

MAN1204 Revision 6.16.1 PUBLIC Page 1

Aculab SS7

Signalling monitor
user's guide and API
reference

MAN1204 Revision 6.16.1

MAN1204 Revision 6.16.1 PUBLIC Page 2

PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab Plc and may be the
subject of patents pending or granted, and must not be copied or disclosed without prior
written permission. It should not be used for commercial purposes without prior agreement in
writing.

All trademarks recognised and acknowledged.

Aculab Plc endeavours to ensure that the information in this document is correct and fairly
stated but does not accept liability for any error or omission.

The development of Aculab products and services is continuous and published information
may not be up to date. It is important to check the current position with Aculab Plc.

Copyright © Aculab plc. 2006-2023: All Rights Reserved.

Document Revision

Rev Date By Detail

6.7.0 05.10.06 WM First issue with SS7 Version 6.7 software

6.7.1 16.10.06 DJL Update following editorial reviews, typos only

6.7.2 14.01.07 WM Security key configuration

6.8.3 16.03.07 DSL Decode of configure_link responses

6.10.1 11.09.08 WM Clarified description of line taps.
Remove hyperlinks to cross-referenced documents.

6.10.3 30.10.08 DSL General release copy

6.11.0 17.09.10 WM Added MTP2 API, fonts updated

6.11.11 01.11.11 DSL Refer to Prosody X V3 cards as well as PMXC modules.

6.12.2 28.06.13 DSL Add copy_msg() and free_msg() functions, clarifications

and corrections.

6.13.0 24.10.14 DSL Minor corrections and editorial changes.

6.14.0 16.09.16 DSL Align with current cards.

6.15.1 31.08.18 DSL Add HSL, tracing and new PT monitor

6.16.0 16.02.22 DSL Add Prosody X Evo information.

6.16.1 13.02.22 DSL Update title page

MAN1204 Revision 6.16.1 PUBLIC Page 3

CONTENTS

1 Introduction ... 5
2 Product overview .. 6

2.1 Overall structure ... 6
2.2 Signalling traffic capture... 7
2.3 Message processing library & API .. 7
2.4 Traffic capture modes .. 7
2.5 Bearer traffic capture.. 9
2.6 Supported cards and monitoring capacity ... 10

2.6.1 Signalling links ... 10
2.6.2 High speed signalling links .. 10
2.6.3 Prosody T monitor .. 10
2.6.4 E1/T1 network ports ... 11

3 Application structure.. 12
3.1 Threading model .. 12
3.2 Libraries and header files... 12

4 API description .. 13
4.1 Endpoints .. 13
4.2 Tracing .. 13
4.3 TCP/IP connections ... 13
4.4 Event notification .. 13
4.5 Link monitoring ... 13
4.6 Connecting TDM data to the monitor .. 13
4.7 Receiving monitored data .. 14
4.8 Automatic ISUP decode ... 14
4.9 Additional and alternative user part decoders .. 14
4.10 Active MTP2 interface .. 14

4.10.1 Coding guidelines for MTP2 users .. 14
4.10.2 MTP2 link status and statistics .. 15
4.10.3 MTP2 tracing .. 15
4.10.4 MTP2 congestion (sending or receiving SIB) ... 16

5 API function reference ... 17
5.1 Endpoint management functions ... 17

5.1.1 acu_ss7mon_lib_version()... 17
5.1.2 acu_ss7mon_create_endpoint() .. 17
5.1.3 acu_ss7mon_delete_endpoint() .. 17
5.1.4 acu_ss7mon_configure_endpoint() ... 17
5.1.5 acu_ss7mon_connect() ... 20
5.1.6 acu_ss7mon_connect_card_id() ... 20
5.1.7 acu_ss7mon_get_socket() .. 20
5.1.8 acu_ss7mon_get_socket_error() .. 21

5.2 Link monitoring functions ... 22
5.2.1 acu_ss7mon_monitor_link() .. 22
5.2.2 acu_ss7mon_set_sw() ... 22
5.2.3 acu_ss7mon_unmonitor_link() .. 23
5.2.4 acu_ss7mon_configure_link() ... 24
5.2.5 acu_ss7mon_ioctl_req() .. 24
5.2.6 acu_ss7mon_get_msg() .. 25
5.2.7 acu_ss7mon_copy_msg() ... 28
5.2.8 acu_ss7mon_free_msg() ... 28

MAN1204 Revision 6.16.1 PUBLIC Page 4

5.2.9 acu_ss7mon_interface_id_to_stream(), acu_ss7mon_interface_id_to_ts() 28
5.2.10 acu_ss7mon_get_dsp_version() ... 28

5.3 Message decoder functions... 29
5.3.1 acu_ss7mon_set_pointcode_size() .. 29
5.3.2 acu_ss7mon_decode_mtp3().. 29
5.3.3 acu_ss7mon_set_upart_decode ... 30
5.3.4 acu_ss7mon_decode_upart() ... 31

5.4 ISUP decoder functions ... 32
5.4.1 acu_ss7mon_isup_accept() .. 32
5.4.2 acu_ss7mon_isup_reject() .. 32
5.4.3 acu_ss7mon_isup_locate_parameter() .. 33
5.4.4 acu_ss7mon_isup_find_next_parameter() ... 33

5.5 MTP2-specific API functions ... 34
5.5.1 acu_ss7mtp2_est_req() ... 34
5.5.2 acu_ss7mtp2_rel_req() ... 34
5.5.3 acu_ss7mtp2_state_req().. 35
5.5.4 acu_ss7mtp2_data_req() .. 35
5.5.5 acu_ss7mtp2_rtrv_req() .. 36

5.6 Error handling functions ... 37
5.6.1 acu_ss7mon_get_error_text() ... 37

6 MTP2 configuration parameters ... 38
7 Using the MTP3 decoder ... 39
8 Using the internal ISUP decoder .. 40

8.1 Enabling the decoder ... 40
8.2 Automatic or manual decode ... 41
8.3 Message formats.. 41
8.4 Accessing specific parameters .. 44
8.5 Message delivery errors .. 44

9 Writing additional user part decoders ... 45
10 System configuration ... 46
Appendix A: DSP and switch matrix examples ... 47

A.1 Passive interception example .. 48
A.2 Active interception example... 50
A.3 Local monitor example ... 52

Appendix B: Complete application example ... 54
B.1 Using the sample application .. 54
B.2 Source code description .. 54

B.2.1 Source file outer Scope ... 54
B.2.2 Function: main() ... 55
B.2.3 Function: open_card() ... 55
B.2.4 Function: initialise_endpoint() ... 55
B.2.5 Function: request_link_monitor() .. 55
B.2.6 Function: consume_traffic() ... 55
B.2.7 Function: process_isup_msg() .. 55
B.2.8 Function: handle_new_call() ... 56
B.2.9 Function: call_completed() .. 56
B.2.10 Function: check_details() .. 56
B.2.11 Function: call_wanted() ... 56

B.3 Source code listing ... 57

MAN1204 Revision 6.16.1 PUBLIC Page 5

1 Introduction
This manual describes the Aculab SS7 signalling monitor, which allows applications to use an
Aculab prosody card to ‘eavesdrop’ on SS7 signalling traffic between SS7 signalling points
(SP). It includes a description of the monitor itself with a full API.

In order to use the signalling monitor, you will also need to install, configure, and use, the
specification, and explains how it relates to other Aculab products and APIs.

In addition to the monitor API, a series of additional API calls are provided that allows the
monitor library to activate full ‘active’ MTP2 functionality or to send and receive raw HDLC
frames.

In order to use this software, you will also need to install, configure, and use, the underlying
core Aculab telephony software and Aculab SS7 server products as described in the SS7
installation and administration guide, the SS7 developer’s guide, and in the card installation
guide and related documentation for the ‘core’ V6 telephony software. You may therefore find
it useful to have these manuals available while reading this one.

Applications that use the SS7 signalling monitor may also be required to monitor bearer traffic,
such as subscriber conversations. For E1/T1 traffic, this can be achieved using the Aculab
Prosody (speech) APIs, which can co-exist with the SS7 signalling monitor. Some general
advice and guidance about monitoring of bearer traffic is included in this document, but the
Prosody API is unaffected by the presence of the SS7 signalling monitor so reference should
be made to the appropriate Prosody documentation if it is needed.

The API specification is supplemented, in section Appendix B: with a working example
application. This demonstrates a simple monitor which is triggered by calls to the number
starting 123. Each call results in a call record being written to stdout identifying start,

connection, and end times, along with details of called and calling numbers.

MAN1204 Revision 6.16.1 PUBLIC Page 6

2 Product overview

2.1 Overall structure
Figure 1 illustrates, in simplified form, the major components of the signalling monitor and
shows how it relates to the SS7 signalling software (ISUP & TCAP) APIs.

It can be seen from Figure 1 that the SS7 signalling software (SS7 Server) and the core
Aculab telephony software always need to be installed when a monitoring application is in
use, since they contain software components that are needed by both monitoring and
signalling applications. The monitoring software is optional and only needs to be installed if a
monitoring application is going to be run. The card hardware and software is the same,
regardless of whether it is to be used for signalling, monitoring, or both.

Monitor applications will also need to use some of the functions of the Aculab resource
manager API, the switch API and, in some cases, the Prosody API. These are not shown in
the diagram, but would be installed along with the SS7 signalling software and core telephony
software, so that they are available to monitoring applications when required.

Figure 1: Major system components for monitoring and signalling

Aculab card

HDLC
traffic
capture

MTP2
signalling

Core telephony software
drivers, including “SS7
server” protocol stack and
ISUP/TCAP APIs

Message
processing library
and signalling
monitor API

Signalling
application

Monitoring
application

L1 & switch matrix

TCP/IP
connection

Core Aculab telephony
software and SS7
server

Aculab SS7
signalling monitor

MAN1204 Revision 6.16.1 PUBLIC Page 7

2.2 Signalling traffic capture
The SS7 MTP2 on Prosody cards runs on dedicated hardware that is connected to the card's
TDM switch. Information is passed to/from MTP3 and monitor applications using TCP
connections. The on-card receive processing has three basic stages:

1) HDLC framing
2) MTP2 state processing
3) TCP/IP message encoding

When configured as a monitor the MTP2 state processing is bypassed and received HDLC
frames are passed directly to the application.

An idle SS7 MTP2 link is filled with continuous short HDLC frames (LSSU or FISU). Since
these are not normally of interest to a monitoring application, short receive frames are
normally filtered out. The application can request that a single shorter frame be reported: e.g.
to request that the first LSSU be reported (typically indicating link failure) or to request that a
FISU be reported to verify the link is still active.

The HDLC transmit is always active and will idle sending hdlc flags on monitor links. The
transmit data is not normally connected to an external timeslot unless the 'monitor' is being
used as a general hdlc controller.

2.3 Message processing library and API
The SS7 signalling monitor API allows an application to establish a TCP/IP connection to the
card responsible for traffic capture, and then to retrieve monitored traffic by reading data from
that connection.

The data on the TCP/IP connection between the card and application is encapsulated in a
proprietary and unpublished Aculab protocol (based heavily on SIGTRAN M2UA). The monitor
API library provides the functions to connect to the card and to encode and decode the
TCP/IP stream.

In addition to providing an interface for applications to access the raw HDLC data, the monitor
library can be configured to intercept the data with various filtering options, for example, to
suppress messages for certain SS7 user parts. It may also be used to perform either or both
an MTP3 and an ISUP message decode. If the ISUP decode is in use, the library maintains
context information which the application may (but does not have to) use to keep track of
individual ISUP telephone calls.

The monitor could be used to receive (and can send) HDLC frames for any protocol provided
that they are not longer than SS7 frames and use CRC16.

Full details of the API are provided later in this document (see sections 4 to 9).

2.4 Traffic capture modes
To capture the signalling traffic mtp2/hdlc engines (with internal TDM timeslots to the TDM
switch) are allocated and assigned for monitoring. These are then connected, using the TDM
switch matrix, to traffic sources containing the actual SS7 signalling. Two mtp2/hdlc blocks are
required for each SS7 signalling link being monitored, each monitoring data in one direction
only, i.e. tx or rx.

It is possible to configure three alternative modes of capture traffic, as described below. See
also section Appendix A:, which contains further details of these three modes and provides
example code snippets showing how to configure and initialise each mode.

MAN1204 Revision 6.16.1 PUBLIC Page 8

Passive interception

In this mode, external line taps (not supplied by Aculab) are used to extract the traffic captured
from E1/T1 trunks containing SS7 signalling links. The line taps may be truly passive, or they
may be powered, as described below.

Purely passive taps typically use resistive-coupling or transformer-coupling, and present a
weak signal to the monitor, at the expense of a small attenuation of the signal being
monitored. The monitor has to be adjusted for the weak signal, please refer to the -cRXMON

firmware configuration parameter in the parameter in the SS7 installation and administration
guide.

Powered taps require an external power source as they provide amplification. They present a
high impedance to the circuit being monitored, with very little attenuation, but provide a
regenerated signal at full strength for the monitor. They tend to be much more costly that
purely passive taps.

Owing to the cost advantage, un-powered passive are preferred by most users. Your Aculab
account manager may be able to advise on suppliers.

Figure 2: passive interception
Active interception (pass-through)
In this mode the traffic is captured from external E1/T1s containing signalling links by diverting
them through a pair of TDM network ports that are connected in a bi-directional ‘pass-through’
mode to one another. Compared with the passive intercept configuration this has the
drawback that the Aculab card becomes an active participant, and hence a potential point of
failure in the physical (Layer 1) connection between the monitored SPs. It does however offer
cost savings, as no external line taps are required.

Figure 3: Active interception

Signalling Monitoring

Traffic Traffic

Line tap

Signalling Monitoring

Traffic Traffic

MAN1204 Revision 6.16.1 PUBLIC Page 9

Local traffic monitor
In this mode, as well as running a monitoring application, some other (or the same) application
is performing ISUP or TCAP signalling to a remote SP. The monitoring application is
processing the data to/from the signalling application’s own signalling link(s).

Figure 4: Local traffic monitor

All of the modes described above can coexist. A single card can be performing a combination
of signalling, local monitoring, and active & passive interception concurrently on different
network ports.

Note For all monitor modes, SS7 signalling messages between any two signalling points may take various
routes. These routes may vary from one message to another, and may be different for each direction of
traffic. To capture all traffic, customers deploying the signalling monitor need to identify all potential traffic
routes and ensure that all relevant signalling links are monitored.

2.5 Bearer traffic capture
Bearer traffic can be captured using the Aculab switch and Prosody APIs to access data on
the bearer timeslots in the same way a signalling application would. Refer to the Aculab switch
and Prosody API guides for details.

The Prosody T monitor (on Prosody X Evo) supports direct monitoring of bearer data. See
section 2.6.3.

In order for a monitoring application to access bearer traffic based on the monitor API’s ISUP
message decoder; it will need to translate the ISUP circuit identification codes (CICs) into
actual bearer channels (E1/T1 ports and timeslots). The mapping between ISUP CICs and
physical bearer channels cannot be predicted, it is a bilateral agreement between the two
ISUP switches. It will usually be necessary to request the CIC mapping details from the
administrators of one (not both) of the switches that are being monitored.

Note SS7 ISUP bearer traffic may take a different route, or may use a different physical medium, compared with
the signalling traffic. So even when the Aculab signalling monitor is successfully capturing the signalling
traffic, a different technology, and/or another monitoring location, may sometimes need to be deployed for
bearer traffic capture.

Signalling Monitoring

Traffic

MAN1204 Revision 6.16.1 PUBLIC Page 10

2.6 Supported cards and monitoring capacity

2.6.1 Signalling links

The number of signalling links that can be monitored depends on the number of timeslots of
signalling data the card/chassis being used can process each TDM frame.

