

MAN1201 Revision 6.16.0 PUBLIC

Aculab SS7

Distributed TCAP
API Guide.

MAN1201 Revision 6.16.1

MAN1201 Revision 6.16.1 PUBLIC Page 2

PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab Plc and may be the
subject of patents pending or granted, and must not be copied or disclosed without prior
written permission. It should not be used for commercial purposes without prior agreement in
writing.

All trademarks recognised and acknowledged.

Aculab Plc endeavours to ensure that the information in this document is correct and fairly
stated but does not accept liability for any error or omission.

The development of Aculab products and services is continuous and published information
may not be up to date. It is important to check the current position with Aculab Plc.

Copyright © Aculab plc. 2006-2023: All Rights Reserved.

Document Revision

Rev Date By Detail

6.8.3 21.03.07 DSL First full issue

6.10.1 12.09.08 DSL Typographical corrections, improved explanations.
acu_asn1_decode_object_id_int/str() added

block and cyclic trace modes added.

6.10 2 16.10.08 DSL Typographical corrections,
acu_tcap_msg_copy_rx_buffer() and the ability to send

a pre-built tcap message added.

6.10.3 30.10.08 DSL Minor clarifications.

6.11.0 10.09.10 DSL Message based ASN.1 codec, additional configuration
parameters and support functions.

6.11.3 25.03.11 DSL Minor corrections.

6.11.11 01.11.11 DSL Additions and clarifications to message based codec
functions.

6.12.2 28.06.13 DSL Remove references to Solaris. Support IPv6 connections
to the ss7 driver.

6.13.0 10.10.14 DSL Typographical corrections and clarifications.

6.14.0 15.09.16 DSL Align with the 6.14.0 software release.

6.15.1 31.08.18 DSL Align with the 6.15.1 software release.

6.15.7 23.07.19 DSL Addition of transaction restore functions.

6.15.8 16.08.19 DSL Add acu_tcap_transaction_restore_app_ctx()

6.16.0 30.03.22 DSL Align with the 6.16.0 software release.

6.16.1 13.02.23 DSL Update title page

MAN1201 Revision 6.16.1 PUBLIC Page 3

CONTENTS

1 Introduction .. 7
1.1 Structure of TCAP .. 7
1.2 TCAP with dual resilient MTP3 ... 7
1.3 TCAP library data structures ... 8
1.4 Functional Overview ... 8
1.5 Thread safety ... 8
1.6 Restarting applications ... 9
1.7 Transmit and receive flow control ... 10

1.7.1 Monitoring queued messages ... 10
1.7.2 TCP connection flow control .. 10
1.7.3 Transmit messages ... 10
1.7.4 Receive messages .. 11
1.7.5 Minimising library buffering of receive messages ... 11

2 API Functions .. 13
2.1 TCAP API functions.. 13

2.1.1 Abbreviations and nomenclature ... 13
2.1.2 TCAP Header files .. 14

2.1.2.1 tcap_api.h .. 14
2.1.2.2 tcap_asn1_codec.h.. 14
2.1.2.3 tcap_synch.h ... 14
2.1.2.4 Protocol message definitions ... 14

2.1.3 Configurable parameters ... 15
2.1.3.1 Global ssap parameters ... 15
2.1.3.2 General transaction parameters ... 16
2.1.3.3 Address parameters .. 16
2.1.3.4 Configuration file format ... 17

2.1.4 Tracing ... 19
2.1.4.1 acu_tcap_trace/trace_v/trace_buf .. 20
2.1.4.2 acu_tcap_trace_error ... 21
2.1.4.3 acu_tcap_strerror .. 21

2.1.5 SCCP access functions ... 22
2.1.5.1 acu_tcap_ssap_create ... 22
2.1.5.2 acu_tcap_ssap_delete ... 22
2.1.5.3 acu_tcap_ssap_connect_sccp ... 23
2.1.5.4 acu_tcap_ssap_set_cfg_int/str ... 23
2.1.5.5 acu_tcap_ssap_get_locaddr/remaddr .. 24

2.1.6 Transaction functions .. 25
2.1.6.1 acu_tcap_transaction_create ... 25
2.1.6.2 acu_tcap_transaction_restore .. 25
2.1.6.3 acu_tcap_transaction_restore_app_ctx .. 26
2.1.6.4 acu_tcap_transaction_delete ... 26
2.1.6.5 acu_tcap_ssap_get_uni_transaction .. 26
2.1.6.6 acu_tcap_trans_set_userptr ... 27
2.1.6.7 acu_tcap_trans_get_userptr .. 27
2.1.6.8 acu_tcap_trans_get_ids ... 27
2.1.6.9 acu_tcap_trans_set_cfg_int/str .. 28
2.1.6.10 acu_tcap_trans_get_locaddr/remaddr .. 28

