS;

Description

Requests that a currently executing T.38 session stops. The session will not stop until
all jobs have terminated. When a session stops the worker function,

sm_t38gw_worker_fn(), will return.

Fields

session

A tSMT38GWSessionId obtained from a previous call to sm_t38gw_create_session().

Returns

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

MAN1220 PUBLIC 11

5.3 sm_t38gw_destroy_session

Prototype Definition
int sm_t38gw_destroy_session(tSMT38GWSessionId session)

Parameters

session

A tSMT38GWSessionId that has been previously created by a call to
sm_t38gw_create_session()

Description

Destroys the T.38 gateway session and invalidates the tSMT38GWSessionId.

NOTE

Once the worker function has been called for a session, the session must not be
destroyed until the worker function has returned.

Returns

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

5.4 sm_t38gw_worker_fn

Prototype Definition
int sm_t38gw_worker_fn(struct sm_t38gw_worker_parms *worker_parms)

Parameters
*worker_parms

a structure of the following type:

typedef struct sm_t38gw_worker_parms {

tSMT38GWSessionId session;/* in */

} SM_T38GW_WORKER_PARMS;

Description

This worker function is intended to run in its own thread. It is the responsibility of the
user to start a thread with the appropriate attributes and to subsequently invoke this
function.

The worker will terminate upon a fatal error or as a result of the user requesting that a
session be stopped.

Fields

session

A tSMT38GWSessionId obtained from a previous call to sm_t38gw_create_session()

Returns

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

5.5 sm_t38gw_create_job

Prototype Definition
int sm_t38gw_create_job(struct sm_t38gw_create_job_parms *create_job_parms)

MAN1220 PUBLIC 12

Parameters
*create_job_parms

a structure of the following type:

typedef struct sm_t38gw_create_job_parms {

tSMT38GWJobId job;/* out */

struct tSMT38GWEndpoint {

enum kSMT38GWDeviceType {

kSMT38GWDeviceTypeT30TDM,

kSMT38GWDeviceTypeT30VMP,

kSMT38GWDeviceTypeT38FMP,

} type;/* in */

union {

struct {

tSMTDMtxId tdmtx;/* in */

tSMTDMrxId tdmrx;/* in */

} T30TDM_EP;/* in */

struct {

tSMVMPtxId vmptx;/* in */

tSMVMPrxId vmprx;/* in */

} T30VMP_EP;/* in */

struct {

tSMFMPtxId fmptx;/* in */

tSMFMPrxId fmprx;/* in */

int PreCorrigendum;/* in */

} T38FMP_EP;/* in */

} u;/* in */

} local_endpoint;/* in */

struct tSMT38GWEndpoint remote_endpoint; /* in */

tSMModuleId module; /* in */

unsigned T38GWASN1Version; /* in */

unsigned ECM_disable; /* in */

unsigned char modems; /* in */

int fsk_tx_power; /* in */

int spoofing_disable; /* in */

void *user_id; /* in */

void(*job_notify)(SM_T38GW_JOB_CONTEXT_PARMS *job_context); /* in */

} SM_T38GW_CREATE_JOB_PARMS;

Description

Creates a T.38 Gateway job.

In order for a T.38 gateway job to successfully communicate with T.38 and T.30
devices, the end-points must be correctly connected, prior to invoking this API call.

The local_endpoint refers to the device initiating the call, the originating device. The

remote_endpoint refers to the device terminating the call, the destination device. The

local_endpoint must be set up for communicating with the originating (CNG sending)

fax device , with the remote endpoint set with the path to the responding (answering)
fax device.

When specifying the available modem capabilities, only modems that have had their
firmware modules loaded should be added to the bit-mask. It is recommended that
the firmware for all of the available modems be loaded in order to provide the highest
level of compatibility between the T.38 gateway and T.30 fax devices.

Fields

Job

An identifier for the newly created job.

local_endpoint

The end-points for communication with the local device

MAN1220 PUBLIC 13

type

The type of device to communicate with One of these values:

kSMT38GWDeviceTypeT30TDM

A T.30 device over TDM

kSMT38GWDeviceTypeT30VMP

A T.30 device over RTP

kSMT38GWDeviceTypeT38

A T.38 device

T30TDM_EP
tdmtx

The TDM end-point for transmission to a T.30 device

tdmrx

The TDM end-point for reception from a T.30 device

T30VMP_EP
vmptx

The VMP end-point for transmission to a T.30 device

vmprx

The VMP end-point for reception from a T.30 device

T38FMP_EP
fmptx

The FMP end-point for transmission to a T.38 device

fmprx

The FMP end-point for reception from a T.38 device

PreCorrigendum

This field should be left blank; the library sets it as needed, based on the
value of T38GWASN1Version.

remote_endpoint

The end-points for communication with the local device.

module

The tSMModuleId upon which the end-points were allocated.