Card/Chassis Type Timeslots Note

Prosody 1U enterprise 128 1
Prosody X rev 3 card 64
Prosody T card 64
4 or 8 port HA chassis 64 Contains a Prosody X rev 3 card
16 port HA chassis 64+64 2 Contains 2 Prosody X rev 3 cards
4 or 8 port PX Evo chassis 64 Contains a Prosody T card
16 port PX Evo chassis 128 3 Contains 2 Prosody T cards
Prosody X Evo chassis all 4 Using the Prosody T monitor

Notes:
1) At high message rates higher level processing may constrain throughput.
2) 64 on ports 0-7 and 64 on ports 8-15.
3) Any split between all 16 ports (transparent use of internal H.100 bus).
4) This uses the PX Evo chassis x86 motherboard cpu instead of on-card processors.

The number of signalling links that can be monitored is half the above because both the
transmit and receive sides need to be processed.

MTP2 signalling and monitoring can be done at the same time; the limit applies to the
combined number of timeslots.

The application must also be able to process all the monitored data in real time. If the
application fails to keep up with the received data then receive data is silently discarded.

2.6.2 High speed signalling links

High speed signalling links (HSL) (see Q.703 Annex A) use unchannelised E1 (or T1) to get
data rates of 2.0 (or 1.5) Mbit/sec.

The SS7 monitor supports HSL (not on Prosody 1U enterprise). Each timeslot of signalling
counts towards the card’s limit on the number of links. So a Prosody X rev 3 card can monitor
the transmit and receive sides of a single HSL that uses all of an E1.

The monitor can decode messages that use extended sequence numbers.

Note To avoid mis-sequenced monitored messages, the two data taps from an external trunk should be
connected to the same card.

Note On a Prosody X rev 3 card the receive data must come indirectly from the H.100 bus not directly from the
external trunk stream. This is handled by the library if acu_ss7mon_set_sw() is used to set the switch
matrix connections.

2.6.3 Prosody T monitor

On Prosody X Evo systems (containing Prosody T cards) an alternate monitor is available.
Rather than use the card’s MTP2 engines it processes the data using the x86 CPU on the
Prosody X Evo chassis motherboard.

The faster cpu and more memory allow all the external timeslots be monitored (eg 8 HSL on a
16 port card).

Additionally raw TDM u-law/A-law data can be received through the monitor interface (as well
as through TiNG).

The interface for monitoring traffic is the same as the other monitors. The only difference is
setting up the switch matrix to link the external timeslot to the monitor software. The monitor is
selected by configuring ACU_SS7MON_CFG_PT_MONITOR.

MAN1204 Revision 6.16.1 PUBLIC Page 11

Internally the monitor uses the receive data path used by Prosody S. Prosody S can be used
at the same time, but care must be taken to ensure the same timeslots are not being used by
both sub-systems

This monitor has a higher latency than the normal monitor (around 20ms) and cannot send
frames.

2.6.4 E1/T1 network ports

Each external E1/T1 trunk containing one or more signalling links that needs to be monitored,
consume two of the card’s network ports. The first port monitors data travelling in one
direction, the second monitors traffic in the opposite direction. The remaining ports on the card
can be used for signalling and/or or bearer, traffic. This yields the formula

Total network ports in use = (number of ports used for signalling or bearers

 + (2 x number of E1/T1s being monitored)).

The number of available network ports differs depending on the card version.

MAN1204 Revision 6.16.1 PUBLIC Page 12

3 Application structure

3.1 Threading model
The API is not designed to be thread-safe; moreover, it explicitly mandates a single-threaded
interface between the library and application. This avoids some overheads of data copying by
allowing the application to have direct access to the library’s internal data buffers. Appropriate
‘rules’ define the various times, based on sequences of API calls, that such accesses are
allowed.

3.2 Libraries and header files
The Aculab SS7 signalling monitor consists of a single header file named ss7monitor.h, and

a single library file as follows:

• For Linux, the library is a shared object named libacu_ss7monitor.so.

• For Windows the library is a dynamically linked library named acuss7_monitor.dll.

As explained in section 2.5, applications will also need to make use of the Aculab resource
manager and switch APIs for establishing the TDM switch matrix connections. Some
applications may also need to use the Aculab Prosody and/or call control APIs, in which case
additional header files and libraries will need to be used. Refer to the product documentation
for these additional APIs if they are required.

Note For windows, the file ss7monitor.h contains #include <winsock2.h>. This can lead to namespace
collisions with the older windows file winsock.h, which may be included in other header files such as
windows.h. One way of resolving this problem is to ensure that the macro _WINSOCKAPI_ is defined either
in the application source code prior to any #include statements, or as a compiler directive where the
macro instructs the pre-processor to exclude the contents of winsock.h

MAN1204 Revision 6.16.1 PUBLIC Page 13

4 API description
This section provides a brief description of the major features of the API. For a detailed API
reference guide, refer to section 5.

4.1 Endpoints
An ‘endpoint’ is the primary means by which an application identifies itself to the monitor. Any
application using the monitor needs to create at least one monitoring ‘endpoint’. Each
endpoint can only access a single card, but can monitor many different signalling links.

API functions are provided for creating, deleting, and configuring endpoints:
acu_ss7mon_create_endpoint()

acu_ss7mon_delete_endpoint()

acu_ss7mon_configure_endpoint()

4.2 Tracing
The monitor library can write trace information that includes the messages sent to and
received from the HDLC/MTP2 engines to a local file. Tracing can be enabled by calling
acu_ss7mon_configure_endpoint(ACU_SS7MON_CFG_TRACE_FILENAME, "filename").

The trace file can be decoded by ss7maint decode.

4.3 TCP/IP connections
A TCP/IP connection is required between the monitor library endpoint and the card. Either of
these API functions will setup the necessary connection:

acu_ss7mon_connect().

acu_ss7mon_connect_card_id().

The parameters required to establish the connection are usually obtained from the Aculab
resource manager. The acu_ss7mon_connect_card_id() function requests and saves the

required information before making the TCP/IP connection.

4.4 Event notification
The API includes an event-driven interface acu_ss7mon_get_msg() that allows an application

endpoint to read data from the TCP/IP connection, blocking with a timeout in the monitor
library until data is available. A function is also available for the application to obtain the native
OS identifier for the TCP/IP socket, acu_ss7mon_getsocket(). This latter function is useful

for event-driven applications that may need to wait for input from other sources as well data
from the line interface card, especially given the single-threaded API constraints.

4.5 Link monitoring
In order to monitor a signalling link, the application endpoint requests the card software to
allocate an HDLC/MTP2 engine. API functions are provided to start and stop monitoring, or to
modify configuration, of individual links:

acu_ss7mon_monitor_link()

acu_ss7mon_unmonitor_link()

acu_ss7mon_configure_link()

The response to acu_ss7mon_monitor_link() contains an identifier (a small integer) that is

used to reference the link in subsequent requests and indications.

4.6 Connecting TDM data to the monitor
Having allocated a monitor the application then needs to establish a TDM switch connection to
the data being monitored. This is done using the Aculab switch API functions.

The application can either use the timeslot(s) allocated by the HDLC/MTP2 engine or direct
the HDLC/MTP2 engine to use specific timeslot(s) on its stream to the card’s TDM switch.

If the application used acu_ss7mon_connect_card_id() to establish the TCP/IP connection

the acu_ss7mon_set_sw() function can be used to connect the allocated timeslot(s) to the

MAN1204 Revision 6.16.1 PUBLIC Page 14

external stream.

4.7 Receiving monitored data
An API function, acu_ss7mon_get_msg() is provided that returns a pointer to a data buffer if

any relevant data is available, as well as any other information such as ISUP call identifiers
(see below).

The buffers returned by acu_ss7mon_get_msg() are pointers to memory allocated within the

library. The library only guarantees that the data remains valid until the next API call to
acu_ss7mon_get_msg(), at which point the buffer may be freed or reused by the library. If the

application needs to keep a copy of the buffer contents, it must copy the actual data rather
than keep a copy of the pointer. The API has been designed however in such a way that
frequent copying should not be needed.

If an application does need to defer message processing it can use acu_ss7mon_copy_msg()

and acu_ss7mon_free_msg() to copy the message information to malloced memory.

Additional decoder API functions are provided that set various filtering options on received
data, or perform additional decoding of messages that have been filtered by the application.

4.8 Automatic ISUP decode
The application may request the library to automatically decode ISUP messages, and to
provide automatic tracking of individual ISUP calls. When used in this mode, the message
buffers returned by acu_ss7mon_get_msg() will also contain a pointer to an ISUP-specific

‘information buffer’ containing ISUP message parameters, and a pointer to a ‘call detail buffer’
in which a summary of an ongoing call, including it’s current state, and certain parameters
such as called and calling numbers, is accumulated.

As with the message buffers themselves, the ISUP information and details buffers are
allocated within the library, which may free or reuse them as soon as the application makes
another API call. If the application needs to keep a copy of the buffer contents, it must copy
the actual data rather than keep a copy of the pointer. The call details buffers should not need
to be copied often however, as its contents are cumulative and a fresh pointer to it is provided
with each ISUP message for a given ISUP call.

4.9 Additional and alternative user part decoders
Application writers can add further user part decoders using acu_ss7mon_set_upart_decode().

Such decoders could be written for protocols, such as TUP or DUP, which are not provided by
Aculab. User-written decoders can be fully integrated into the API and invoked by the same
mechanisms as for library-provided decoders.

Although the source code for the library’s internal ISUP code is not published, it is treated just
like a user-written decoder, and is enabled in the same way as a user-written decoder.
Therefore, an application could be written with its own decoder for ISUP, in preference to
using the ISUP decoder by Aculab, for example, if required for a national variant that differed
significantly from the ITU-T recommendations.

4.10 Active MTP2 interface
The monitor uses Aculab's normal MTP2 implementation, but configures it to skip the protocol
processing and pass received data directly to the user. To access the MTP2 protocol itself it is
only necessary to not set the 'monitor flag'.

Both the basic and preventive cycle error correction methods can be used.

There are some additional MTP2-specific functions that are described in section 5.5.

4.10.1 Coding guidelines for MTP2 users

It has already been explained, in section 3.1, that the entire monitor API is non re-entrant.
The same applies to the MTP2 API extensions, and so a single-threaded application interface
is required. Whilst it may be possible to write an entire monitor application that runs as a
single thread, that approach would be much more difficult for an MTP2 user and so MTP2

MAN1204 Revision 6.16.1 PUBLIC Page 15

users may prefer to use a multithreaded application with mutex-protection, provided by the
application, around all calls into this API.

If mutex protection is used, then the user clearly will not want to call acu_ss7mon_get_msg()

with a timeout as that would cause the calling thread to block with a mutex held. MTP2 users
will therefore probably make use of acu_ss7mon_getsocket(), which provides the native OS

identifier for the TCP socket. That allows the application to contrive to only call
acu_ss7mon_get_msg() when there is some reason to expect that a message is available

and so it can be called with a timeout of zero.

The library communicates with the MTP2 software via a TCP connection. When an
application calls the function acu_ss7mon_get_msg(), even if there has been some indication

that a message is available, the value of ACU_SS7MON_MSG_NO_DATA may be returned. This

indicates that the monitor library has processed some data received from the TCP connection
internally, but that the data was handled within the library, and that the data was of no
significance to the API user. The application must ignore such events and continue to
process message indications.

Moreover it is important, after there has been an indication from the OS that data may be
available, that the user always calls acu_ss7mon_get_msg() and repeatedly calls it until it

returns ACU_SS7MON_MSG_NO_DATA. That is because the library uses this function internally to

send certain acknowledgement and management messages to the PMX card and, if the user
does not call acu_ss7mon_get_msg(), these messages would not get sent.

4.10.2 MTP2 link status and statistics

The MTP2 status and statistics can be displayed by requesting ss7maint directly connect to
the card instead by using:
 ss7maint linkstatus -2 [-vC] [-h -i interval] [-S timeslot] -B board_ip

 -K board_key

The values can be obtained by the application using acu_ss7mon_ioctl_req() see section

5.2.5

4.10.3 MTP2 tracing

The MTP2 code generates trace messages that normally get written to the ss7 driver trace
(read by ss7maint trace, and decoded by ss7maint decode). These are suppressed for

monitor endpoints (they replicate the receive data), but can be useful for active MTP2 users.

The trace messages can be enabled and disabled using the ss7_IOC_LINK_TRC_FLTR ioctl

command, see section 5.2.5.

The trace messages have type ACU_SS7MON_TRACE and contain binary data in an

undocumented format. They can be converted to a printable form using the functions in the
libacu_ss7decode.so/acuss7_decode.dll library #include <ss7_lib_decode.h> to get

the definitions.

In order to decode the trace messages the library needs a short header (containing the
message type and length) at the start of the trace data, set ACU_SS7MON_MEF_RAW_TRACE so

that this header isn't stripped.

The code fragment below shows how the decode functions are used.

 struct su_info *su = ss7_decode_init_su_info(NULL); // calls malloc()

 ...

 switch (msg->mm-msg_type) {

 ...

 case ACU_SS7MON_MSG_TRACE:

 ss7_decode_su(su, SS7_TRACE_FMT_SIGTRAN | SS7_TRACE_F_DECODE_TRACE,

 msg->mm_buffer, msg->mm_buflen);

 printf("%s", ss7_decode_get_output(su));

 break;

 ...

 ss7_decode_free_su_info(su); // calls free()

The same structure can be used to decode multiple messages without being reinitialised.

MAN1204 Revision 6.16.1 PUBLIC Page 16

For ANSI decode call ss7_decode_set_variant(su, "ansi") after allocating the structure.

Although shown above in the message processing loop, the trace decode isn't written to be
particularly fast and may affect the ability to keep up with received data especially if a large
number of signalling links are active. It is better to save the raw data and decode if needed.

4.10.4 MTP2 congestion (sending or receiving SIB)

There are no specific API functions or events relating to MTP2 congestion control, but there is
some interaction with the API as follows:

Local congestion (sending SIB) occurs when the number of data buffers queued by MTP2 for
MTP3 becomes excessive. This situation can be caused by failure of the API user to
consume the buffers fast enough, by failing to call acu_ss7mon_get_msg()when Rx data is

queued.

When remote congestion is encountered by MTP2 (SIB received), MTP2 may be unable to
consume Tx buffers that are passed from the API user. If that happens, the Tx flow control
mechanism may be encountered, such that the function acu_ss7mtp2_data_req()returns the

value ACU_SS7MTP2_WRN_TX_FLOW. Please see section 5.5.4 for further detail.

MAN1204 Revision 6.16.1 PUBLIC Page 17

5 API function reference

5.1 Endpoint management functions

5.1.1 acu_ss7mon_lib_version()

This function obtains the version string of the monitor library.

Synopsis
const char *acu_ss7mon_lib_version(void);

Return value

A C string identifying the version of monitor library.

5.1.2 acu_ss7mon_create_endpoint()

Allocates and initialises an endpoint data area.

Synopsis

acu_ss7mon_ep_t *acu_ss7mon_create_endpoint(void);

Each endpoint allows an application to connect to a single card. To monitor traffic from
multiple cards, separate endpoints must be created for each card. An application can connect
multiple endpoints to the same card.

Any number of signalling links can be monitored using a single endpoint.

Messages from all the links being monitored on a single endpoint are kept in the order in
which they are received. Monitoring the transmit and receive sides of a signalling link through
the same endpoint will significantly reduce problems with message sequencing.

Note It is almost certainly best to use as few endpoints as possible.

5.1.3 acu_ss7mon_delete_endpoint()

Frees all resources (closing any TCP/IP connection) associated with the specified endpoint.

Synopsis
void acu_ss7mon_delete_endpoint(acu_ss7mon_ep_t *ep);

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

5.1.4 acu_ss7mon_configure_endpoint()

Modifies the characteristics of an endpoint data area.

Synopsis

int acu_ss7mon_configure_endpoint(acu_ss7mon_ep_t *ep,

acu_ss7mon_cfg_param_t param, ...);

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

param, ...