2.1.7 General message functions ... 29
2.1.7.1 acu_tcap_msg_alloc .. 29
2.1.7.2 acu_tcap_msg_free ... 29
2.1.7.3 acu_tcap_msg_copy_rx_buffer .. 29
2.1.7.4 acu_tcap_msg_get_a1b... 29

2.1.8 Message sending functions ... 30
2.1.8.1 acu_tcap_msg_init ... 31
2.1.8.2 acu_tcap_msg_add_dialogue .. 31
2.1.8.3 acu_tcap_msg_add_dlg_userinfo .. 32
2.1.8.4 acu_tcap_msg_add_dlg_security_context .. 33
2.1.8.5 acu_tcap_msg_add_dlg_confidentiality .. 33

MAN1201 Revision 6.16.1 PUBLIC Page 4

2.1.8.6 acu_tcap_msg_add_comp_invoke ... 34
2.1.8.7 acu_tcap_msg_add_comp_result .. 34
2.1.8.8 acu_tcap_msg_add_comp_error ... 35
2.1.8.9 acu_tcap_msg_add_comp_reject .. 35
2.1.8.10 acu_tcap_msg_add_ansi_abort_userinfo ... 35
2.1.8.11 acu_tcap_msg_send ... 36
2.1.8.12 acu_tcap_msg_reply_reject ... 36

2.1.9 Message receiving functions ... 37
2.1.9.1 acu_tcap_ssap_msg_get ... 37
2.1.9.2 acu_tcap_trans_msg_get .. 38
2.1.9.3 acu_tcap_event_msg_get .. 38
2.1.9.4 acu_tcap_msg_decode.. 39
2.1.9.5 acu_tcap_msg_has_components... 40
2.1.9.6 acu_tcap_msg_get_component ... 41
2.1.9.7 acu_tcap_trans_unblock .. 43
2.1.9.8 acu_tcap_trans_block .. 43
2.1.9.9 acu_tcap_ssap_wakeup_msg_get ... 43
2.1.9.10 acu_tcap_trans_wakeup_msg_get... 43

2.1.10 Operation and timer functions ... 44
2.1.10.1 acu_tcap_operation_timer_start ... 44
2.1.10.2 acu_tcap_operation_timer_restore... 44
2.1.10.3 acu_tcap_operation_timer_restart.. 45
2.1.10.4 acu_tcap_operation_cancel ... 45

2.1.11 Connection status functions .. 46
2.1.11.1 acu_tcap_get_con_state .. 46
2.1.11.2 acu_tcap_msg_get_con_state ... 47

2.1.12 Remote SP and SSN status functions ... 48
2.1.12.1 acu_tcap_get_sccp_status .. 48
2.1.12.2 acu_tcap_msg_get_sccp_status .. 49
2.1.12.3 acu_tcap_enable_user_status ... 49
2.1.12.4 acu_tcap_enable_sp_status .. 49

2.1.13 TCAP message events ... 50
2.1.13.1 acu_tcap_event_create ... 50
2.1.13.2 acu_tcap_event_delete.. 50
2.1.13.3 acu_tcap_event_wait ... 50
2.1.13.4 acu_tcap_event_get_os_event .. 51
2.1.13.5 acu_tcap_event_clear ... 51
2.1.13.6 acu_tcap_event_ssap_attach .. 51
2.1.13.7 acu_tcap_event_ssap_detach ... 51
2.1.13.8 acu_tcap_event_ssap_detach_all .. 52
2.1.13.9 acu_tcap_event_trans_attach .. 52
2.1.13.10 acu_tcap_event_trans_detach ... 52
2.1.13.11 acu_tcap_event_trans_detach_all.. 52

2.2 ASN.1 Encoder/Decoder functions ... 53
2.2.1 Header file tcap_asn1_codec.h ... 53

2.2.1.1 acu_asn1_buf_t structure .. 53
2.2.1.2 Error codes for ASN.1 codec ... 53
2.2.1.3 ASN.1 tag values ... 54

2.2.2 Common functions .. 55
2.2.2.1 acu_asn1_buf_init ... 55
2.2.2.2 acu_asn1_buf_free .. 55
2.2.2.3 acu_asn1_strerror ... 55
2.2.2.4 acu_asn1_fmt_errmsg ... 55

2.2.3 ASN.1 Encoder Functions ... 56
2.2.3.1 acu_asn1_put_constructed .. 56
2.2.3.2 acu_asn1_put_end_constructed .. 56
2.2.3.3 acu_asn1_put_end_all_constructed ... 57
2.2.3.4 acu_asn1_put_int .. 57
2.2.3.5 acu_asn1_put_unsigned .. 57
2.2.3.6 acu_asn1_put_octet_8 .. 58

MAN1201 Revision 6.16.1 PUBLIC Page 5

2.2.3.7 acu_asn1_put_bits32 ... 58
2.2.3.8 acu_asn1_put_bitstring .. 58
2.2.3.9 acu_asn1_put_octetstring .. 59
2.2.3.10 acu_asn1_put_raw_octets ... 59
2.2.3.11 acu_asn1_put_space ... 59
2.2.3.12 acu_asn1_encode_object_id_str/int ... 60