T38GWASN1Version

The T.38 ASN.1 version to be used by this job, as defined in [2].

ECM_disable

Disables ECM in remote DIS when non-zero.

Default is zero (no modification of DIS message).

modems

A bit-mask specifying the modems supported by the T.30 component of the gateway.
The available modems are:

T38GW_TDM_MODEM_V17

T38GW_TDM_MODEM_V29

T38GW_TDM_MODEM_V27

fsk_tx_power

Sets v21 transmission power, value used displayed in T.38 Gateway log at job start.

This parameter has a usable range of –13 to -31 dBm0. Power above –13 is clipped

MAN1220 PUBLIC 14

to –13, lowest usable power level is –31. A value of 0 forces default of –13.

spoofing_disable

Disable T.30 fax spoofing when non-zero. Default is spoofing enabled.

*user_id

A user-defined identifier that is returned to the user in the call-back function. This can
be a pointer to a user-defined data structure or any other unique identifier to be
associated with a tSMT38GWJobId.

(void)*job_notify(SM_T38GW_JOB_CONTEXT_PARMS *job_context)

A user-provided call-back function that is used, by the library, to notify users of a
change in the status of a given job. The call-back function must not perform any
actions that might cause it to block, this includes calling any T.38 gateway API or
Prosody API functions.

Requires:
*job_context

a structure of the following type:

typedef struct sm_t38gw_job_context_parms {

tSMT38GWJobId job;

void *user_id;

} SM_T38GW_JOB_CONTEXT_PARMS;

Fields

Job

A tSMT38GWJobId obtained from a call to sm_t38gw_create_job().

*user_id

The user-defined identifier that was supplied to sm_t38gw_create_job().

MAN1220 PUBLIC 15

Returns

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

5.6 sm_t38gw_set_job_mpl

Prototype Definition
int sm_t38gw_set_job_mpl(struct sm_t38gw_set_job_mpl_parms

*set_job_mpl_parms)

Parameters
*set_job_mpl_parms

a structure of the following type:

typedef struct sm_t38gw_set_job_mpl_parms {

 tSMT38GWJobId job;

 int max_packet_length;

} SM_T38GW_SET_JOB_MPL_PARMS;

Description

Optional call to configure gateway job to a set maximum T.38 packet length. If used,
must be called prior to sm_t38gw_add_job.

Fields

Job

A tSMT38GWJobId obtained from a call to sm_t38gw_create_job().

max_packet_length

The maximum T.38 packet length to be specified for the gateway job.

Returns

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

5.7 sm_t38gw_add_job

Prototype Definition
int sm_t38gw_add_job(struct sm_t38gw_add_job_parms *job_parms)

Parameters
*job_parms

a structure of the following type:

typedef struct sm_t38gw_add_job_parms {

tSMT38GWJobId job;/* in */

tSMT38GWSessionId session;/* in */

} SM_T38GW_ADD_JOB_PARMS;

MAN1220 PUBLIC 16

Description

Adds job to the T.38 Gateway session, session. A T.38 gateway job will begin as
soon as it is successfully added to an executing T.38 gateway session. If the worker

function, sm_t38gw_worker_fn(), has not yet been invoked for a session, any jobs that
have been added to the session will begin when the worker function is called.

Fields

Job

A tSMT38GWJobId obtained from a call to sm_t38gw_create_job().

session

A tSMT38GWSessionId obtained from a call to sm_t38gw_create_session(). This is the

session that will control job.

Returns

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

ERR_T38GW_SESSION_FULL – This session is full and cannot support any more jobs. A
new session must be created for this job

5.8 sm_t38gw_job_status

Prototype Definition
int sm_t38gw_job_status(struct sm_t38gw_job_status_parms *status_parms)

Parameters
*status_parms

a structure of the following type:

typedef struct sm_t38gw_job_status_parms {

tSMT38GWJobId job;/* in */

struct sm_t38gw_job_status_report {

 enum tSMT38GWJobStatus {

 tSMT38GWJobStatusRunning,

 tSMT38GWJobStatusTerminated,

} status; /* out */

 enum tSMT38GWJobTerminationReason {

 tSMT38GWJobTerminationDCN,

 tSMT38GWJobTerminationUser,

 tSMT38GWJobTerminationError,

} termination_reason; /* out */

 enum tSMT38GWJobFaxOutcome {

 tSMT38GWJobFaxOutcomeTransferIncomplete,

 tSMT38GWJobFaxOutcomeTransferConfirmed,

} fax_outcome; /* out */

 int page_count; /* out */

} report; /* out */

 U32 info; /* out */

} SM_T38GW_JOB_STATUS_PARMS;

MAN1220 PUBLIC 17

Description

Interrogates the T.38 gateway job represented by job.