Identifies the parameter to be modified and its associated integer or string value; one of:

MAN1204 Revision 6.16.1 PUBLIC Page 18

ACU_SS7MON_CFG_L2_MODE, l2_modes

Defines the mode for the interface. Set to a bitwise ‘or’ of the following flags:

ACU_SS7MON_L2_MODE_RAW Normal monitor mode (default for monitor).

ACU_SS7MON_L2_MODE_APP_EST_REQ Suppress the call to acu_ss7mtp2_est_req()

on monitor links so that the application can
supply link-dependant parameters..

ACU_SS7MON_L2_MODE_MTP2 Active MTP2 link (value is zero).

ACU_SS7MON_L2_MODE_T1 Active MTP2 link using the T1 defaults for the
MTP2 parameters.

ACU_SS7MON_L2_MODE_PCR MTP2 PCR link.
ACU_SS7MON_CFG_DECODE_FLAGS, flags

Modifies the way the library decodes received messages. It must be followed by a
bitwise ‘or’ of the following flags:

ACU_SS7MON_MEF_DECODE_MTP3 Call acu_ss7mon_decode_mtp3() on all

received data messages.
ACU_SS7MON_MEF_DECODE_USERPART Call acu_ss7mon_decode_upart() on all

received level 3 messages.
ACU_SS7MON_MEF_EXTENDED_SEQ Use the MTP2 extended sequence format

from Figure A.1/Q.703. The high BSN and
FSN bits are discarded.

ACU_SS7MON_MEF_RAW_TRACE Leave the 8 byte header on
ACU_SS7MON_MSG_TRACE indications.

By default, the library will not perform any MTP3 or user part decoding.

ACU_SS7MON_CFG_TRACE_FILENAME, filename

Creates a trace file with the specified name.
The file is formatted so that it can be processed by ss7maint decode.

This parameter can be set from an environment variable with the same name.
For security reasons the filename specified by the environment variable can only
contain alphanumerics, '.', '-' and ‘_'.

ACU_SS7MON_CFG_TRACE_MAX_FILE_SIZE, filesize

The maximum size of the trace file (in bytes) before a new file with suffix .n is opened.

Default 1048576 (1MB), if set to zero log file rotation is suppressed.

ACU_SS7MON_CFG_TRACE_FILE_KEPT, count

The number of old trace files that are kept.
Default 10.

ACU_SS7MON_CFG_TRACE_LEVEL, level

Trace verbosity (higher values are more verbose).
The default 5 suppressed traces of monitored data. Set to 6 to include these.
This parameter can be set from an environment variable with the same name

ACU_SS7MON_CFG_CARD_KEY, security_key

Sets the value of the security key that will be used when connecting to the card. It must
be followed by a pointer to a null-terminated character string containing the actual key.
If the value of the key is not known, it can be obtained using the Aculab Resource
Manager API.

ACU_SS7MON_CFG_PT_MONITOR, pt_monitor_parameters

Use the alternate monitor for Prosody T cards (see section 2.6.3).
The following parameters are supported:

-t timeslot Lowest ‘Prosody S’ timeslot to use. 128+ are on the second stream,
256+ on the second card (if present).

To enable the pt_monitor with no additional parameters configure the empty string "".

MAN1204 Revision 6.16.1 PUBLIC Page 19

ACU_SS7MON_CFG_RXBUF_SIZE, buffer_size

Changes the size of the receive buffer area within the monitor library. It must be
followed by an integer containing the size in bytes. If this parameter is not specified it
defaults to 65536, which should suffice for most applications.
Receive data is also buffered in the socket receive buffer and the TCP/IP connection.

ACU_SS7MON_CFG_HIGH_SPEED, timeslot_count

Sets the number of timeslots for high speed signalling links. This would normally be
either 30 or 31 depending on whether timeslot 16 is used or not.

ACU_SS7MON_CFG_HSL_TS_IGNORE, timeslot_bitmask

Sets a bit-pattern of source timeslots to ignore on high speed links.
In particular setting it to 0x10000 causes timeslot 16 be ignored.

ACU_SS7MON_CFG_H100_STREAM, tdm_stream_number

Set the H.100 stream number for retiming port 0 receive data of high speed signalling
links on Prosody X rev 3 cards. Ports 1 up use sequential H.100 streams.
The timeslots used match the port timeslot.
The default is 0.

ACU_SS7MON_CFG_L2_CONFIG, l2_config_string

Provides a default configuration string used when links are created on this endpoint.
acu_ss7mon_configure_link() can be used to change some parameters on an active

link. Refer to section 6 (MTP2 configuration parameters) for a description of supported
strings.

The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6.

MAN1204 Revision 6.16.1 PUBLIC Page 20

5.1.5 acu_ss7mon_connect()

Establishes a TCP/IP connection to the card/chassis.

Synopsis
int acu_ss7mon_connect(acu_ss7mon_ep_t *ep, const char *ip_address);

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

ip_address

The card’s IP address, either as a numeric address (e.g. "192.168.42.42"), or a name that can
be resolved to such an address. Both IPv4 and IPv6 addresses are supported. If
getaddrinfo() returns multiple addresses they are tried in turn until one succeeds.

The address can be obtained from the resource manager's acu_get_card_info() function.

The card security key must have been configured, as described in section 5.1.4.

This function should only be called once for each endpoint, regardless of how many links will
be monitored. The function returns zero to indicate success, or a negative value if an error
occurred as listed in section 5.6.

Note This function blocks while establishing the connection.

5.1.6 acu_ss7mon_connect_card_id()

Establishes a TCP/IP connection to the card/chassis using information obtained from the
Aculab resource manager.

Synopsis
int acu_ss7mon_connect_card_id(acu_ss7mon_ep_t *ep, ACU_CARD_ID *card_id);

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

card_id

Card identifier returned by acu_open_card().

This is an inline function that calls the Aculab resource manager acu_get_card_info()

function then uses the card_key, card_serial_no and ip_address fields to configure the

endpoint and then calls acu_ss7mon_connect().

The card_id is also saved and is used by acu_ss7mon_set_sw() to make the required TDM

switch matrix connections.

5.1.7 acu_ss7mon_get_socket()

Returns the native identifier for the socket used for the connection to the card.

Synopsis

socket_t acu_ss7mon_get_socket(acu_ss7mon_ep_t *ep);

This allows the application to use OS calls (e.g. select(), poll(), and WSAEventSelect())

to wait for library events and indications from outside of the library at the same time.

Note Once the OS has indicated that the socket is readable, the application must call
acu_ss7mon_get_msg() in a loop until it indicates that no more indications are available.

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

MAN1204 Revision 6.16.1 PUBLIC Page 21

5.1.8 acu_ss7mon_get_socket_error()

Returns the last native error code from a socket function.

Synopsis

int acu_ss7mon_get_socket_error(acu_ss7mon_ep_t *ep);

Such error codes are operating system specific, so reference needs to be made to the
appropriate OS documentation.

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6.

MAN1204 Revision 6.16.1 PUBLIC Page 22

5.2 Link monitoring functions

5.2.1 acu_ss7mon_monitor_link()

Requests that the card allocate an HDLC/MTP2 engine and corresponding timeslot for
monitoring or data transfer.

Synopsis
int acu_ss7mon_monitor_link(acu_ss7mon_ep_t *ep, unsigned int link_id,

unsigned int stream, unsigned int timeslot)

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

link_id

Is an application-provided token that is not used by the library. It may take any value, and will
be returned to the application in the mm_link_id of every message indication for this link.

stream and timeslot

These are nominally the switch matrix stream and timeslot for the link being monitored.
However the monitor library doesn't configure the switch matrix and these fields may be set to
any value. The values may appear in diagnostic/debug output from other tools.

The request is processed asynchronously by the card. Successful return from this function
indicates that the request has been sent. If the request is accepted, the card will respond with
a message with the mm_type field set to either SS7MON_MSG_MONITOR_ACK or

SS7MON_MSG_MONITOR_FAIL, to indicate success or failure respectively.

The SS7MON_MSG_MONITOR_ACK indication contains the timeslot number needed to make the

TDM switch connection between the hdlc block and the E1/T1 TDM timeslot. The easiest way
to do this is to call acu_ss7mon_set_sw(); see 5.2.2.

If you are monitoring a local signalling link the source stream for the transmit traffic can be
found by using the switch driver API call sw_query_output() on the external timeslot.

Once the SS7MON_MSG_MONITOR_ACK indication is received the monitoring must be started by

calling acu_ss7mtp2_set_req(). For monitor links this is normally done automatically passing

the configuration string specified by acu_ss7mon_configure_endpoint(ep,

ACU_SS7MON_CFG_L2_CONFIG, config_string).

The function returns zero to indicate the request was accepted, or a negative value if an error
occurred as listed in section 5.6.

5.2.2 acu_ss7mon_set_sw()

Connects the specified TDM timeslot (normally on an E1/T1 trunk) to the monitor.

Synopsis
int acu_ss7mon_set_sw(acu_ss7mon_msg_t *monitor_ack_msg, unsigned int stream,

unsigned int timeslot)

Parameters
monitor_ack_msg

The address of the received message that indicates the monitor link request was accepted.
The endpoint structure and stream/timeslot of the monitor are taken from the message.

stream and timeslot

Switch API stream and timeslot for the source data to be monitored.
These do not need to match the values passed to acu_ss7mon_montor_link().

Remember to add the offset (32) for E1/T1 trunks.

The receive data of HSL on PxV3 cards is retimed using an H.100 stream (use
ACU_SS7MON_CFG_H100_STREAM to specify the stream).

MAN1204 Revision 6.16.1 PUBLIC Page 23

The monitor’s stream and timeslot are taken from the msg’s mm_status field.

If that is zero the mm_interface_id is used instead.

If the value is greater than 256 then it is encoded stream << 8 | timeslot.

If less than 256 it is a timeslot offset into streams 48 upwards (each having 32 timeslots).

The function is implemented in an inline wrapper that passes the monitor library the address
of sw_set_output() so that the monitor library doesn’t have to be linked against the switch

library. The return value is always from sw_set_output().

Note This function can only be used if acu_ss7mon_connect_card_id() was used and the application has called
acu_open_switch() for the card.

5.2.3 acu_ss7mon_unmonitor_link()

Requests that the card stop monitoring a link.

Synopsis

int acu_ss7mon_unmonitor_link(acu_ss7mon_ep_t *ep,

unsigned int interface_id);

Link monitoring stops automatically if the TCP/IP connection is broken, so it is not essential to
call this before disconnecting the connection.

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

interface_id

The value from mm_interface_id in a received message of type ACU_SS7MON_MONITOR_ACK

(See section 5.2.6).

The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6.

MAN1204 Revision 6.16.1 PUBLIC Page 24

5.2.4 acu_ss7mon_configure_link()

Allows a configuration string to be passes to the card to dynamically modify the characteristics
of a monitored link.

Synopsis

int acu_ss7mon_configure_link(acu_ss7mon_ep_t *ep, unsigned int interface_id,

const char *cfg_string);

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

interface_id

The value from mm_interface_id in a received message of type ACU_SS7MON_MSG_MONITOR_ACK

(See section 5.2.6).

cfg_string

A NULL terminated string containing one or more space-separated parameter strings.

The full list of parameters is given in section 6 (MTP2 configuration parameters). However
many are not appropriate once a link is active.

For a monitor link the following parameters can be changed at anytime:

raw_rx_min=nn

Specifies the shortest HDLC frame (‘nn’) that will be passed to the application, frames

shorter than this are filtered out. This improves performance by reducing processing
overheads for the continuously repeated MTP2 LSSU and FISU traffic. The default is 6.

raw_rx_min_short=nn

Specifies a once-only frame length (less than raw_rx_min). After this is called, the next

frame with (size >= raw_rx_min_short && size < raw_rx_min) will be returned.

Subsequent short frames will be suppressed unless the function is repeated. This can
be used to identify the current state of an MTP2 link.

For an active MTP2 link any of the protocol parameters and timers can by changed.

The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6.

5.2.5 acu_ss7mon_ioctl_req()

Send miscellaneous requests to the card.

Synopsis

#include <ss7monitor_l2stats.h>

int acu_ss7mon_ioctl_req(acu_ss7mon_ep_t *ep, unsigned int interface_id,

unsigned int ioc_cmd, const void *buf, unsigned int buflen);

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

interface_id

The value from mm_interface_id in a received message of type ACU_SS7MON_MSG_MONITOR_ACK

(See section 5.2.6).

ioc_cmd

The command code, one of:

MAN1204 Revision 6.16.1 PUBLIC Page 25

SS7_IOC_LINK_MTP2_STATS

Requests the statistics values that are obtainable through the maintenance API for
signalling links being used by the ss7 driver, and are displayed by ss7maint

linkstatus -2vC.

buf should be NULL.

SS7_IOC_LINK_MTP2

Requests the ss7_ioc_link_mtp2 structure that contains the internal state of MTP2.

This is the data displayed by ss7maint linkstatus -2vv.

buf should be NULL.

SS7_IOC_LINK_TRC_FLTR

This allows the application control the events which generate ACU_SS7MON_MSG_TRACE

indications. The flags for receive and transmit FISU, LSSU, in sequence MSU, out of
sequence MSU and state engine messages can be individually set or cleared.
These are the flags modified by ss7maint prottrace.

By default all are disabled on monitor links and enabled on other links, except that out
of sequence MSU are disabled for PCR links.
Duplicate FISU and LSSU are always suppressed.
buf should point to an ss7_ioc_link_trc_fltr_t structure defining the flags to

change.

buf and buflen

The address and length of any buffer associated with the request.

The function returns zero to indicate the request has been sent to MTP2, or a negative value if
an error occurred as listed in section 5.6.

The response to the request itself will be a message of type
ACU_SS7MON_MSG_IOC_RESPONSE(ioc_cmd).

5.2.6 acu_ss7mon_get_msg()

Reads a message from the TCP/IP connection to the card.

Synopsis

int acu_ss7mon_get_msg(acu_ss7mon_ep_t *ep, acu_ss7mon_msg_t **msg,

int tmo_ms);

The messages read by this function may contain asynchronous responses, for example
following acu_ss7mon_monitor_link(), or they may provide pointers to buffers containing

data captured from a signalling link.

Note The msg information only remains valid until the next call to acu_ss7mon_get_msg() or

acu_ss7mon_isup_reject() for the same endpoint.

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

msg

The address of a message pointer.

tmo_ms

Specifies the number of milliseconds to wait for data, zero means don't wait, negative values
wait forever.

The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6. Errors should be treated as fatal and the endpoint deleted.

Upon successful return the item pointed at by msg will have been written with a pointer to an

acu_ss7mon_msg_t structure which has the following fields:

MAN1204 Revision 6.16.1 PUBLIC Page 26

mm_ep

Always the same as ep.

mm_link_id and mm_interface_id

These identify the signalling link that the message is associated with.
mm_link_id is the link_id value the application passed to acu_ss7mon_monitor_link().

mm_interface_id is the monitor's reference and is passed as the interface_id parameter

on further api calls for the link.
They are both set to ~0u if the message isn't associated with a link.

mm_status

An integer status value associated with the message.

mm_buffer and mm_buflen

Address and length of any data buffer associated with the message.

mm_msg_type

Identifies the type of the message, and will be one of:

ACU_SS7MON_MSG_NO_DATA

A timeout occurred waiting for a message, or a received message (TCP connection
data) was processed within the library.

ACU_SS7MON_MSG_TRACE

The message contains data that the SS7 driver would write to its trace.
These are almost all suppressed for monitor links and should be ignored.
Applications using active MTP2 links may want to save the data for later decode see
section 4.10.3.

ACU_SS7MON_MSG_MONITOR_ACK

Indicates that the card has successfully processed an earlier call to
acu_ss7mon_monitor_link(). The application should save the mm_interface_id

value. mm_buffer contains the version string of the MTP2 software.

ACU_SS7MON_MSG_MONITOR_FAIL

Indicates that the card encountered an error while processing an earlier call to
acu_ss7mon_monitor_link() mm_status contains the failure reason, mm_buffer

contains an error message.