2.2.4 ASN.1 Decoder functions .. 61
2.2.4.1 acu_asn1_get_tag_len .. 61
2.2.4.2 acu_asn1_get_reference ... 61
2.2.4.3 acu_asn1_get_int .. 62
2.2.4.4 acu_asn1_get_unsigned .. 62
2.2.4.5 acu_asn1_get_octet_8 .. 62
2.2.4.6 acu_asn1_get_octetstring .. 62
2.2.4.7 acu_asn1_get_bits32 ... 63
2.2.4.8 acu_asn1_decode_object_id_str/int ... 63

2.3 Message definition based ASN.1 encoder and decoder .. 64
2.3.1 Codec data structures ... 64

2.3.1.1 ASN.1 message definitions .. 64
2.3.1.2 Defining the message definition data ... 65
2.3.1.3 Defining the associated C structure .. 66
2.3.1.4 Example definition ... 67

2.3.2 API functions... 68
2.3.2.1 acu_asn1_encode_data... 68
2.3.2.2 acu_asn1_decode_data... 68
2.3.2.3 acu_asn1_trace_data .. 69
2.3.2.4 acu_asn1_free_trace_data .. 69
2.3.2.5 acu_asn1_find_defn .. 70

2.4 Thread support functions .. 71
2.4.1 Mutex functions ... 71

2.4.1.1 acu_tcap_mutex_create... 71
2.4.1.2 acu_tcap_mutex_delete ... 71
2.4.1.3 acu_tcap_mutex_lock .. 72
2.4.1.4 acu_tcap_mutex_trylock .. 72
2.4.1.5 acu_tcap_mutex_unlock .. 72

2.4.2 Condition variable functions .. 73
2.4.2.1 acu_tcap_condvar_create .. 73
2.4.2.2 acu_tcap_condvar_delete .. 73
2.4.2.3 acu_tcap_condvar_wait ... 74
2.4.2.4 acu_tcap_condvar_wait_tmo ... 74
2.4.2.5 acu_tcap_condvar_broadcast .. 74

2.4.3 Thread functions ... 75
2.4.3.1 acu_tcap_thread_create .. 75
2.4.3.2 acu_tcap_thread_exit .. 75
2.4.3.3 acu_tcap_thread_join .. 75
2.4.3.4 acu_tcap_thread_id ... 75

2.4.4 Thread Pool functions ... 76
2.4.4.1 acu_tcap_thread_pool_create .. 76
2.4.4.2 acu_tcap_thread_pool_destroy .. 76
2.4.4.3 acu_tcap_thread_pool_num_active.. 76
2.4.4.4 acu_tcap_thread_pool_num_idle ... 77
2.4.4.5 acu_tcap_thread_pool_num_jobs .. 77
2.4.4.6 acu_tcap_thread_pool_submit ... 77

Appendix A: Building TCAP applications ... 78
A.1 Linux .. 78
A.2 Windows .. 78

Appendix B: tcap_api.h .. 79
B.1 Error Codes ... 79
B.2 SCCP addresses.. 81

Appendix C: System limits ... 82

MAN1201 Revision 6.16.1 PUBLIC Page 6

Appendix D: ASN.1 BER encoding .. 83
D.1 Basic encoding rules .. 83
D.2 Universal tags .. 84

D.2.1 Object Identifiers ... 84
D.2.2 External data .. 84

Appendix E: C Pre-processor explained ... 85

MAN1201 Revision 6.16.1 PUBLIC Page 7

1 Introduction
This document describes the Distributed TCAP API.

1.1 Structure of TCAP
The Aculab Distributed TCAP has the SCCP code tightly coupled with MTP3 (or M3UA) and a
separate TCAP library that is linked to the application. The TCAP library communicates with
SCCP using a proprietary protocol over TCP/IP and a small TCAP interface driver.

The product supports:

- Multiple TCAP applications using different SSNs.
- Structured and unstructured TCAP dialogues.
- A TCAP application connecting to multiple SCCP endpoints (e.g.: several SSNs or

multiple MTP3 local pointcodes).
- TCAP applications in a dual-MTP3 environment
- Multiple copies of the same TCAP application running on multiple chassis.
- Multiple TCAP applications running in a single chassis.
- ITU and ANSI TCAP, including ITU TCAP over ANSI SCCP and vice versa.

1.2 TCAP with dual resilient MTP3
The diagram below shows the components of a dual resilient MTP3 system.

The TCAP interface, SCCP and MTP3 code all reside in the kernel. The application is shown
running in a different system, but can run in the same system as SCCP and MTP3 by
connecting to ‘localhost’.