Fields

Job

A tSMT38GWJobId obtained from a call to sm_t38gw_create_job().

report

A status report containing information about the current state of:

A T.38 Gateway Job.

status

The current status of job. One of these values:

tSMT38GWJobStatusRunning

The T.38 Gateway job is currently running

tSMT38GWJobStatusTerminated

The T.38 Gateway job has finished and the user is now responsible for job and any
resources associated with it.

termination_reason

This field is only valid if the status is tSMT38GWJobStatusTerminated. One of these
values:

tSMT38GWJobTerminationDCN

The T.38 Gateway job was stopped by a disconnect signal from one of the fax
devices (this in itself does not indicate success, see ‘fax_outcome’)

tSMT38GWJobTerminationUser

The T.38 Gateway job was aborted by the user

tSMT38GWJobTerminationError

The T.38 Gateway job terminated due to an error

fax_outcome

The outcome of the fax as perceived by the T.38 Gateway. The T.38 Gateway API
attempts to give an indication of whether the remote fax device successfully received
all of the pages of a fax. This field is only valid if the status is
tSMT38GWJobStatusTerminated. One of these values:

tSMT38GWJobFaxOutcomeTransferIncomplete

The T.38 Gateway API could not confirm that all pages were successfully received as
it did not receive the appropriate acknowledgements from the remote fax device.

tSMT38GWJobFaxOutcomeTransferConfimed

The T.38 Gateway API received confirmation that the last page of the fax was
successfully received by the remote fax device.

page_count

The number of pages that have been confirmed by the remote fax device.

Info

Unsigned 32 bit information parameter field (5.12)

Returns

MAN1220 PUBLIC 18

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

5.9 sm_t38gw_abort_job

Prototype Definition
int sm_t38gw_abort_job(struct sm_t38gw_abort_job_parms *abort_parms)

Parameters
*abort_parms

a structure of the following type:

typedef struct sm_t38gw_abort_job_parms {

tSMT38GWJobId job;/* in */

} SM_T38GW_ABORT_JOB_PARMS;

Description

Attempts to abort the currently executing T.38 gateway job, job. When the job
terminates due to a user abort, termination_reason in the
SM_T38GW_JOB_STATUS_PARMS (see 5.8) will be set to
tSMT38GWJobTerminationUser.

NOTE

It is not possible to abort a job unless it has been added to a session and the
session is currently executing.

Fields

Job

A tSMT38GWJobId obtained from a call to sm_t38gw_create_job().

Returns

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

5.10 sm_t38gw_destroy_job

Prototype Definition
int sm_t38gw_destroy_job(tSMT38GWJobId job)

Parameters

Job

A tSMT38GWJobId obtained from a call to sm_t38gw_create_job().

MAN1220 PUBLIC 19

Description

Destroys the T.38 gateway job specified by job and invalidates the tSMT38GWJobId.

NOTE

Once a job has been added to a session, the job must not be destroyed until the
status ‘tSMT38GWJobStatusTerminated’ has been reported.

Returns

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

5.11 sm_t38gw_destroy_job_info

Prototype Definition
int sm_t38gw_destroy_job_info(tSMT38GWJobId job, U32 *info)

Parameters

Job

A tSMT38GWJobId that has been previously created by a call to
sm_t38gw_create_job().

Description

Destroys the T.38 gateway job specified by job and invalidates the tSMT38GWJobId.

NOTE

Once a job has been added to a session, the job must not be destroyed until the

status ‘tSMT38GWJobStatusTerminated’ has been reported.

Returns

0 if call completed successfully, otherwise a standard error such as:

ERR_SM_DEVERR - device error

Unsigned 32 bit information parameter field (5.12) written to ‘info’.

5.12 T.38 Gateway job information field.
A 32 bit information field is returned by two of the T.38 Gateway API calls.

sm_t38gw_job_status

sm_t38gw_destroy_job_info

sm_t38gw_job_status returns the information field at the present stage of the fax
transfer.

sm_t38gw_destroy_job_info returns the full information field of the completed job.