ACU_SS7MON_MSG_UNMONITOR_ACK

Indicates that the card has processed an earlier call to acu_ss7mon_unmonitor_link()

mm_status indicates whether it was successful.

ACU_SS7MON_MSG_IOC_RESPONSE(ioc_cmd)

The messages contains the data requested by an acu_ss7mon_ioctl_req() call.

ACU_SS7MON_MSG_L1DATA

This indicates that an HDLC frame (longer than raw_rx_min bytes) has been received,

for which no further processing was identified. mm_buffer and mm_buflen will describe

a complete HDLC message, from the first byte after the opening flag to (but not
including) the HDLC checksum.

ACU_SS7MON_MSG_UNKNOWN

This message contains captured data that the library was unable to parse. The
mm_buffer and mm_buflen will be as for L1 data.

ACU_SS7MON_MSG_L3DATA

Indicates that the message has been processed by the MTP3 message decoder. Refer
to sections 5.3.2 and 7 for further details.

MAN1204 Revision 6.16.1 PUBLIC Page 27

ACU_SS7MON_MSG_ISUPDATA

Indicates that the message has been processed by the library’s internal ISUP message
decoder. mm_buffer and mm_buflen will describe an ISUP message, from the ISUP

‘CIC’ field to (but not including) the HDLC checksum. Refer to section 8 for further
details.

ACU_SS7MON_MSG_AUDIODATA

Indicates that the message contains raw A-law/u-law data from a link with
monitor_audio set to a non-zero value using the pt monitor.

ACU_SS7MON_MSG_L2DATA_BAD

Indicates that an HDLC frame has been received, for which the length field in the
message (as defined in ITU-T Q.703) is inconsistent with the amount of data.
mm_buffer and mm_buflen will be as for L1 data.

ACU_SS7MON_MSG_CFG_LINK_ACK

Indicates that a previous acu_ss7mon_configure_link() request succeeded.

ACU_SS7MON_MSG_CFG_LINK_FAIL

Indicates that a previous acu_ss7mon_configure_link() request failed, mm_buffer

points to a NUL terminated character string containing the error message.

When using the MTP2 API the additional messages types below will also be returned:

ACU_SS7MTP2_MSG_EST_CONF

Indicates that a signalling link has been activated, following an earlier call to
cu_ss7mtp2_est_req().

ACU_SS7MTP2_MSG_L2DATA

As for the monitor API, this indicates receipt of L2 data. The data, consisting of
(inclusively) all MSU content from SIO to end of message, will be described by the
message fields mm_buffer and mm_bufflen. acu_ss7mon_decode_mtp3() may be

used to decode the MTP3 routing label.

ACU_SS7MTP2_MSG_REL_IND

Indicates that a signalling link has failed, or that an attempt to activate one has failed.

ACU_SS7MTP2_MSG_REL_CONF

Indicates that a signalling link has been deactivated following a call to
acu_ss7mtp2_rel_req().

ACU_SS7MTP2_MSG_TX_FLOW_ON

Indicates that a Tx flow control restriction has cleared and the user may resume data
transmission using acu_ss7mtp2_data_req(). The flow control would have been

indicated earlier in the return value from the function acu_ss7mtp2_data_req().

ACU_SS7MTP2_MSG_RTRV_BSNT

Indicates the MTP2 has responded to a request using acu_ss7mtp2_rtrv_req(), to

retrieve the BSNT value as required for MTP3 changeover procedures. The retrieved
BSNT is contained in the mm_status field of the message.

ACU_SS7MTP2_MSG_RTRV_DATA

Indicates that MTP2 is providing a retrieved data buffer, following a request using
acu_ss7mtp2_rtrv_req().

ACU_SS7MTP2_MSG_RTRV_COMP

Indicates that MTP2 has completed retrieval of all data buffers, following a request
using acu_ss7mtp2_rtrv_req().

MAN1204 Revision 6.16.1 PUBLIC Page 28

ACU_SS7MTP2_MSG_CANT_RTRV

Indicates that MTP2 has been unable to provide a response, following a request using
acu_ss7mtp2_rtrv_req().

ACU_SS7MTP2_MSG_RPO_ENTER, ACU_SS7MTP2_MSG_RPO_EXIT

Indicates that a signalling link has entered or exited a Remote Processor Outage
condition.

5.2.7 acu_ss7mon_copy_msg()

This function copies a message into malloced memory.

Synopsis
acu_ss7mon_msg_t *acu_ss7mon_copy_msg(acu_ss7mon_nsg_t *msg);

Parameters
msg

The address of a message to copy.

Return value

A deep copy of the supplied message. NULL if malloc() failed.

Note Any pointers that the application or any userpart decoders have into the message are not updated.

5.2.8 acu_ss7mon_free_msg()

This function frees a message allocated by acu_ss7mon_copy_msg().

Synopsis
void acu_ss7mon_free_msg(acu_ss7mon_nsg_t *msg);

Parameters
msg

The address of a message to free.

Note On Windows systems it is important to use this function not free().

5.2.9 acu_ss7mon_interface_id_to_stream(), acu_ss7mon_interface_id_to_ts()

These functions are implemented as macros, and allow the application to discover the stream
and timeslot that the card has assigned for the monitoring of a signalling link.

Synopsis
int acu_ss7mon_interface_id_to_stream(unsigned int interface_id);

int acu_ss7mon_interface_id_to_ts(unsigned int interface_id);

Parameters
interface_id

The value from mm_interface_id in a received message of type ACU_SS7MON_MSG_MONITOR_ACK

(See section 5.2.6).

Note It is easier to use acu_ss7mon_set_sw() to set the switch connection (See section 5.2.2).

5.2.10 acu_ss7mon_get_dsp_version()
This function obtains the version string of the MTP2 software.

Synopsis
const char *acu_ss7mon_get_dsp_version(acu_ss7mon_ep_t *ep);

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

Return value
A C string identifying the version of the MTP2 software running on the card. Will be NULL if the

endpoint isn’t connected to a card.

MAN1204 Revision 6.16.1 PUBLIC Page 29

5.3 Message decoder functions

5.3.1 acu_ss7mon_set_pointcode_size()

Sets the point code size for one, or all, network indicators.

Synopsis
int acu_ss7mon_set_pointcode_size(acu_ss7mon_ep_t *ep, unsigned int ni,

unsigned int pc_size);

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

ni

The value of the network indicator. A value of ~0u means ‘all network indicators’.

pc_size

Must be 14, 16, or 24 or 0. A value of ‘0’ indicates that the point code size is not known, which
will disable MTP3 and user part decodes. The default value, that applies if this function is
never called, is 0.

The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6.

5.3.2 acu_ss7mon_decode_mtp3()

This function can be called to explicitly request an MTP3 decode for a message.

Synopsis
int acu_ss7mon_decode_mtp3(acu_ss7mon_msg_t *msg);

Parameters
msg

Must point to a message buffer that meets the following criteria:

• It must be the most recent message buffer to have been returned by
acu_ss7mon_get_msg().

• The message buffer must have mm_type set to either ACU_SS7MON_L1DATA or

ACU_SS7MON_L2DATA.

If the ACU_SS7MON_MEF_DECODE_MTP3 flag is set acu_ss7mon_get_msg() calls this function

before returning with mm_type set to ACU_SS7MON_L1DATA or ACU_SS7MON_L2DATA.

The decode returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6. Unexpected message data generates success with mm_type set appropriately,

not failure.

The fields of msg are updated as follows:

mm_bsn_bib, mm_fsn_fib and mm_len_pri

Set from the first few bytes of the MTP2 header (unless mm_type was ACU_SS7MON_L2DATA).

If ACU_SS7MON_MEF_EXTENDED_SEQ is set the high bits of the sequence numbers are

discarded.
If the MTP2 length field is inconsistent with that of the message itself mm_type is set to

ACU_SS7MON_MSG_L2DATA_BAD and success is returned.

If extended sequence numbers are used these values are generated excluding the high bits.

mm_sio, mm_si and mm_ni

Set from the SIO byte.

If the pointcode size for the si and ni has not been set, or the message is too short to contain
the MTP3 routing label, success is returned without any further changes (mm_type is

unchanged).

MAN1204 Revision 6.16.1 PUBLIC Page 30

mm_dpc, mm_opc and mm_sls

Set from the MTP3 routing label.

mm_h1h0

Set from the message if si is 0, 1 or 2, otherwise set to 0.

mm_buffer and mm_buflen

Adjusted to exclude the MTP2 header and MTP3 routing label.

mm_msg_type

Set to ACU_SS7MON_L3DATA.

If ACU_SS7MON_MEF_DECODE_USERPART is set, the relevant user-part decode function is then

called.

5.3.3 acu_ss7mon_set_upart_decode

Specifies a user part decoder function that the library will invoke for messages that meet
defined criteria.

Synopsis
int acu_ss7mon_set_upart_decode(acu_ss7mon_ep_t *ep, unsigned int ni,

unsigned int si, unsigned int pc_1, unsigned int pc_2,

int (*decode_fn)(acu_ss7mon_msg_t *, acu_ss7mon_ui_t *),

const void *cfg);

This function specifies a user part decoder function that the library will invoke for messages
that meet the defined criteria, when returning a message to the user after
acu_ss7mon_get_msg() is called. It is also used to enable the library’s internal ISUP

message decoder (see section 8).

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

ni

A network indicator value for which the function will be invoked. A value of ~0 means ‘all
network indicators’.

si

A service indicator value for which the function will be invoked.

pc_1 and pc_2

Define the signalling relation for which the function will be invoked. They can be given in any
order, and either or both may be set to ~0, meaning ‘all pointcodes’.

decode_fn and cfg

A pointer to a function that will be called to decode a message, and a user-defined parameter
for that function. This function is passed an acu_ss7mon_msg_t * parameter, and an

ss7mon_ui_t * parameter. The first points to the message for processing, and the second

points to structure containing the following two fields:

ui_config

The cfg value that was provided to acu_ss7mon_set_upart_decode().

ui_state

A pointer that will be the same for all messages for an individual relation (pair of
pointcodes). It will initially be NULL, but the application can change this, on a per-relation

basis, at any time. After changing it, the new value will be reflected on subsequent
messages for the same signalling relation.

The decode function will be called with a NULL message address as a request to delete any

saved resources if/when the endpoint is freed.

The decode function must return zero to indicate success or a negative value, as listed in
section 5.6, if an error occurred. Any error response may be passed to the caller of
acu_ss7mon_get_msg() who will consider it as a fatal error.

MAN1204 Revision 6.16.1 PUBLIC Page 31

A return value of zero indicates success, a negative value indicates an error as listed in
section 5.6.

5.3.4 acu_ss7mon_decode_upart()

Allows application-specific filtering to be applied to messages before requesting a full decode.

Synopsis
int acu_ss7mon_decode_upart(acu_ss7mon_msg_t *msg);

This function can be called manually to request a user part decode, and causes the decode
function provided by acu_ss7mon_set_upart_decode() to be invoked for the message. It

allows application-specific filtering to be applied to messages before requesting a full decode,
and allows the application to request decoding of messages that have not been recognised for
the user part by the library.

Parameters
msg

Must point to a message buffer that meets the following criteria:

• It must be the most recent message buffer to have been returned by
acu_ss7mon_get_msg().

• It must already have had an MTP3 decode performed, so that the fields in that
structure are set as described in section 6.

If the ACU_SS7MON_MEF_DECODE_USERPART flag was set when configuring the endpoint, then

the user part decoder function will be called by acu_ss7mon_decode_mtp3().

A return value of zero indicates success, a negative value indicates an error as listed in
section 5.6.

MAN1204 Revision 6.16.1 PUBLIC Page 32

5.4 ISUP decoder functions
Refer to section 8 for information on how to use the ISUP decode functions.

5.4.1 acu_ss7mon_isup_accept()

Requests the library to commence tracking for an ISUP call.

Synopsis
int acu_ss7mon_isup_accept(acu_ss7mon_isup_lib_ref_t,

acu_ss7mon_issup_user_ref_t);

This function may be called after the library’s internal ISUP decoder has indicated a new ISUP
call has started. It allows the application to request the library to commence tracking for the
call. The current message being handled by the application (the last one returned by
acu_ss7mon_get_msg()) must be an ISUP Begin call message.

Parameters
lib_ref

Must be the same value that the library indicated in the current message.

user_ref

May be any non-zero value. It will be passed out from the library on all subsequent messages
that relate to the same the same call.

If the application wants to be notified of subsequent messages for the call, it must call this
function before making another call to acu_ss7mon_get_msg(). Otherwise, the library

assumes the application has no interest in the call.

A return value of zero indicates success, a negative value indicates an error as listed in
section 5.6.

5.4.2 acu_ss7mon_isup_reject()

Tells the library to stop tracking an ISUP call.

Synopsis
int acu_ss7mon_isup_reject(acu_ss7mon_isup_lib_ref_t);

This function may be called at any time following an earlier call to acu_ss7mon_isup_accept(),
until a message from the library indicating the ISUP call has ended. It allows the application to
inform the library that it has no further interest in a ISUP call, so the library can free resources
and will generate no more indications.

When this function is called, the library may free the data buffers associated with the message
most recently returned by acu_ss7mon_get_msg(), so the use must not dereference these

resources again.

The library automatically tidies up at the end of each call after processing the ISUP Release
Complete Message. This function only needs to be used when the application initially accepts
the call but subsequently, and before the call has ended, has a change of mind.

A return value of zero indicates success, a negative value indicates an error as listed in
section 5.6.

MAN1204 Revision 6.16.1 PUBLIC Page 33

5.4.3 acu_ss7mon_isup_locate_parameter()

Searches an ISUP message for a specific parameter.

Synopsis
int acu_ss7mon_isup_locate_parameter(acu_ss7mon_msg_t *msg, int param_name,

unsigned char **param_data, int *param_length)

This function searches an ISUP message for a specific parameter, returning details (address
and length) of the first, if any, occurrence of the parameter in the message.

Parameters
msg

Must be the most recent message returned by acu_ss7mon_get_msg(), and the mm_msg_type

field must have been set the library’s internal ISUP decoder to SS7MON_MSG_ISUPDATA.

param_name

Identifies the parameter, as per table 5/Q.763. This must be in the range 1-255.

param_data

Is filled in by the library with the address of the start of parameter content.

param_length

Is filled in by the library with the length of the parameter content.

A return value of zero indicates success, a negative value indicates an error as listed in
section 5.6.

5.4.4 acu_ss7mon_isup_find_next_parameter()

Scans through an ISUP message returning each parameter in turn.

Synopsis
int acu_ss7mon_isup_find_next_parameter(acu_ss7mon_msg_t *msg, int param_itr,

char *param_name, unsigned char **param_data, int *param_length)

This function returns the parameters in an ISUP message one by one. The fixed and
mandatory variable parameters are returned first, followed by the optional ones.

Parameters
msg

Must be the most recent message returned by acu_ss7mon_get_msg(), and the mm_msg_type

field must have been set the library’s internal ISUP decoder to SS7MON_MSG_ISUPDATA.

param_itr

Iterator value. This should be set to zero to obtain the first parameter, or to the return value
from an earlier call to get the following parameter.

param_name

Is filled by the library with the parameter name as per table 5/Q.763.

param_data

Is filled in by the library with the address of the start of parameter content.

param_length

Is filled in by the library with the length of the parameter content.

Return value

If a parameter is found a positive number that should be passed back as the param_itr value

to obtain the next parameter.

If there are no more parameters, or there is a format error
ACU_SS7MON_ERROR_PRM_NOT_FOUND.

MAN1204 Revision 6.16.1 PUBLIC Page 34

5.5 MTP2-specific API functions

5.5.1 acu_ss7mtp2_est_req()

Requests the library to establish a signalling link.

Synopsis
int acu_ss7mtp2_est_req(acu_ss7mon_ep_t *ep, unsigned int interface_id,

const char *cfg_string);

This function requests MTP2 to initiate link activation.