SCCP must pass inward messages to the correct application. This is done by allocating
different ranges of TCAP transaction identifiers to each application. Begin (ANSI Query) and
Unidirectional messages are given to each application in a round-robin fashion.

TCAP(a)
Interface

Ethernet LAN

SCCP(a)

MTP(a)

SCCP(b)

MTP(b)

 SS7 Signalling Linkset
 to STP

Application

TCAP(2)
Library

TCAP(3)
Library

Application Application

TCAP(1)
Library

TCAP(b)
Interface

MAN1201 Revision 6.16.1 PUBLIC Page 8

1.3 TCAP library data structures
The TCAP library defines the following major data structures:
- The ssap structure (SCCP service access point). One of these must be created for each

SSN. The TCP/IP connection to SCCP is controlled from this structure. Everything refers
(directly or indirectly) to an ssap structure. An application would normally only create a
single ssap structure.

- The transaction structure. This holds all the information for a TCAP message exchange
with the TCAP peer. Multiple transaction structures can be created on each ssap.

- The msg structure. This is used for passing TCAP messages between the application and
the library.

- The sccp_addr structure. This is used to hold address information.

All the fields of the ssap and transaction structures are private to the library.

1.4 Functional Overview
A TCAP application should perform the following steps:

- Create a ssap structure and initialise the configurable fields (from a configuration file or
directly).

- Connect to the SCCP systems.
If the application is going to initiate a TCAP transaction:

- Create a transaction structure.
If the application is a server, wait for the first message; the library will allocate a transaction
area.

- Allocate a message, build and send it to SCCP.
- Wait for a response on either the ssap queue, or transaction queue (the response is

added to both).
- When all messages have been sent/received, delete the transaction.

All messages must be explicitly deleted by the application.

Unidirectional dialogues work the same way, except that all inbound messages are queued on
a single transaction. Unidirectional messages can be sent from that transaction, or from
another transaction area.

An application can create any (reasonable) number of transactions.

1.5 Thread safety
The library can be used by threaded programs. The data structures are protected by a per-
ssap mutex.

The transaction functions only acquire the mutex to protect the integrity of the data structures,
not the transaction state. The application should not allow concurrent processing of a single
transaction by more than one thread.

Whenever a message is removed from the ssap queue acu_tcap_trans_block() is implicitly

called. This allows multiple threads to process messages from the ssap queue. The
application must call acu_tcap_trans_unblock() after processing each message.

Alternatively, a single threaded application can set the SINGLE_THREADED configuration option.

The acu_tcap_trans_block() and acu_tcap_trans_unblock() functions can also be used

to stop messages being read from the ssap queue during other application processing for the
transaction.

MAN1201 Revision 6.16.1 PUBLIC Page 9

1.6 Restarting applications
Some applications have long lasting transactions that they may want to recover after an
unexpected application restart.

The TCAP library has support for applications reattaching to the driver and restoring
transactions. The application is responsible for saving all the relevant state.

At least the following must have been saved for each transaction:
- The local and remote transaction ids.
- The remote SCCP address.
- The invoke-id of any pending outbound operations (sent invoke components).
- Additional application specific state.

In addition to restoring the transactions it is necessary to stop the TCAP driver code from
sending P-Aborts for unknown local transactions ids while the application isn’t running.

It may also be necessary to minimise the number of messages that get discarded (application
level retries may recover from discards). The driver code can hold onto its queue of receive
message, but any already read by the library code will be lost. The number of messages held
by the library can be reduced – although it will reduce attainable throughput.

The following configuration options control the reattach and restore:

ACU_TCAP_CFG_REATTACH_TIMEOUT=timeout_seconds

This parameter specifies the length of time the driver waits for an application to reattach
before deleting its data and queued messages.
If non-zero and ACU_TCAP_CFG_TRANID_RANGE non-zero acu_tcap_ssap_connect_sccp()

will reattach to the old data area and be given any queued messages.
Changes to this parameter are copied to the driver; it is recommended that it be set to zero
before normal program exit.

Note Setting the timeout to longer than that used for invokes may have undesirable side effects.

ACU_TCAP_CFG_TRANID_RANGE=local_id_range

This parameter requests the driver allocate local transaction ids that have their top 12 bits
set to local_id_range rather than an unused range.

This must be set before calling acu_tcap_ssap_connect_sccp().

ACU_TCAP_CFG_REATTACH_DISCARD=n/y/1

If set to y (or 1) the driver will discard all queued messages while waiting for the reattach
timer to expire. Without reattach it would send P-Aborts.
Changes to this parameter are copied to the driver.

ACU_TCAP_CFG_TRAN_RESTORE=n/y/1

If set to y (or 1) the library will create transactions when unexpected CONTINUE or END

messages are received (rather than send a P-Abort).
The transactions are created as if this is the first backwards message.
This lets the application decide on the required response.
If the application uses acu_tcap_trans_set_userptr() on transactions it knows about, it

can detect these transactions because acu_tcap_trans_get_userptr() will return NULL.