MAN1220 PUBLIC 20

Bit Mask Description

0 T38GW_STATUS_CNG At least one CNG received.

1 T38GW_STATUS_CED At least one CED received.

2 T38GW_STATUS_DIS At least one DIS received.

3 T38GW_STATUS_DCS At least one DCS received.

4 T38GW_STATUS_CFR At least one CFR received.

5 T38GW_STATUS_FTT At least one FTT received.

6 T38GW_STATUS_MPS At least one MPS received.

7 T38GW_STATUS_EOP At least one EOP received.

8 T38GW_STATUS_MCF At least one MCF received.

9 T38GW_STATUS_RTP At least one RTP received.

10 T38GW_STATUS_RTN At least one RTN received.

11 T38GW_STATUS_DCN DCN received.

12 T38GW_STATUS_PPR At least one PPR received.

13 T38GW_STATUS_CTR At least one CTR received.

14 T38GW_STATUS_CTC At least one CTC received.

15 T38GW_STATUS_PPS_NULL At least one PPS_NULL received.

16 T38GW_STATUS_PPS_MPS At least one PPS_MPS received.

17 T38GW_STATUS_PPS_EOP At least one PPS_EOP received.

18

19 T38GW_STATUS_SPOOFED T.30 endpoint spoofed.

20 Reserved. Aculab use only.

21 Reserved. Aculab use only.

22 Reserved. Aculab use only.

23 Reserved. Aculab use only.

24

25
T38GW_STATUS_JOB_KILLE
D

T.38 job terminated, see log.

26
T38GW_STATUS_MEMORY_
ERROR

Contact Aculab.

27
T38GW_STATUS_RESOURC
E_ERR

Memory allocation error.

28

29

30

31

MAN1220 PUBLIC 21

6 T38.Gateway trace.
To enable tracing to stdout set the variable 'T38GWtrace' (which is exported) to one
of the following trace levels:

T38GW_TRACELVL_LOW

T38GW_TRACELVL_MED

T38GW_TRACELVL_HIGH

A full list of the individual trace masks can be found in t38gwtypes.h

Trace can be modified or redirected by defining a new trace function and re-assigning
the trace function pointer.

The signature for the trace function is:

int fn(const char *fmt, va_list ap)

and the function pointer is:

T38GW_showtrace

e.g.

To trivially output a timestamp and then the standard trace:

int timedtrace(const char *fmt, va_list ap)

{
 DWORD tm = GetTickCount();

 printf("%u: ", tm);

 vprintf(fmt, ap);

 return 0;

}

...

Then inside the main function (preferably before calls to any

T.38 gateway API functions):

{

 ...

 T38GW_showtrace = timedtrace;

 ...

}

NOTE

Temporary buffers allocated to hold data from the logging function require to be
at least 6180 bytes long to allow for the longest possible data that can be
outputted.

MAN1220 PUBLIC 22

6.1 T.38 Gateway Input and Output data logging.
The T.38 gateway logging defaults to displaying the number of bytes read and sent
on each data path as :-

(job number) READ (n).

(job number) SEND (n).

Full display of all data received and sent can be enabled by ‘oring’

T38GW_TRACELVL_INDATA

T38GW_TRACELVL_OUTDATA

with the trace level used.

For example

T38GWtrace = (T38GW_TRACELVL_MED | T38GW_TRACELVL_INDATA);

displays all data received on both paths by the gateway.

Full data logging increases log file size and results in greater system load.

MAN1220 PUBLIC 23

7 Appendix A : References
[1] TiNG API Linux or Windows Guide

 [2] ITU-T Recommendation T.38 – Procedures for real-time Group 3 facsimile
communication over IP networks

[3] ITU-T Recommendation T.30 – Procedures for document facsimile transmission in
the general switched telephone network

[4] T.38 Gateway introduction (Aculab MAN1221).

[5] T.38 Gateway logging (Aculab MAN1222).

The Aculab documents above can be found online under
https://www.aculab.com/documentation/.

https://www.aculab.com/documentation/

MAN1220 PUBLIC 24

8 Appendix B: Firmware Requirements
For basic operation the T.38 gateway library requires the following firmware modules
loaded on Prosody X DSP modules (not relevant for Prosody X Evo):

General:

datafeed

T.30 Fax

hdlctx

hdclrx

fsktx

fskrx

fskpll

v27tx

v27rx

inchan

outchan

td

tonegen

synctx

syncrx

prefsuf

T.38 Fax

fmptx

fmprx

ifprx

ifprx

It is normally desirable to include these additional fax modems performance

T.30 Fax:

v29rx

v29tx

v17tx

v17rx

If a user requires the ability to handle T.30 fax over RTP then these additional
modules are also required:

T.30 Fax over RTP:

vmptx

vmprx

vtdet

MAN1220 PUBLIC 25