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

interface_id

The value from mm_interface_id in a received message of type ACU_SS7MON_MONITOR_ACK

(See section 5.2.6).

cfg_string

A NUL terminated string containing one or more space-separated parameter strings. See
section 6 (MTP2 configuration parameters) for a list of the valid parameters.

If NULL the string configured by ACU_SS7MON_CFG_L2_CONFIG is used.

All the configuration parameters are set back to their defaults before establishing the link, so
should be specified every time this function is called.

If the link can be successfully established, the event will be indicated in a message of type
ACU_SS7MTP2_MSG_EST_CONF. If the link fails to establish, a message of type

ACU_SS7MTP2_MSG_REL_IND will be signalled.

If the link fails to establish (or fails at a later stage) then it can be re-established by calling this
function again, if the link is actually up an ACU_SS7MTP2_MSG_EST_CONF response is returned.

The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6.

Note If ACU_SS7MON_L2_MODE_APP_EST_REQ is set this must be called on monitor links enabling per-link
configuration strings.

5.5.2 acu_ss7mtp2_rel_req()

Requests the library to deactivate a signalling link.

Synopsis
int acu_ss7mtp2_rel_req(acu_ss7mon_ep_t *ep, unsigned int interface_id)

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

interface_id

The value from mm_interface_id in a received message of type ACU_SS7MON_MONITOR_ACK

(See section 5.2.6).

The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6.

MAN1204 Revision 6.16.1 PUBLIC Page 35

5.5.3 acu_ss7mtp2_state_req()

Requests the library to set or clear processor outage or emergency proving states.

Synopsis
int acu_ss7mtp2_state_req(acu_ss7mon_ep_t *ep, unsigned int interface_id,

int state)

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

interface_id

The value from mm_interface_id in a received message of type ACU_SS7MON_MONITOR_ACK

(See section 5.2.6).

state

Must be set to one of:

ACU_SS7MTP2_REQ_LPO_SET, ACU_SS7MTP2_REQ_LPO_CLEAR

To set or clear local processor outage.

ACU_SS7MTP2_REQ_EMER_SET, ACU_SS7MTP2_REQ_EMER_CLEAR

To set or clear emergency proving.

If emergency proving is requested while proving is in progress then MTP2 will change to doing
emergency proving (ie sending SIE). Clearing the flag will not affect active proving.

The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6.

5.5.4 acu_ss7mtp2_data_req()

Requests the library to transmit MTP3 data over a signalling link

Synopsis
int acu_ss7mtp2_data_req(acu_ss7mon_ep_t *ep, unsigned int interface_id,

int length, const unsigned char *address)

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

interface_id

The value from mm_interface_id in a received message of type ACU_SS7MON_MONITOR_ACK

(See section 5.2.6).

length

The length of the data to be sent.

address

The memory address of the data to be sent. The data must contain all MSU data from
(inclusively) Service Information Octet to end of message.

The function may return a value of ACU_SS7MTP2_WRN_TX_FLOW_OFF to indicate that the data

could not be sent owing to flow control. In that case, when the flow control clears, it will be
indicated by a message of type ACU_SS7MTP2_MSG_TX_FLOW_ON, as described in section

5.2.6, after which the application must send the data again. Flow control conditions can be
transitory (just waiting for a software ACK from MTP2); it should not be assumed that there is
a significant amount of data queued with MTP2 unless the condition persists.

Other than flow control conditions, the function returns zero to indicate success, or a negative
value if an error occurred as listed in section 5.6.

Note This function can also be used in ‘monitor mode’ to send a complete hdlc frame (CRC16 added).
The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6.

MAN1204 Revision 6.16.1 PUBLIC Page 36

5.5.5 acu_ss7mtp2_rtrv_req()

Requests the library to commence retrieval activity.

Synopsis
int acu_ss7mtp2_rtrv_req(acu_ss7mon_ep_t *ep, unsigned int interface_id,

int action, int seq)

This function requests that MTP2 participates in retrieval procedures. It can be used to
retrieve the BSNT (backward sequence number) from MTP2 Tx state machine, which is the
FSN (forward sequence number) of the last received message. Alternatively, it can be passed
a FSN that that has been obtained from the remote MTP2, to request retrieval of
unacknowledged data messages from the transmission and retransmission queues.

Parameters
ep

The address of an endpoint created using acu_ss7mon_create_endpoint().

interface_id

The value from mm_interface_id in a received message of type ACU_SS7MON_MONITOR_ACK

(See section 5.2.6).

action

Must be set to one of:

ACU_SS7MTP2_REQ_RTRV_BSNT

To obtain the Tx State machines last BSNT value.

ACU_SS7MTP2_REQ_RTRV_DATA

To initiate retrieval of data messages.

seq

The sequence number of the last message received at the far end of the link. Only used when
action is set to ACU_SS7MTP2_REQ_RTRV_DATA.

Following successful execution of this function, the retrieved sequence number, or data
messages, will be indicated via the message interface as described in section 5.2.6.

The function returns zero to indicate success, or a negative value if an error occurred as listed
in section 5.6.

MAN1204 Revision 6.16.1 PUBLIC Page 37

5.6 Error handling functions

5.6.1 acu_ss7mon_get_error_text()

Converts an error code into human-readable text.

Synopsis
const char *acu_ss7mon_get_error_text(int error);

Parameters
error

Must be an error value returned by one of the monitor’s API functions, for example:

ACU_SS7MON_NO_PT_MONITOR, "Can't start pt_monitor"

ACU_SS7MON_NO_CARD_INFO, "acu_get_card_info() failed"

ACU_SS7MON_BAD_STATE_REQ, "Invalid state req"

ACU_SS7MON_BAD_INTERFACE_ID, "Invalid interface id"

ACU_SS7MON_BAD_DATA, "Invalid data ptr or length"

ACU_SS7MON_BAD_ACTION, "Invalid action parameter"

ACU_SS7MON_INCORRECT_CARD_KEY, "Incorrect card key"

ACU_SS7MON_AUTH_FAILURE, "Authentication failed"

ACU_SS7MON_NO_CARD_KEY, "Card key required, but not configured"

ACU_SS7MON_AUTH_TIMEOUT, "Authentication timed out"

ACU_SS7MON_BAD_HOSTNAME, "Unable to resolve address"

ACU_SS7MON_BAD_LIB_REF, "invalid library reference"

ACU_SS7MON_BAD_USER_REF, "invalid user reference"

ACU_SS7MON_PRM_NOT_FOUND, "parameter not found in message"

ACU_SS7MON_UNKNOWN_CONFIG, "unknown configuration parameter"

ACU_SS7MON_BAD_PC_SIZE, "invalid point code size"

ACU_SS7MON_BAD_SI, "invalid si value"

ACU_SS7MON_BAD_NI, "invalid ni value"

ACU_SS7MON_MSG_VERSION, "message corrupt (bad version)"

ACU_SS7MON_MSG_OVERLONG, "message corrupt (overlong)"

ACU_SS7MON_SEND_FAILED, "send() failed"

ACU_SS7MON_RECV_FAILED, "recv() failed"

ACU_SS7MON_DISCONNECTED, "remote end disconnected"

ACU_SS7MON_ALREADY_CONNECTED, "endpoint already connected"

ACU_SS7MON_CONNECT_FAILED, "connect() failed"

ACU_SS7MON_NO_SOCKET, "socket() failed"

ACU_SS7MON_MALLOC_FAIL, "malloc() failed"

ACU_SS7MON_SUCCESS, "Success’

The list of errors may change between product releases, so the above list may be incomplete.
The authoritative (full) list is that provided in the API header file ss7monitor.h

MAN1204 Revision 6.16.1 PUBLIC Page 38

6 MTP2 configuration parameters
The parameters are the same as those described in the [MTP2] section of the SS7 installation

and administration guide.

To specify multiple parameters separate them with a space character.

The parameters split into 3 groups:

Link setup; these are normally set before calling acu_ss7mon_monitor_link() or passed to

acu_ss7mtp2_est_req() immediately after receiving the SS7MON_MSG_MONITOR_ACK

indication:

speed=nn (not Prosody 1U enterprise)

Specifies the speed (in k bits/sec) of the signalling link. Set to 56 to monitor 56k
signalling links on ANSI networks.
The default is 64.

timeslot=nn (not Prosody 1U enterprise)

Forces the HDLC channel to be assigned to the specified timeslot (0 to 126).
In monitor mode this can be the same timeslot as is being used by an MTP2 signalling
link and allows the receive traffic be monitored without changing the TDM switch matrix.
In monitor mode the HDLC transmit is disabled until a data frame is transmitted.
If not specified the timeslot is usually the same as the interface_id, these are

allocated from zero upwards.

monitor_tx_ts=nn (not Prosody 1U enterprise)

Monitors the transmit data from the local HDLC engine that is using the specified
timeslot (0 to 126).
This allows the transmit traffic for a local signalling link be monitored without changing
the TDM switch matrix.
HDLC transmit is completely disabled.

monitor_audio=nn (only pt monitor on Prosody X Evo)

Monitor the raw A-law/u-law data stream in blocks of length nn samples (max 281).

If set to zero the data is scanned for hdlc frames.

Monitor control; these can also be changed dynamically using
acu_ss7mon_configure_link():

raw_rx_min=nn

Specifies the shortest HDLC frame (‘nn’) that will be passed to the application, frames

shorter than this will be filtered out. This improves performance by reducing processing
overheads for the continuously repeated MTP2 LSSU and FISU traffic. The default is 6.

raw_rx_min_short=nn

Specifies a once-only frame length (less than raw_rx_min). After this is called, the next

frame with (size >= raw_rx_min_short && size < raw_rx_min) will be returned.

Subsequent short frames will be suppressed until the parameter is set again.
This can be used to force a FISU be returned, or to detect receipt of an LSSU indicating
that the link has failed.

MTP2 protocol parameters; these would normally be passed to acu_ss7mtp2_est_req(), but
can be changed while the MTP2 link is active:

aerm_tin=nn, aerm_tie=nn, iac_m=nn, suerm_t=nn, suerm_d=nn, tx_n1=nn, tx_n2=nn,

trace_fw=[y/n], trace_rx=[flmv], trace_tx=[flmv], set_misc_flags=nn,

clr_misc_flags=nn, tn=sss

Refer to the SS7 installation and admin guide for further details.

MAN1204 Revision 6.16.1 PUBLIC Page 39

7 Using the MTP3 decoder
When messages containing SS7 user part data are received from the library, before decoding
the user part data, the MTP3 ‘header’ (consisting of the routing label and service information
octet) must be decoded. The MTP3 decoder may be invoked automatically by the library when
it detects a message containing an MTP3 payload, or it may be invoked manually by the
application.

The MTP3 decoder sets the following values in the acu_ss7mon_msg_t structure:

mm_dpc

Will contain the destination point code from the routing label.

mm_opc

Will contain the originating point code from the routing label.

mm_sls

Will contain the sls/slc from the routing label.

mm_ni

Will contain the network indicator from the service information octet.

mm_si

Will contain the service indicator from the service information octet.

mm_buflen and mm_buffer

These will describe an MTP3 ‘payload’, starting with the first byte of data following the
routing label, and continuing up the end of the message (not including the HLDC
checksum).

An MTP3 routing label can only be decoded if the point code lengths are known, so the
application needs to provide the library with point code lengths as well as enabling the MTP3
decode flag. Enabling the MTP3 decoder is thus a two step process (in any order):

acu_ss7mon_configure_endpoint() is used to set the MTP3 decode flags.

acu_ss7mon_set_pointcode_size() is used to define the point code size.

The second step (above) may be repeated for different network indicators, enabling the
application to specify different point code lengths for different network indicators.

Example: Enable the MTP3 decoder for all point codes, using 14 bit point code lengths

for all network indicators,

response = acu_ss7mon_configure_endpoint(endpoint,

ACU_SS7MON_CFG_DECODE_FLAGS, ACU_SS7MON_MEF_DECODE_MTP3);

response = acu_ss7mon_set_pointcode_size(endpoint, ~0, 14);

Example: Similar to the previous example, but using two alternative pointcode lengths,
14 bits and 24 bits, for “International” network indicators (0 & 1) and “National” network
indicators (2 & 3) respectively.

response = acu_ss7mon_point(endpoint,

ACU_SS7MON_CFG_DECODE_FLAGS, ACU_SS7MON_MEF_DECODE_MTP3);

response = acu_ss7mon_set_pointcode_size(endpoint, 0, 14);

response = acu_ss7mon_set_pointcode_size(endpoint, 1, 14);

response = acu_ss7mon_set_pointcode_size(endpoint, 2, 24);

response = acu_ss7mon_set_pointcode_size(endpoint, 3, 24);

MAN1204 Revision 6.16.1 PUBLIC Page 40

8 Using the internal ISUP decoder
The SS7 signalling monitor incorporates an internal ISUP decoder which is capable of tracking
individual ISUP calls. The decoder may be invoked automatically by the library when it detects
an ISUP message, or it may be invoked manually by the application.

As well as keeping track of the progress of individual calls, the ISUP decoder automatically
decodes calling and called number strings, which are converted at the API into printable
character strings.

Regardless of whether or not the internal ISUP decoder is in use, ISUP messages are
provided as raw data at the API, allowing applications to access additional parameters as raw
data. To make this easier, the API includes a function to resolve the raw data address of
individual parameters, which can then be decoded by the application with reference to the
message and parameter specifications defined in ITU-T Q.763, or national variant thereof.

8.1 Enabling the decoder
The ISUP decoder is enabled using acu_ss7mon_set_upart_decode(), which may be called

at some time after creating an endpoint. This function has other uses as well (see section 9),
and includes in its input parameters the network indicator, service indicator, and two
pointcodes. These parameters act as filters, so that ISUP decoding is only applied to
messages that match the supplied values.

The service indicator must be set to the value that the network will use for ISUP traffic. The
ITU recommendation for international ISUP traffic is that service indicator ‘5’ be used. This
value has also been adopted by the vast majority of National variants, to the extent that
deviation from it is almost unheard of. Strictly speaking, if the ISUP traffic is using a network
indicator other that 0 (international) then the corresponding service indicator value is a
national matter and reference should be made to the national protocol specification.

When enabling the ISUP decoder, acu_ss7mon_set_upart_decode() requires a cfg

parameter that identifies the national protocol variant. Aculab currently support variants for
ITU, China, and ANSI, for which the appropriate macro for cfg must be used, for example:

ACU_SS7MON_ISUP_ITU_CFG

ACU_SS7MON_ISUP_ANSI_CFG

ACU_SS7MON_ISUP_CHINA_CFG

The point codes and network indicator may be set to specific values or ~0, in any
combination, ~0 meaning ‘all values’. The decoder may be enabled more than once with
different combinations of point codes, network indicator, and protocol variants.

Example: For all traffic to/from point code 2020, enable ITU ISUP decoder for network
indicator 0:

response = acu_ss7mon_set_upart_decode(endpoint, 0, 5, 2020, ~0,

 acu_ss7mon_decode_isup,

 ACU_SS7MON_ISUP_ITU_CFG);

Example: For traffic between point codes 2020 and 7070, Enable ITU ISUP decoder for all

network indicators:

response = acu_ss7mon_set_upart_decode(endpoint, ~0, 5, 2020, 7070,

 acu_ss7mon_decode_isup,

 ACU_SS7MON_ISUP_ITU_CFG);

Example: For all point codes, enable ANSI ISUP decoder for network indicator 2,
alongside ITU ISUP decoder for network indicator 0:

response = acu_ss7mon_set_upart_decode(endpoint, 0, 5, ~0, ~0,

 acu_ss7mon_decode_isup,

 ACU_SS7MON_ISUP_ITU_CFG) ;

response = acu_ss7mon_set_upart_decode(endpoint, 2, 5, ~0, ~0,

 acu_ss7mon_decode_isup,

MAN1204 Revision 6.16.1 PUBLIC Page 41

 ACU_SS7MON_ISUP_ANSI_CFG);

8.2 Automatic or manual decode
Most application writers will probably choose to allow the library to automatically invoke the
ISUP decoder based on the filtering criteria defined when it was enabled (see section 8.1). To
do so, the application needs to configure the endpoint for automatic MTP3 and User Part
decode. This involves two further steps in addition to the enabling the decoder, these steps
may be performed in either order after creating an endpoint:

Step 1: acu_ss7mon_configure_endpoint() is used to add the ISUP and MTP3 decode

flags.
Step 2: acu_ss7mon_set_pointcode_size() is used to define the point code size.