Once the restarted application has reconnected to the driver with the correct transaction id
range (i.e. received the ACU_TCAP_MSG_CON_STATE message indicating the connection is

active) it must create the TCAP library data area of each transaction.
- Call acu_tcap_transaction_restore() to create the transaction data area.

- Set the remote SCCP address in the same way as for an outward transaction.
- Call acu_tcap_operation_restore() for every outstanding outward operation (sent

invoke).
The application can then proceed in the normal way, retrieving messages from the ssap or
transaction queues.

MAN1201 Revision 6.16.1 PUBLIC Page 10

1.7 Transmit and receive flow control
Since networks don’t have infinite bandwidth and processors have finite speed there will
always be places where large numbers of messages are likely to get queued. Some kind of
mitigation is needed to stop these queues growing indefinitely and using all system memory.

For TCAP applications messages can be queued in kernel space (in the ss7 driver) or in user
space (by the TCAP library). It is generally better to queue in user space as overlarge queues
have a smaller impact.

The TCAP library uses a separate thread to transmit and receive data, so messages can be
transferred to/from the driver even when the application isn’t making calls into the TCAP
library.

Most applications don’t need to worry about the inner workings or any the configuration
parameters. The defaults should be fine.

1.7.1 Monitoring queued messages

Sometimes it is useful to know where (or even if) messages are being queued within the
protocol stack. While queued messages can be just be caused by a burst of data being
processed, sometimes they show up processing bottlenecks and deadlocks.

Flow control in the driver works by limiting the number of messages that each ‘source’ can
allocate.

Run ss7maint osstatus -m to see how many messages are allocated. If the limit is reached

(some message pools have no limit – shown as ‘Free == 0’) the count of Fails is increased,

this doesn’t always mean messages are discarded – eg acks to the TCAP library just get
delays.

Run ss7mant osstatus -q to see where messages are queued. These are actually

schedulable entities, sometimes messages do get queued elsewhere. The Nobuf column

doesn’t relate to the number of messages queued, it is the number of times the entity has
been scheduled because messages have become available is a message pool (this is the
mechanism used to send acks to the TCAP library).

Run ss7maint tcapstatus -A to get statistics from the tcap driver code.

Provided the connection between the driver and library is working it is also possible to get
statistics from the library by running ss7maint tcapstatus -labT. While this includes the

number of queued transmit messages it doesn’t indicate the total number of queued receive
messages only the number on each transaction.

1.7.2 TCP connection flow control

The TCAP library always uses a TCP connection to pass information to and from the SS7
driver. Application level acks are used for data messages to ensure this connection never
blocks (in either direction) so that keepalives and status requests are always processed.

The sender controls the flow by requesting an ack (say) every 8 messages. Only one such
request can be outstanding, so after requesting an ack and sending 7 more messages it must
wait for the ack before sending any more data. The receiver will send an ack if it has enough
buffer space for (in this case) 15 messages.

An additional benefit of a relatively small windows is that on receipt of an ack multiple
messages can be sent in a single request and processed more efficiently by the network stack
– it may end up in one or two Ethernet frames instead of each message being in its own
frame.

1.7.3 Transmit messages

The ss7 driver limits the number of transmit messages it will queue for each ssap to 140 (not
configurable). Once that limit is reached it stops sending acks to the library and the library will
stop sending it more data. Any further transmit requests from the application are queued
within the library.

MAN1201 Revision 6.16.1 PUBLIC Page 11

The driver queues the messages from the TCAP application waiting for MTP2/M2PA transmit
window, M3UA/M2PA licences, M3UA socket buffer space and MTP3 timed control
diversion/changeback (messages for MTP2 retransmit and MTP2/M2PA retrieval are
accounted for separately). As soon as queued messages get freed the library will send more
to the driver.

While 140 may seem small, sending that many 200 byte messages over a 64k MTP2
signalling link takes around 4 seconds. If a lot of messages might get queued on slow links the
application operation timeouts may need to allow for this delay.

The library will request an ack after either 24 data messages (not configurable) or 2920 bytes
(configurable as “tx_byte_window” maximum 32768) of data message have been sent.

Increasing tx_byte_window may improve the maximum message rate especially if

fragmented XUDT are being generated (24 messages are otherwise unlikely to exceed 8k
bytes).

The library doesn’t limit the size of its transmit queues (one for each server connection), but
does generate the status indication CON_STATE_TX_FLOW if the length exceeds 16 messages

(configurable as “tx_queue_len” maximum 10000) and clears the indication when the queue

length reduces to half this value.

While configurations that use MTP2 links probably don’t want to queue many transmit
messages in userspace (to avoid the delays caused by the physical link speed),
configurations that use M3UA or M2PA may need to significantly increase “tx_queue_len” to

avoid repeated CON_STATE_TX_FLOW indications.

A TCAP application that initiates requests (eg sending SMS) can limit the number of transmit
messages queued by controlling the number of outstanding operations. This may also be
needed to avoid overloading the target system(s).

1.7.4 Receive messages

Whereas transmit messages get queued data waiting ‘line time’ to transmit, receive messages
are queued to allow bursts of messages by processed by the application. If the application
can’t keep up then messages have to get discarded somewhere. Hopefully any timeout+retry
doesn’t cause a catastrophic increase in the number of messages being received.

The library reads messages from the driver into a (usually) large cyclic buffer (configurable as
“rx_buflen” default 130944). It will send an ack if there is enough space for two windows full

of data from the driver (actually smaller of 64k and half the buffer size). The driver will queue
up to 250 (configurable as “rx_max_qlen” in the TCAP library or as “rx_qlen” in the driver) on

each connection (library ssap) before tracing and discarding receive messages.

Although the driver is responsible for requesting acks for receive messages, the parameters
are configured by the library with the driver being updated whenever they are changed. Acks
for receive data are requested after either 24 messages (configurable as “rx_msg_window”) or

2916 bytes (configurable as “rx_byte_window”) have been sent. Setting either value to 1

causes an ack to be requested for every message.

Note With the default values the library receive buffer never gets anywhere near being full.

Under normal conditions it is expected that all receive messages will get read into the libraries
receive buffer and messages will only be transiently queued by the driver.

Very bursty high throughput systems may need larger receive buffer space (usually) in the
library.

The most likely problem to affect the receive processing is that receive messages given to the
application contain pointers into the main receive buffer area (the data and SCCP addresses
are not copied). While the application can free messages in any order, the buffer space
beyond an allocated message cannot be reused. If the application fails to free a messages (or
doesn’t free one for a long time) then further messages cannot be received.

1.7.5 Minimising library buffering of receive messages

Although buffering receive messages in userspace maximises throughput and minimises

MAN1201 Revision 6.16.1 PUBLIC Page 12

latency there are some configurations where it isn’t desirable. In particular an application is
going to restore transactions after an unexpected restart you don’t want a lot of messages to
have been lost because they were buffered in userspace.

The following TCAP library configuration options will force almost all the receive messages to
be queued by the driver:

rx_msg_window=1

Force the driver to request an ack for every received message.

rx_byte_window=1

The library ensures the receive buffer is large enough for two windows full of data. Reduce
the byte window size to allow a very small receive buffer be allocated.

rx_buflen=512

Allocate a receive buffer that is only really big enough for a single message.

- If segmented XUDT are received the buffer will need to a larger.

rx_max_qlen=nnn

Increase the number of messages the driver will queue to allow for bursty data.

With the parameters above it is unlikely that the library will send an ack until the application
calls either acu_tcap_msg_free() or acu_tcap_msg_copy_rx_buffer() to free the space in

the receive buffer.

MAN1201 Revision 6.16.1 PUBLIC Page 13

2 API Functions

2.1 TCAP API functions

2.1.1 Abbreviations and nomenclature

The following are used:
component the component part of a TCAP message
comp component
conv conversation (ANSI message type)
condvar condition variable

dialogue the dialogue portion of a TCAP message
dlg dialogue

pdu protocol data unit

ssap SCCP service access point
transaction a set of messages using the same transaction-id
trans transaction

Note Q.771 especially section 3.1 uses the word dialogue for a sequence of messages. This implementation
doesn’t have separate component and transaction sublayers and uses ‘transaction’ throughout to avoid
confusion between message dialogues and the dialogue portion of a message.

MAN1201 Revision 6.16.1 PUBLIC Page 14

2.1.2 TCAP Header files

All the definitions start acu_tcap_ or ACU_TCAP_ (or similar) in order to avoid polluting other

namespaces.

The definitions are all in C, but can be used from C++ applications.

Note A significant amount of pre-processor ‘magic’ is used to avoid replicating information (See Appendix E:).

2.1.2.1 tcap_api.h

This header file contains all the definitions for the TCAP API.

The majority of the structures are described with the function that uses them; additional
information is in Appendix B:

2.1.2.2 tcap_asn1_codec.h

This header file contains the definitions for the ASN.1 BER encoder/decoder. See Section
2.2.1 for more information.

2.1.2.3 tcap_synch.h

This header file contains the definitions for the synchronisation and thread-pool functions.

2.1.2.4 Protocol message definitions

The following headers contain some definitions for the message based ASN.1 codec (see
2.3), they are installed into $ACULAB_ROOT/ss7/sample_code/tcap/asn1 rather than

$ACULAB_ROOT/include.

tcap_defn.h ASN.1 definitions for TCAP.

acu_map_common_asn1.h General MAP (Mobile Application part) message.

acu_map_sms_asn1.h MAP SMS messages.

The definitions in tcap_defs.h will encode and decode normal TCAP messages; however the

library doesn't use them.