Example: enable automatic ITU ISUP decode, based on 14 bit point codes, for traffic on

all Network indicators, Service indicator 5.
response = acu_ss7mon_configure_endpoint(endpoint,

ACU_SS7MON_CFG_DECODE_FLAGS,

ACU_SS7MON_MEF_DECODE_MTP3 | ACU_SS7MON_MEF_DECODE_USERPART);

response = acu_ss7mon_set_pointcode_size(endpoint,~0,14);

response = acu_ss7mon_set_upart_decode(endpoint, ~0, 5, ~0, ~0,

acu_ss7mon_decode_isup,

ACU_SS7MON_ISUP_ITU_CFG);

Occasionally, there may be reasons why an application writer does not want the library to
perform automatic user part decode, but still wants to invoke the ISUP decoder himself. In this
case he still has to set the point code size and enable MTP3 decode, after which he can
invoke the ISUP decoder himself if and when he sees fit.

Example: manual invocation of ISUP decoder

/* During intialisation... */

response = acu_ss7mon_configure_endpoint(endpoint,

ACU_SS7MON_CFG_DECODE_FLAGS,

ACU_SS7MON_MEF_DECODE_MTP3);

response = acu_ss7mon_set_pointcode_size(endpoint, ~0, 14);

response = acu_ss7mon_set_upart_decode(endpoint, ~0, 5, ~0, ~0,

acu_ss7mon_decode_isup,

ACU_SS7MON_ISUP_ITU_CFG);

/* After a message has been retrieved using acu_ss7mon_get_msg... */

response = acu_ss7mon_decode_upart(msg);

8.3 Message formats
When in use, the ISUP decoder will set the following values in the acu_ss7mon_msg_t

structures retrieved by acu_ss7mon_get_msg():

Within the acu_ss7mon_msg_t structure:

All of the mm_... fields set by mtp3 decode will be set as described in section 6 with the

following qualifications:

mm_msg_type

Will be set to ACU_SS7MON_ISUP_DATA

mm_buffer and mm_buflen

For messages received from the line, these will describe an ISUP message as shown in
ITU-T Q.763, commencing with the ISUP CIC field. For messages generated within the
library, such as when a call is aborted (see section 8.5), the pointer will be NULL.

MAN1204 Revision 6.16.1 PUBLIC Page 42

Within the acu_ss7mon_isup_info_t structure (pointed at by mm_upart_info):

ii_generic will be set to one of the following:

ACU_SS7MON_ISUP_BEGIN

Occurs when an ISUP Initial Address Message (IAM) is received. The ii_lib_ref will

contain a reference that the application must remember for the duration of the call, and
ii_details will point to a valid acu_ss7mon_isup_details_t structure.

This is the first message for each ISUP call, and the application needs to decide whether it
wants be notified of further messages for the same call. Factors involved in this decision
might include the parameters decoded by MTP3 or ISUP in the acu_ss7mon_msg_t

structure, the ISUP details provided in the acu_ss7mon_isup_details_t structure, or

specific parameters retrieved using acu_ss7mon_isup_locate_parameter().

If the application wants further notifications, it must respond by calling
acu_ss7mon_isup_accept(), including the application’s own reference, which the library

will remember for the duration of the call. Otherwise the application should simply ignore
the message and call acu_ss7mon_get_msg() to process the next message, in which case

the library will discard further messages for the ISUP call.

ACU_SS7MON_ISUP_CONTINUED

Indicates a message related to an ongoing call that the application has accepted using
acu_ss7mon_isup_accept(). The ii_lib_ref and ii_details fields will be set as for the

ACU_SS7MON_ISUP_BEGIN message, and the ii_user_ref will contain the user’s reference

provided in acu_ss7mon_isup_accept().

Some of the call details in the acu_ss7mon_isup_details() structure may have been

updated, as described below. Further parameters can be decoded, if required, with the
help of acu_ss7mon_locate_isup_parameter().

ACU_SS7MON_ISUP_RELEASE_COMPLETE

This occurs when an ISUP Release Complete (RLC) message has been received. The
ii_lib_ref and ii_details fields will be set as for the ACU_SS7MON_ISUP_BEGIN message,

and the ii_user_ref will contain the user’s reference provided in
acu_ss7mon_isup_accept().

The final message indication for each call. The library will discard all resources for the call
the next time the application calls acu_ss7mon_get_msg(). There is no need for the

application to call acu_ss7mon_isup_reject(), as the next call to

acu_ss7mon_get_msg() will implicitly have the same effect.

ACU_SS7MON_ISUP_ABORT

This occurs when a call monitoring sequence had to be aborted within the library. The
application must respond in the same way as for SS7MON_RELEASE_COMPLETE.

ACU_SS7MON_ISUP_OTHER

This message indicates that a non call-related message, or one that has not been
recognised by the library, has been received. The ii_user_ref, ii_lib_ref, and

ii_details fields will all be zero.

ii_cic

This field is always valid and contains the raw data value from the message’s ‘CIC’ field.

ii_q763_type

This field is always valid and contains the raw data value from the message’s ’type’ field.

ii_variant

Contains the cfg value supplied by the application in acu_ss7mon_set_upart_decode().

ii_lib_ref, ii_user_ref and ii_details

These fields are valid for some message types but not others. Refer to description of
ii_generic above.

MAN1204 Revision 6.16.1 PUBLIC Page 43

Within the acu_ss7mon_isup_details_t structure (pointed at by ii_details):
id_altered

Contains a combination (bitwise ‘or’)of:

ACU_SS7MON_UPDATE_CALLING_NUMBER

When the message caused a change to the cd_calling_number field.

ACU_SS7MON_UPDATE_CALLED_NUMBER

When the message caused a change to the cd_called_number field.

ACU_SS7MON_UPDATE_STATE

When the message caused a change to the id_state field.

id_calling_number

Points to a character string containing the address digits of the calling number, or an empty
string if the number is not available. This number may have been extracted from either an IAM
message or a INF (Information) message. In normal protocol operation, the calling number is
provided either in an IAM, or in an INF, but not both. If the library finds that the calling number
parameter in an INF contradicts that from an IAM, it will discard the INF data and keep that
from the IAM.

id_calling_ndigits

This fill contains the number of digits in id_calling_number.

id_called_number

This fill points to a character string containing address digits of the called number, or an empty
string if the number is not available. Where ‘overlap’ sending is encountered, this string will be
cumulative, appending digits from SAM (Subsequent address) messages after those in an
IAM.

id_called_ndigits

This fill contains the number of digits in id_called_number.

id_state

Will be set to one of the following:

ACU_SS7MON_STATE_CALLING

The initial state after an IAM is detected, and remains until the call is ‘connected’.

ACU_SS7MON_STATE_CONNECTED

This is entered when a call reaches the ‘conversation’ phase, i.e. after an ANM (Answer) or
CON (Connect) message is received. If a call that had been suspended by the SUS
(Suspend) message, and subsequently resumed by a RES (Resumed) message, this state
is re-entered.

ACU_SS7MON_STATE_FORWARD_RELEASED

ACU_SS7MON_STATE_BACKWARD_RELEASED

These states are entered after a release sequence is initiated. Forward release indicates
release by the calling party or an exchange between the calling party and the monitor.
Backward release indicates release by the called party or an exchange between the
monitor and the called party. In the event of simultaneous release or a collision of
backward and forward release messages, cd_state will indicate the first message to reach

the library.

MAN1204 Revision 6.16.1 PUBLIC Page 44

8.4 Accessing specific parameters
The monitor library automatically decodes the called and calling party numbers. To optimise
performance it does not automatically decode other parameters, but they can be decoded on
request by the application using acu_ss7mon_locate_parameter().

Example: Obtain the ‘Cause’ parameter from ISUP REL message:
unsigned char * parm_ptr;

int parm_length ;

if (isup_info->ii_q763_type == 0x0c) /* REL message */

 response = acu_ss7mon_isup_locate_paramater(msg,

 0x12, /* Cause parameter */

 &parm_ptr, &parm_length);

8.5 Message delivery errors
Under some circumstances ISUP message delivery errors may occur whereby messages are
missed, duplicated, or seen in the wrong sequence. Providing the monitor is correctly
configured for all possible signalling links these situations will be extremely rare, but can never
be ruled out. For example, an HDLC data corruption may take place that affects only the
monitor device or only the monitored switch. Other times, it may only be possible to monitor
some, but not all, signalling links, in which case lost messages might be a relatively common
event.

The ISUP decoder handles such errors partly by being ‘forgiving’ of apparent protocol errors.
For example, the ITU protocol demands that an ACM message must be sent before ANM. If
the monitor detects an ANM message without seeing an ACM however, it will simply proceed
to the ‘connected’ state on the assumption the ACM was missed. If the ACM follows later it will
still be processed, but the call’s state, having already progressed to ‘connected’, will stay in
that state.

If the monitor fails to detect an RLC message, it is possible for a call to appear to last forever.
For this reason, application writers may wish to implement a ‘sanity’ timeout after which calls
are assumed to have terminated. The duration of such a timeout would of course be
application-dependent, and would need to take account of the nature of the expected traffic.

If the monitor detects a new call (IAM) while another call is apparently still connected for the
same circuit, the library assumes that it must have missed an RLC message. It deals with this
by suspending processing of the new call while it generates an ACU_SS7MON_ISUP_ABORT

event (see section 8.3). After the application has processed this event, processing of the new
call is resumed and is presented to the application in the usual way.

MAN1204 Revision 6.16.1 PUBLIC Page 45

9 Writing additional user part decoders
User-defined decoders can be added using acu_ss7mon_set_upart_decode(). This instructs

the library to add the user’s decode function to a lookup table that will be called for messages
that meet the following criteria:

• The network indicator in the message must contain a value for which the pointcode
length has been specified, using acu_ss7mon_set_pointcode_size().

• The Service Indicator in the message must contain the same value specified in
acu_ss7mon_set_upart_decode().

• The pointcode pair must match a pattern specified in
acu_ss7mon_set_upart_decode().

• The decode flag ACU_SS7MON_MEF_DECODE_MTP must have been configured using

acu_ss7mon_configure_endpoint().

• The decode flag ACU_SS7MON_MEF_DECODE_USERPART, may optionally have been

configured using acu_ss7mon_configure_endpoint().

For examples of setting up a user part decode, see section 8.1. This explains how to enable
the libraries internal ISUP decoder, but the procedure for user-written decoders is the same.

When a user-supplied decode function is called by the library, either by virtue of the
ACU_SS7MON_MEF_DECODE_USERPART flag or because the application called

acu_ss7mon_decode_upart(), it receives a pointer to an acu_ss7mon_msg_t structure, and a

pointer to an acu_ss7mon_ui_t structure.

The pointer to the acu_ss7mon_msg_t structure, if not NULL, will point to a library data area

that will be set as for a message decoded by MTP3 as described in section 6. A NULL pointer

indicates that the endpoint has been deleted, and the decoder should release all its resources.

The acu_ss7mon_ui_t structure contains two fields.

ui_config

The value that was supplied when acu_ss7mon_set_upart_decode() was called.

ui_state

Is a void * pointer which will be NULL for the first message of each signalling relation

(point code pair). The application may (but does not need to) change this pointer to some
other value. If the application does change ui_state, then the new value will be

remembered by the library and will be provided with subsequent messages for the same
signalling relation. This allows the application to allocate a per-relation structure of its own.
When messages are passed to the decoder as a result of point codes being defined as ~0
(don’t care), the user receives a distinct ui_state parameter for each individual relation

that is found to match the ~0.

As the library does no validation, the decoder function can do whatever it likes to the
message. Typically, it would allocate some structure of its own design for protocol-specific
details, and attach it to the mm_upart_info pointer in the message. It would also change the

mm_type field to something outside the range used by Aculab so that the application can

recognise messages that the decoder has acted upon.

MAN1204 Revision 6.16.1 PUBLIC Page 46

10 System configuration
In order to use the signalling monitor, each E1/T1 trunk that will be used for monitoring must
be downloaded with the ss7 firmware file (eg ss7.pmx). This is necessary to establish the

Layer 1 interface to external ports, and to allow TCP/IP connections to the monitor.

This can be achieved by using either the call control API, Aculab tools such as fwdspldr, or

the Aculab configuration tool (ACT). The firmware parameters described below are explained
in the Aculab SS7 installation and administration guide. Please refer to that document when
reading the following paragraphs.

In the case of ‘local monitoring’, the TDM network ports should be downloaded with the ss7
firmware file and the firmware parameters as required for the signalling application(s), no
special action is needed to configure the monitor.

If a TDM network port is to be used exclusively for monitoring, it should be downloaded with
the ss7 firmware file. The only firmware parameters that need be specified are those that
affect the physical interface, for example -cT1 or -cNCRC.

Example: Using fwdspldr.exe, configure port 0 on card serial 123456 for E1 monitoring

purposes only.

fwdspldr.exe 123456 0 ss7.pmx

MAN1204 Revision 6.16.1 PUBLIC Page 47

Appendix A: DSP and switch matrix examples
This section provides further details of the procedures for DSP link assignment and TDM
switch matrix initialisation. Each of the three different capture modes, identified earlier in
section 2.5, is discussed and accompanied by sample code snippets.

The configuration principles described here can be applied to any and many of the external
ports and timeslots of the card. For simplicity however, the examples assume that a signalling
link to be monitored appears on timeslot 16 of each E1 trunk, and that the E1 trunks are
connected to ports 0 and 1.

In each of the examples it can be seen that monitoring of traffic, in each direction on each
individual signalling link, is a two step sequence:

Step 1

The application sends a request using acu_ss7mon_monitor_link() to the DSP, asking it to

allocate and initialise a timeslot for monitoring. The application does not know at this point
which DSP timeslot will be allocated; the DSP software will select one that is not already in
use for monitoring or signalling.

Step 2

Some time later, after the DSP has processed the request from step 1 and allocated a
timeslot, the application will receive a notification via the API function acu_ss7mon_get_msg()

that identifies the timeslot. Once the application receives this notification, it uses the Aculab
switch API to connect the DSP timeslot to the traffic source.

The above steps must be repeated for each signalling link, and for each direction of traffic. To
monitor both tx and rx traffic on a single link, for example, the sequence is carried out twice.

This sequence can be repeated and/or overlapped as desired, step 1 being performed many
times followed by step 2 many times.

MAN1204 Revision 6.16.1 PUBLIC Page 48

A.1 Passive interception example
In Figure 5, DSP timeslots are connected to the rx data from each of two external E1/T1

ports, which in turn are fed by cabling from the external line tapping device.