MAN1201 Revision 6.16.1 PUBLIC Page 15

2.1.3 Configurable parameters

TCAP’s configurable values can either be read from a configuration file when an ssap is
created, or set directly on the ssap or transaction by function call.

Whenever a transaction is created, it gets a copy of its configuration information from its ssap.

Once the TCAP application has connected to the SS7 driver, parameters can also be changed
using ss7maint tcapconfig. This is particularly useful for changing the trace parameters.

Configurable parameters can be placed into three groups: global ssap parameters, general
transaction parameters, and address parameters.

When calling the functions to set configuration item, the names below must be preceded by
ACU_TCAP_CFG_ (e.g. ACU_TCAP_CFG_REMOTE_PC).

2.1.3.1 Global ssap parameters

These include trace control and the connection to the SS7 driver:

Name Type Default Description

LOGFILE string Name of logfile to open.

LOGFILE_MAX_SIZE integer 1000000 Size (bytes) before logfile rotated.

LOGFILE_APPEND boolean no Append to existing logfile.

LOGFILE_OLD_KEPT integer 5 Number of old logfiles kept.

LOGFILE_FLOCK_INDEX boolean yes flock() logfile.index during log rotation.

TRACE_TAG string pid:nnn Name for trace entries.

TRACE_BUFFER_SIZE integer 32768 Size of cyclic trace buffer.

TRACE_MODE integer 0 Determines when trace buffer is written to file,
see section 2.1.4

SERVER boolean no Process inward BEGIN messages.

UNI_SERVER boolean no Process inward UNIDIRECTIONAL.

SINGLE_THREADED boolean no Block on removing messages from ssap queue
is not applied.

TRANID_RANGE integer 0 Specifies an explicit value to the high 12 bits of
the transaction ID. 0 requests an unused range

be allocated.
TRAN_RESTORE boolean no Restore transactions from unexpected inward

CONTINUE and END messages.

REATTACH_TIMEOUT integer 0 Time (seconds) the driver will wait for an
application to reattach. If non-zero and
TRANID_RANGE non-zero attempt to reattach.

REATTACH_DISCARD boolean no If set messages received while waiting for
reattach will be discarded.

NI integer from mtp3 Network Indicator.

TRACE_LEVEL_ALL integer 5 Set all trace levels.

TRACE_LEVEL_xxx integer 5 Set trace level for source ‘xxx’, see section

2.1.4.
TRACE_LEVEL(n) integer 5 Set trace level for source ‘n’.

HOST_A_NAME string 127.0.0.1 Name and IP addresses of host A (see below).

HOST_A_PORT integer 8256 TCP/IP port number.

HOST_A_PASSWORD string Password for host A.

HOST_B_NAME string Name and IP addresses of host B (see below).

HOST_B_PORT integer 8256 TCP/IP port number.

HOST_B_PASSWORD string Password for host B.

RX_BUFLEN integer 130944 Size (bytes) of TCP/IP receive buffer.

TX_QUEUE_LEN integer 16 Number of TCAP messages queued before
transmit flow control reported.

KEEPALIVE_TIMEOUT integer 10 Seconds between keepalives, set to zero to
disable keepalives.

CONNECT_TIMEOUT integer 10 Timeout (seconds) for TCP/IP connection
establishment.

MAN1201 Revision 6.16.1 PUBLIC Page 16

TX_BYTE_WINDOW integer 2920 Number of data bytes sent to driver before an
ack is requested.

RX_MSG_WINDOW integer 16 Maximum number of messages the driver will
send before an ack is requested.

RX_BYTE_WINDOW integer 2916 Maximum number of bytes the driver will send
before an ack is requested.

RX_MAX_QLEN integer 250 Maximum number of messages the driver will
queue before discarding messages.

Enclose string parameter values that contain spaces (or other special characters) in double
quotes.

If the SERVER or UNI_SERVER options are changed after the connection to the driver is made,

then the driver is informed of the new value. This allows one node of a distributed application
to gracefully shutdown.

The HOST_A_NAME and HOST_B_NAME fields consist of a hostname optionally followed a comma

separated list of numeric IP addresses (IPv4 or IPv6). If there are no numeric addresses
getaddrinfo() is called to resolve the hostname to a list of addresses, otherwise the

hostname is ignored unless it is a valid numeric IP address. The returned addresses are tried
in turn when connecting to the server.

2.1.3.2 General transaction parameters

These are settable on both ssap and transactions; transactions inherit the values from the
ssap:

Name Type Default Description

QOS_RET_OPT boolean no SCCP ‘return on error’.

QOS_SEQ_CTRL boolean no SCCP ‘sequential delivery (class 1)’, if enabled
the ‘sls’ value is taken from the bits of the local
transaction id.

QOS_PRIORITY integer ~0u SCCP ‘message priority’. ~0u requests the

default of 0 for ANSI and absent for ITU.