Figure 5: Passive interception example

The code to set up link monitoring and establish the DSP connections to the switch matrix,
would look something like:

STEP 1: request a link monitor for traffic on each of two links, using two different application-
defined link_ids:

resp = acu_ss7mon_monitor_link(ep, link_id_1, 32, 16); /* Port 0, TS 16 */

resp = acu_ss7mon_monitor_link(ep, link_id_2, 33, 16); /* Port 1, TS 16 */

STEP 2 for first link: after acu_ss7mon_get_msg() returns a message with mm_msg_type

ACU_SS7MONITOR_ACK, with mm_link_id matching link_id_1:

OUTPUT_PARMS output_parms;

INIT_ACU_STRUCT(&output_parms);

output_parms.mode = CONNECT_MODE;

output_parms.ost = acu_ss7mon_interface_id_to_stream(msg->interface_id);

output_parms.ots = acu_ss7mon_interface_id_to_ts(msg->interface_id);

output_parms.ist = 32;

output_parms.its = 16;

resp = sw_set_output(card_id, &output_parms);

E1/T1 with
signalling link
to remote SP

E1/T1 with
signalling link
from remote SP

 Passive tap

Aculab card

Traffic
capture

MTP2
signalling

Generic telephony software
drivers, SS7 protocol stack
and ISUP/TCAP APIs

Message
processing library
and signalling
monitor API

Signalling
application

Monitoring
application

L1 & Switch matrix

MAN1204 Revision 6.16.1 PUBLIC Page 49

STEP 2 for second link: after acu_ss7mon_get_msg() returns a message with mm_msg_type

ACU_SS7MONITOR_ACK, with mm_link_id matching link_id_2:

OUTPUT_PARMS output_parms;

INIT_ACU_STRUCT(&output_parms);

output_parms.mode = CONNECT_MODE;

output_parms.ost = acu_ss7mon_interface_id_to_stream(msg->interface_id);

output_parms.ots = acu_ss7mon_interface_id_to_ts(msg->interface_id);

output_parms.ist = 33;

output_parms.its = 16;

resp = sw_set_output(card_id, &output_parms);

MAN1204 Revision 6.16.1 PUBLIC Page 50

A.2 Active interception example
In Figure 6, the DSP timeslots are fed in precisely the same way as for the passive monitor,
from the rx data of two E1/T1 ports. In addition, the two E1/t1 ports are patched through to

one another in loopback mode, eliminating the need for an external tap.

Figure 6: Active interception example

The monitor configuration code for this configuration would be exactly the same steps 1 and 2
of the passive monitoring example, see section A.1. In addition, the user would need to make
the necessary pass-through connections in each direction between the two ports. Assuming
an E1 trunk is in use, i.e. timeslots 1 through 31, the additional code would look something
like:

OUTPUT_PARMS output_parms;

int ts;

for (ts = 1; ts < 32 ; ts++) {

 INIT_ACU_STRUCT(&output_parms);

 output_parms.mode = CONNECT_MODE;

 output_parms.ost = 32;

 output_parms.ots = ts;

 output_parms.ist = 33;

 output_parms.its = ts;

 resp = sw_set_output(card_id, &output_parms);

 INIT_ACU_STRUCT(&output_parms);

 output_parms.mode = CONNECT_MODE;

 output_parms.ost = 33;

 output_parms.ots = ts;

Aculab card

Traffic
capture

E1/T1 with
signalling link
to remote SP

E1/T1 with
signalling link
from remote SP

MTP2
signalling

Generic telephony software
drivers, SS7 protocol stack
and ISUP/TCAP APIs

Message
processing library
and signalling
monitor API

Signalling
application

Monitoring
application

L1 & Switch matrix

MAN1204 Revision 6.16.1 PUBLIC Page 51

 output_parms.ist = 32;

 output_parms.its = ts;

 resp = sw_set_output(card_id, &output_parms);

}

MAN1204 Revision 6.16.1 PUBLIC Page 52

A.3 Local monitor example
In Figure 7, one DSP timeslot is fed from data received at the card’s external network port and
timeslot, similar to the active and passive interception. The second DSP timeslot needs to be
fed from the source of the transmitted traffic from the signalling application.

The transmit traffic source will in fact be another internal DSP timeslot, which is allocated by
the signalling drivers and firmware, and connected through the switch matrix to the card’s
external E1/T1 signalling link.

This process of DSP signalling timeslot allocation is not documented for the signalling API, as
it is performed automatically, and the signalling application will have no knowledge of the DSP
timeslot that is in use. The monitor application must discover it by using the Aculab switch API
to enquire which internal timeslot has been connected to the E1/T1 port’s signalling link. This
resolves the timeslot that then needs to be connected to the monitor DSP timeslot for
capturing tx traffic.

Figure 7: Local monitor example

In this configuration, the rx data connection is made in the same way as the for active and

passive interception, but the tx data source needs to be established by querying the switch

matrix, something like:

Step 1 (rx): request an rx link monitor similar to the previous examples:

resp = acu_ss7mon_monitor_link(ep, link_id_1, 32, 0);

resp = acu_ss7mon_monitor_link(ep, link_id_2, tx_stream, tx_timeslot);

Aculab card

Traffic
capture

E1/T1 with signalling
link to remote SP

MTP2
signalling

Generic telephony software
drivers, SS7 protocol stack
and ISUP/TCAP APIs

Message
processing library
and signalling
monitor API

Signalling
application

Monitoring
application

L1 & Switch matrix

MAN1204 Revision 6.16.1 PUBLIC Page 53

Step 1 (tx): request a tx link monitor, using stream and timeslot resolved by
sw_query_output:

OUTPUT_PARMS output_parms;

INIT_ACU_STRUCT(&output_parms);

output_parms.ost = 32; /* Port 0 */

output_parms.ots = 16; /* TS 16 */

resp = sw_query_output(card_id, &output_parms);

tx_stream = output_parms.ist;

tx_timeslot = output_parms.its;

resp = acu_ss7mon_monitor_link(ep, link_id_2, tx_stream, tx_timeslot);

Step 2 (rx): after acu_ss7mon_get_msg() returns a message with mm_msg_type

ACU_SS7MONITOR_ACK, with mm_link_id matching link_id_1:

OUTPUT_PARMS output_parms;

INIT_ACU_STRUCT(&output_parms);

output_parms.mode = CONNECT_MODE;

output_parms.ost = acu_ss7mon_interface_id_to_stream(msg->interface_id);

output_parms.ots = acu_ss7mon_interface_id_to_ts(msg->interface_id);

output_parms.ist = rx_stream;

output_parms.its = rx_timeslot;

resp = sw_set_output(card_id, &output_parms);

Step 2 (tx): after acu_ss7mon_get_msg() returns a message with mm_msg_type

ACU_SS7MONITOR_ACK, with mm_link_id matching link_id_2:

OUTPUT_PARMS output_parms;

INIT_ACU_STRUCT(&output_parms);

output_parms.mode = CONNECT_MODE;

output_parms.ost = acu_ss7mon_interface_id_to_stream(msg->interface_id);

output_parms.ots = acu_ss7mon_interface_id_to_ts(msg->interface_id);

output_parms.ist = tx_stream;

output_parms.its = tx_timeslot;

esp = sw_set_output(card_id, &output_parms);

Alternatively (not Prosody 1U enterprise cards):
1) Obtain the tx_stream and tx_timeslot (as in step 1 above) and calculate

mtp2_timeslot = (tx_stream - 48)*32 + tx_timeslot.

Or force the signalling link to have a specific timeslot (e.g. by specifying
-cMTP2_timeslot=nn when downloading the firmware).

2) Monitor a link configured with "timeslot=mtp2_timeslot" to monitor the receive traffic.

3) Monitor a link configured with "monitor_tx_ts=mtp2_timeslot" to monitor the transmit

traffic.
This method doesn't require that the application use the switch API, the monitoring program
can then be run on a completely different computer.

MAN1204 Revision 6.16.1 PUBLIC Page 54

Appendix B: Complete application example
This example illustrates a complete monitoring application that identifies and monitors ISUP
calls to numbers beginning with ‘123’. When a call that has been accepted for monitoring

eventually ends, the application generates a simple call description record, which is sent to
stdout in plain text.

This application is for illustrative purposes only, and is not intended to represent a complete
strategy for a real-world application. For instance, it assumes that the DTMF tones from the
calling subscriber are transposed into the address signals of the ISUP called party number
parameter, which may not always be the case – especially for services such as the speaking
clock. A real-world application that was, for example, trying to identify calls to some specific
country, may have to not only inspect the address signals, but also take account of the ‘nature
of address’ or ‘numbering plan’ fields in the called party number, or the national/international
indicator in the forward call indicators, and maybe other parameters too.

Additional parameters, such as those mentioned in the previous paragraph, are accessible to
the application by using acu_ss7mon_isup_locate_parameter(), whereupon they can be

decoded with reference to ITU-T Q.763. To illustrate this process, the example application
extracts the value of the calling party’s category parameter and includes it in the call
description record.

The source code for this example is available for download via the Aculab AIT. The contents
of that source file are reproduced and described in the following subsections. The order of
these subsections is in reverse order to the source file, for example main() is described first

in this document but appears last in the source file.

B.1 Using the sample application
The sample application takes command-line parameters for card serial number, and the two
port/timeslot combinations to be monitored, as follows:

monitor_demo serial_number port timeslot port timeslot

The following shows some typical output:

B.2 Source code description

B.2.1 Source file outer Scope

The outer scope of the source file contains the usual ‘C’ library #include statements

(stdio.h, etc.), the Aculab header files required by the resource manager and switch APIs,

and the monitor’s own header file, ‘ss7monitor.h‘.

The #include statements are followed by some macros for generating and parsing the

link_id required by acu_ss7mon_monitor_link(), and a call_record_t structure that is

used to maintain a record of each call.

The link_id is used to index an array index that contains application-specific information

about the monitored link. In the example it only contains the port and timeslot information.

The call_record_t structure is used to accumulate parameters that will not be available from

MAN1204 Revision 6.16.1 PUBLIC Page 55

the acu_ss7mon_isup_details() structure, such as timestamps for state transitions, and the

‘calling party category’ parameter as it is not included in the library’s automatic decode. There
is no need to store called and calling number parameters in the call record, as they are
available from the library’s acu_ss7mon_isup_details() structure.

B.2.2 Function: main()

This is, of course, the entry point. It calls functions to open a card, initialise an endpoint, and
requests two link monitors (one for the tx traffic and one for rx). It then calls

consume_traffic(), which will loop forever until the process is terminated either by an error

condition or by a manual intervention, such as a control & C break-in.

B.2.3 Function: open_card()

This function uses the Aculab resource manager to open a card identified by its serial number.
The switch driver is also opened so that the tdm data can be connected. For the sake of
simplicity, there is no matching close_card(), the card remains open until the application

terminates.

B.2.4 Function: initialise_endpoint()

This function allocates an endpoint, turns on the library trace, and connects to the card by
calling acu_ss7mon_connect_card_id(). It then sets the appropriate decode flags and
pointcode sizes, and enables the library’s ISUP decoder.

B.2.5 Function: request_link_monitor()

This function simply calls acu_ss7mon_monitor_link(), using function parameters derived

from the user’s command-line parameters.

B.2.6 Function: consume_traffic()

This function loops forever, calling acu_ss7mon_get_msg() with a 1000mS timeout. Each of

these calls will resolve a pointer to a library data area that contains an acu_ss7mon_msg_t

structure, which is further identified by its mm_msg_type field as follows:

ACU_SS7MON_MSG_NO_DATA

These messages can occur frequently if the traffic rate is low, as they are the result of the
1000mS timeout expiring. They are ignored, and the loop continues.

ACU_SS7MON_MSG_MONITOR_ACK

A successful response to a request to monitor a link. acu_ss7mon_set_sw() is called to

complete the link initialisation.

ACU_SS7MON_MSG_MONITOR_FAIL

Indicates a failure to monitor a link. The sample code treats this as a fatal error and exits.

ACU_SS7MON_MSG_ISUPDATA

These are messages that have been decoded as ISUP messages. They are passed to
process_isup_msg() for further analysis.

Other message types are ignored. This includes not only the expected messages such as
MTP3 link tests, diagnostic traces, and ...get_msg() timeouts, but also includes undefined

values of mm_msg_type. No error message is printed which is a fair defensive practice as

future versions of the library may define other message types.

B.2.7 Function: process_isup_msg()

This function is called after the library returns a message that has been processed by the
ISUP decoder. Such messages contain pointers to two further library data areas, one
containing an acu_ss7mon_info_t structure, and for call-related messages, one containing an

acu_ss7mon_isup_details_t structure. The first contains a field name ii_generic, which is

examined to decide how the message is treated. The values of ii_generic are treated

follows:

ACU_SS7_MON_ISUP_BEGIN

MAN1204 Revision 6.16.1 PUBLIC Page 56

Indicates a new call has been detected. The function handle_new_call() is used to deal

with it.

ACU_SS7_MON_ISUP_CONTINUE

Indicates any call-related message within a sequence of messages for an individual call.
The function check_details() is used to deal with it.

ACU_SS7_MON_ISUP_RELEASE_COMPLETE

This type indicates a call has completed. The function call_completed() is used to deal

with it.

ACU_SS7_MON_ISUP_ABORT

For simplicity, this ii_generic type is treated by the sample application exactly like

release complete. Real-world applications may want to log at least an additional error
message.

B.2.8 Function: handle_new_call()

This function is called when a new call is detected. It checks to see if the call meets the
criteria for monitoring.

If the call needs to be monitored the a call record structure is allocated and
acu_ss7mon_isup_accept() is called to tell the library to start monitoring.

If the call does not need to be monitored, this function simply returns to its caller
(consume_traffic()), whereupon acu_ss7mon_get_msg() will be called again. The library

deduces, from the fact that this was called without the call having been accepted, that the
application does not want to monitor this call.

B.2.9 Function: call_completed()

Invoked when the last message for a call is detected. A call summary is printed based on the
details provided by the library, and the timestamps accumulated from check_details().

B.2.10 Function: check_details()

This function is called for each continuation message within a call. It looks for changes to the
call details, and if the calling number has changed, checks to see if the call still needs to be
monitored. If monitoring continues, timestamps are taken relating to the call’s progress; else,
the monitoring sequence of the call is aborted.

B.2.11 Function: call_wanted()

This function is called for each new ISUP call that is detected, and called again when any
change called party’s number is detected. The return value is a boolean indicating whether the
call meets the defined criteria for monitoring, which is that the called number begins (or might
begin, after further digits are received) with the string ‘123...’.

MAN1204 Revision 6.16.1 PUBLIC Page 57

B.3 Source code listing
The source code listed here is also available for download from the AIT. If the version
obtained via AIT should differ from that in this document, it should be assumed that the AIT
version is the more up to date.

/* Stop windows compiler complaining about strcpy() and ctime() */

#define _CRT_SECURE_NO_WARNINGS

#include <string.h>

#include <stdio.h>

#include <time.h>

#include <stdlib.h>

#include <malloc.h>

#include <acu_type.h>

#include <ss7monitor.h>

#include <res_lib.h>

#include <sw_lib.h>

/* This struct maintains details of an ISUP call... */

typedef struct {

 acu_ss7mon_isup_lib_ref_t cr_lib_ref;

 int cr_connected;

 int cr_released;

 time_t cr_start_time;

 time_t cr_connected_time;

 time_t cr_release_time;

 /* Calling category is not auto-decoded, so we retrieve and

 * remember it ourselves, in the call record. */

 unsigned char cr_calling_category;

} call_record_t;

/* Per monitored link information */

struct link_info {

 int lk_port;

 int lk_timeslot;

 int lk_timeslot_count; // For High speed links

 char lk_config[32]; // Not actually set

};

#define NUM_LINKS 2

struct link_info link_info[NUM_LINKS];

/* Called when the monitor library returns an unexpected error. */

static void

mon_lib_fatal(const char *user_text, int error)

{

 fprintf(stderr, "%s, monitor library error: %s(%d), exiting.\n",

 user_text, acu_ss7mon_get_error_text(error), error);

 exit(EXIT_FAILURE);

}

/* This function tests whether the called party number is

 * one we want to monitor. */

static int

call_wanted(acu_ss7mon_isup_details_t *details)

{

 int offset;

 int ndigits = details->id_called_ndigits;

 if (ndigits > 3)

 ndigits = 3; /* We only look at the first 3 digits */

 for (offset = 0; offset < ndigits; offset++) {

 if (details->id_called_number[offset] != "123"[offset]) {

 printf("Call to %s not wanted\n", details->id_called_number);

 return 0;

 }

 }

 /* Called number matches (or may grow to match) "123..." */

 return 1;

MAN1204 Revision 6.16.1 PUBLIC Page 58

}

/* This function is called when the details may have changed.

 * Make sure we still want the call, and save timestamps for

 * interesting transitions. */

static int

check_details(call_record_t *call_record,

 acu_ss7mon_isup_details_t *details)

{

 int resp;

 if (details->id_altered & ACU_SS7MON_UPDATE_CALLED_NUMBER) {

 if (!call_wanted(details)) {

 resp = acu_ss7mon_isup_reject(call_record->cr_lib_ref);

 if (resp != 0)

 mon_lib_fatal("acu_ss7mon_isup_reject", resp);

 free(call_record);

 }

 }

 if (details->id_altered & ACU_SS7MON_UPDATE_STATE) {

 switch (details->id_state) {

 case ACU_SS7MON_STATE_CONNECTED:

 /* Flag shows timestamp is valid... */

 call_record->cr_connected = 1;

 time(&call_record->cr_connected_time);

 break;

 case ACU_SS7MON_STATE_BACKWARD_RELEASED:

 case ACU_SS7MON_STATE_FORWARD_RELEASED:

 /* Flag shows timestamp is valid... */

 call_record->cr_released = 1;

 time(&call_record->cr_release_time);

 break;

 }

 }

 return 0;

}

/* This is called for ISUP "Release complete" and "Abort".

 * Print then free the call record. */

static void

call_completed(call_record_t *call_record,

 acu_ss7mon_isup_details_t *details)

{

 const char *released_by, *cg_cat;

 time_t release_time;

 /* Translate some of the recognised categories into text.

 * Note, this translation is done with reference to Q.763... */

 switch (call_record->cr_calling_category) {

 case 1:

 case 2:

 case 3:

 case 4:

 case 5:

 cg_cat = "operator";

 break;

 case 0x0a:

 cg_cat = "ordinary subscriber";

 break;

 case 0x0b:

 cg_cat = "priority subscriber";

 break;

 case 0x0c:

 cg_cat = "data call";

 break;

 case 0x0d:

 cg_cat = "test call";

 break;

 case 0x0f:

 cg_cat = "payphone";

 break;

 default:

 cg_cat = "unknown category";

MAN1204 Revision 6.16.1 PUBLIC Page 59

 break;

 }

 printf("CALL RECORD:\n"

 "\tStarted, %s\t\tCalled subscriber: \"%s\"\n"

 "\t\tCaller was %s, \"%s\"\n",

 ctime(&call_record->cr_start_time),

 details->id_called_number,

 cg_cat, details->id_calling_number);

 if (call_record->cr_connected)

 printf("\tConnected, %s", ctime(&call_record->cr_connected_time));

 switch (details->id_state) {

 case ACU_SS7MON_STATE_FORWARD_RELEASED:

 released_by = "calling";

 release_time = call_record->cr_release_time;

 break;

 case ACU_SS7MON_STATE_BACKWARD_RELEASED:

 released_by = "called";

 release_time = call_record->cr_release_time;

 break;

 default:

 released_by = "unknown";

 time(&release_time);

 break;

 }

 printf("\tReleased by %s party, %s", released_by, ctime(&release_time));

 free(call_record);

}

/* A new ISUP call has been detected.

 * If it might be of interest accept it, else let it pass. */

static void

handle_new_call(acu_ss7mon_msg_t *msg,

 acu_ss7mon_isup_info_t *isup_info,

 acu_ss7mon_isup_details_t *details)

{

 unsigned char *prm_ptr;

 int prm_length;

 int resp;

 call_record_t *call_record;

 if (!call_wanted(details))

 return;

 /* Allocate a struct for accumulating data for call record */

 call_record = malloc(sizeof *call_record);

 if (!call_record) {

 fprintf(stderr, "Malloc failed, unable to capture call for %s\n",

 details->id_called_number);

 return;

 }

 memset(call_record, 0, sizeof *call_record);

 /* Save start time for the call. */

 time(&call_record->cr_start_time);

 /* Save the library reference for future use. */

 call_record->cr_lib_ref = isup_info->ii_lib_ref;

 /* Tell the library we want to monitor the call... */

 resp = acu_ss7mon_isup_accept(isup_info->ii_lib_ref, call_record);

 if (resp != 0)

 mon_lib_fatal("acu_ss7mon_isup_accept", resp);

 /* Retrieve calling party's category (Q.763 parameter 0x9) */

 resp = acu_ss7mon_isup_locate_parameter(msg, 0x09, &prm_ptr, &prm_length);

 /* The message _must_ have been an IAM, and CPC is _always_

 * present, so ...locate_parameter() _cannot_ have failed,

MAN1204 Revision 6.16.1 PUBLIC Page 60

 * and the length of CPC parameter is _always_ '1'.

 *

 * If these conditions weren't met then we had a major

 * protocol breach, but just ignore it - our job here is not

 * protocol enforcement. */

 if (resp == 0 && prm_length == 1)

 call_record->cr_calling_category = *prm_ptr;

}

/* Handle a message that's been through the library's ISUP decoder */

static void

process_isup_msg(acu_ss7mon_msg_t *msg)

{

 acu_ss7mon_isup_info_t *isup_info = msg->mm_upart_info;

 acu_ss7mon_isup_details_t *details;

 call_record_t *call_record;

 /* All ISUP messages are expected to have an ISUP info area... */

 if (!isup_info) {

 /* Should never happen. */

 fprintf(stderr,

 "ISUP message: unexpected NULL pointer in mm_upart_info.\n");

 exit(EXIT_FAILURE);

 }

 if (isup_info->ii_generic == ACU_SS7MON_ISUP_OTHER) {

 /* This can happen if supervisory messages

 * (blocking etc.) are encountered */

 fprintf(stderr,

 "ISUP message: Ignoring non-call message q763 type %d.\n",

 isup_info->ii_q763_type);

 return;

 }

 /* Other ISUP messages should provide ISUP details buffer... */

 details = isup_info->ii_details;

 if (!details) {

 /* This should never happen. */

 fprintf(stderr, "ISUP message: ii_generic 0x%x, ii_q763_type 0x%x, "

 "unexpected NULL pointer in ii_details.\n",

 isup_info->ii_generic, isup_info->ii_q763_type);

 exit(EXIT_FAILURE);

 }

 if (isup_info->ii_generic == ACU_SS7MON_ISUP_BEGIN) {

 handle_new_call(msg, isup_info, details);

 return;

 }

 /* Messages other than BEGIN must refer to existing library

 * reference */

 call_record = isup_info->ii_user_ref;

 if (!call_record) {

 /* Should never happen */

 fprintf(stderr, "ISUP message: ii_generic 0x%x ii_q763_type 0x%x, "

 "unexpected NULL pointer in ii_user_ref.\n",

 isup_info->ii_generic, isup_info->ii_q763_type);

 exit(EXIT_FAILURE);

 }

 switch (isup_info->ii_generic) {

 case ACU_SS7MON_ISUP_CONTINUE:

 check_details(call_record, details);

 break;

 case ACU_SS7MON_ISUP_RELEASE_COMPLETE:

 case ACU_SS7MON_ISUP_ABORT:

 call_completed(call_record, details);

 break;

 default:

 fprintf(stderr, "Unexpected ISUP message: ii_generic 0x%x.\n",

 isup_info->ii_generic);

 break;

 }

}

MAN1204 Revision 6.16.1 PUBLIC Page 61

/* Loop forever calling get_msg */

static void

consume_traffic(acu_ss7mon_ep_t *ep, ACU_CARD_ID card_id)

{

 int resp;

 acu_ss7mon_msg_t *msg;

 struct link_info *li;

 for (;;) {

 msg = NULL;

 resp = acu_ss7mon_get_msg(ep, &msg, 1000);

 if (resp != 0)

 mon_lib_fatal("acu_ss7mon_get_msg", resp);

 if (!msg) {

 fprintf(stderr, "acu_ss7mon_get_msg returned NULL message.\n");

 exit(EXIT_FAILURE);

 }

 if (msg->mm_link_id < NUM_LINKS)

 li = &link_info[msg->mm_link_id];

 else

 li = NULL;

 switch (msg->mm_msg_type) {

 default:

 /* Other message types are ignored, including

 * ACU_SS7MON_MSG_NO_DATA (e.g. timeouts)

 * ACU_SS7MON_MSG_L3DATA (MTP3 link tests etc.)

 * ACU_SS7MON_MSG_TRACE (diagnostics)

 */

 break;

 case ACU_SS7MON_MSG_ISUPDATA:

 /* This example doesn't care which link the message arrived on. */

 process_isup_msg(msg);

 break;

 case ACU_SS7MON_MSG_MONITOR_ACK:

 if (!li) {

 fprintf(stderr, "monitor ack on unexpected link %d\n",

 msg->mm_link_id);

 exit(EXIT_FAILURE);

 }

 /* The timeslot count needs resetting before calling

 * acu_ss7mon_set_sw() if different links have different

 * counts (actually unlikely). */

 acu_ss7mon_configure_endpoint(ep, ACU_SS7MON_CFG_HIGH_SPEED,

 li->lk_timeslot_count);

 acu_ss7mon_set_sw(msg, 32 + li->lk_port, li->lk_timeslot);

 /* Since ACU_SS7MON_L2_MODE_APP_EST_REQ was set we need to

 * request monitoring be started.

 * This lets per-link configuration be set.

 * eg the ss7_pt_monitor supports tracing of raw audio,

 * this can be enabled by passing "monitor_audio=length". */

 acu_ss7mtp2_est_req(ep, msg->mm_interface_id, li->lk_config);

 break;

 case ACU_SS7MON_MSG_MONITOR_FAIL:

 fprintf(stderr, "Library failed to monitor link %d: %s\n",

 msg->mm_link_id, msg->mm_buffer);

 exit(EXIT_FAILURE);

 }

 }

}

/* Request a tdm trunk timeslot be monitored */

static void

request_link_monitor(acu_ss7mon_ep_t *ep, int link_no)

{

 int resp;

 acu_ss7mon_configure_endpoint(ep, ACU_SS7MON_CFG_HIGH_SPEED,

 link_info[link_no].lk_timeslot_count);

 resp = acu_ss7mon_monitor_link(ep, link_no,

MAN1204 Revision 6.16.1 PUBLIC Page 62

 link_info[link_no].lk_port,

 link_info[link_no].lk_timeslot);

 if (resp != 0)

 mon_lib_fatal("acu_ss7mon_monitor_link", resp);

}

/* Initialise endpoint & connect to card */

static acu_ss7mon_ep_t *

initialise_endpoint(ACU_CARD_ID card_id)

{

 int resp;

 acu_ss7mon_ep_t *ep;

 /* Create a monitoring endpoint */

 ep = acu_ss7mon_create_endpoint();

 if (!ep) {

 fprintf(stderr, "acu_ss7mon_create_endpoint returned NULL.\n");

 exit(EXIT_FAILURE);

 }

 /* Enable library trace */

 acu_ss7mon_configure_endpoint(ep, ACU_SS7MON_CFG_TRACE_FILENAME,

 "monitor_demo.log");

 /* Turn trace level up (from 5) so that data messages get traced. */

 acu_ss7mon_configure_endpoint(ep, ACU_SS7MON_CFG_TRACE_LEVEL, 6);

 /* Tracing can also be enabled by setting the environment variables:

 * ACULAB_SS7_MONITOR_CFG_TRACE_LEVEL=level

 * ACULAB_SS7_MONITOR_CFG_TRACE_FILENAME=log_filename

 * (log_filename can only contain alphanumerics, '.', '-' or '_') */

 /* Uncomment to use the ss7_pt_monitor (supported by some cards).

 * The "" is additional configuration "-t 128" would avoid using

 * the first 128 timeslots (ie probably stream 256) */

 // acu_ss7mon_configure_endpoint(ep, ACU_SS7MON_CFG_PT_MONITOR, "");

 /* Disable automatic est_req() so that we can change the configuration

 * per monitored link. */

 acu_ss7mon_configure_endpoint(ep, ACU_SS7MON_CFG_L2_MODE,

 ACU_SS7MON_L2_MODE_RAW | ACU_SS7MON_L2_MODE_APP_EST_REQ);

 resp = acu_ss7mon_connect_card_id(ep, card_id);

 if (resp != 0)

 mon_lib_fatal("acu_ss7mon_connect", resp);

 /* Request auto-decode of MTP3 & ISUP */

 acu_ss7mon_configure_endpoint(ep, ACU_SS7MON_CFG_DECODE_FLAGS,

 ACU_SS7MON_MEF_DECODE_MTP3 | ACU_SS7MON_MEF_DECODE_USERPART);

 resp = acu_ss7mon_set_pointcode_size(ep, ~0, 14);

 if (resp != 0)

 mon_lib_fatal("acu_ss7mon_set_pointcode_size", resp);

 /* Enable an ITU ISUP decoder for all relations */

 resp = acu_ss7mon_set_upart_decode(ep,

 ~0, /* All Ni */

 5, /* SI ISUP */

 ~0, ~0, /* All pointcodes */

 acu_ss7mon_decode_isup,

 ACU_SS7MON_ISUP_ITU_CFG);

 if (resp != 0)

 mon_lib_fatal("acu_ss7mon_set_upart_decode", resp);

 return ep;

}

static void

open_card(char *serial_no, ACU_CARD_ID *card_id)

{

 ACU_OPEN_CARD_PARMS open_card_parms;

 ACU_OPEN_SWITCH_PARMS open_switch_parms;

 int resp;

 INIT_ACU_STRUCT(&open_card_parms);

MAN1204 Revision 6.16.1 PUBLIC Page 63

 strcpy(open_card_parms.serial_no, serial_no);

 resp = acu_open_card(&open_card_parms);

 if (resp != 0) {

 fprintf(stderr, "Resource manager error open card, %d\n", resp);

 exit(EXIT_FAILURE);

 }

 *card_id = open_card_parms.card_id;

 /* Open switch driver so we can tweak the matrix */

 INIT_ACU_STRUCT(&open_switch_parms);

 open_switch_parms.card_id = *card_id;

 resp = acu_open_switch(&open_switch_parms);

 if (resp != 0) {

 fprintf(stderr, "acu_open_switch: Switch API error %d\n", resp);

 exit(EXIT_FAILURE);

 }

}

static void

set_link_info(int id, char **argv)

{

 char *cp;

 int ts_hi;

 link_info[id].lk_port = strtol(argv[0], &cp, 0);

 if (*cp) {

 fprintf(stderr, "invalid port number %s\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 link_info[id].lk_timeslot = strtol(argv[1], &cp, 0);

 ts_hi = link_info[id].lk_timeslot;

 if (*cp == '-')

 /* Timeslot range for HSL */

 ts_hi = strtol(cp + 1, &cp, 0);

 if (*cp) {

 fprintf(stderr, "invalid timeslot number %s\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 if (ts_hi < link_info[id].lk_timeslot || ts_hi >= 32) {

 fprintf(stderr, "timeslot out of range %s\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 link_info[id].lk_timeslot_count = ts_hi - link_info[id].lk_timeslot + 1;

}

int

main(int argc, char **argv)

{

 ACU_CARD_ID card_id;

 char *serial_num;

 acu_ss7mon_ep_t *ep;

 if (argc != 6) {

 fprintf(stderr, "Usage: monitor_demo <serial> "

 "<port> <timeslot> <port> <timeslot>\n");

 exit(EXIT_FAILURE);

 }

 argv++; /* Skip past program name */

 serial_num = *argv++;

 /* Setup per-link information.

 * We only need the port and timeslot. */

 set_link_info(0, argv);

 set_link_info(1, argv + 2);

 /* Open the PMXC card */

 open_card(serial_num, &card_id);

 /* Initalise the endpoint & connect to PMX */

 ep = initialise_endpoint(card_id);

 /* Request monitoring for TX and RX traffic */

 request_link_monitor(ep, 0);

MAN1204 Revision 6.16.1 PUBLIC Page 64

 request_link_monitor(ep, 1);

 /* Consume all future message traffic */

 consume_traffic(ep, card_id);

 return EXIT_SUCCESS;

}

MAN1204 Revision 6.16.1 PUBLIC Page 65