QOS_RESPONSE_PRI integer ~0u SCCP ‘message priority’ for response
messages, default (~0u) is 1 for ANSI and

absent for ITU.
OPERATION_TIMEOUT integer 60 Default operation timeout (seconds).

ADD_TCAP_VERSION boolean no Add protocol version parameter to dialogue
messages.

REVERSE_ROUTE boolean no Send messages back to the point code from
which they came, ignoring global title translation
in the local SCCP.

RESPOND_RX_LOC_GT boolean no Respond to a BEGIN using the received called
party address.

STICKY_CON boolean no Try to only use the same Host (A or B) for all
messages.

ENC_DEF_LEN boolean no Use the definite length encoding for all ASN.1
constructed items. Needed to encode full length
SMS.

PREFERRED_MAXLEN integer 238 Use definite length ASN.1 if it would reduce the
TCAP data below the specified size.

2.1.3.3 Address parameters

The local and remote (replace LOCAL with REMOTE) address parameters are settable on ssaps

and transactions; transactions inherit the values from the ssap. See section B.2 for further
details:

Name Type Description

LOCAL_FLAGS integer Address flags.

LOCAL_GTI integer Global Title Indicator.

LOCAL_SSN integer SSN.

MAN1201 Revision 6.16.1 PUBLIC Page 17

LOCAL_PC integer SCCP address pointcode.

LOCAL_RL_PC integer MTP routing label pointcode (received messages only).

LOCAL_TT integer Translation Type.

LOCAL_NP integer Numbering Plan.

LOCAL_ES integer Encoding Scheme.

LOCAL_NAI integer Nature of Address Indicator.

LOCAL_GT_DIGITS BCD Global Title digits.

The local SSN must be set before the connection to the driver is established, and should not
be changed. The other values can be changed at any time.

The eight address fields (GTI, SSN, PC, RL_PC, TT, NP, ES and NAI) have a ‘data valid’ bit set

whenever they are set via the configuration interface. This bit can be cleared by setting the
parameter CLEAR_LOCAL_SSN (etc) to an empty string. This might be needed to stop SCCP

including the parameter (e.g. the local ssn) in a message.

The addresses can also be modified by calling acu_tcap_ssap/trans_get_loc/remaddr()

and directly modifying the structure.

For ANSI/China networks the pointcodes can be specified in 8-8-8 format, although they are
currently always traced in decimal.

Note The addresses are added to a message when acu_tcap_msg_init() is called, not when it is sent.

Note The transaction’s configured values for the remote address are overwritten with the actual remote address
when the first backwards message arrives.

2.1.3.4 Configuration file format

The TCAP configuration file has a similar format to that of the ss7 protocol stack. It should
contain a single block of configuration data bracketed between [TCAP] and [endTCAP].

Each line inside the configuration block has the format ‘parameter = value’, where

parameter is one of the configurable parameter names, and value is the required value.

Comments can be added to any line by preceding the comment with a ‘#’ character. Blank
lines are ignored. The lines before [TCAP] and after [endTCAP] are currently ignored, but this

isn’t guaranteed as additional sections may be added at some later release.

The parameter names can be specified in upper or lower case. For compatibility with other
parts of the Aculab SS7 protocol stack, the configuration file can contain localxxx and

remotexxx instead of local_xxx and remote_xxx.

For example:

[TCAP]

 trace_tag = program_name

 logfile_append = y

 logfile = tcap2020.log

 localpc = 2020

 localssn = 27

 remote_pc = 7070

 remote_ssn = 143

 server = y

 host_a_name = sccp_host_a,192.168.1.1

 host_a_password = tcap_password

 host_b_name = sccp_host_b,192.168.1.2

 host_b_password = tcap_password

[EndTCAP]

The SS7 stack configuration file on sccp_host_a (that for sccp_host_b is similar) needs to

contain the following:

[SP]

 LocalPC = 2020

 [TCAP]

 password = tcap_password

 [EndTCAP]

MAN1201 Revision 6.16.1 PUBLIC Page 18

 [SCCP]

 master = y

 [EndSCCP]

 [MTP3]

 [DUAL]

 host = sccp_host_b

 ipaddresses = 192.168.1.2

 master = y

 listen = 14

 connect = 15

 password = dual_password

 [EndDUAL]

 [DESTINATION]

 RemotePC = 7070

 [EndDESTINATION]

 [EndMTP3]

[EndSP]

MAN1201 Revision 6.16.1 PUBLIC Page 19

2.1.4 Tracing

The TCAP library contains extensive tracing of the API calls and the interface to SCCP. Each
trace call specifies a trace source (0 to 63) and trace level (0 to 15). The level of trace output
can be set separately for each trace source from the application configuration file, from the
program by calling acu_tcap_ssap_set_cfg_int(), or from the command line by running

ss7maint tcapconfig.

Tracing starts when the LOGFILE parameter is set for the ssap.

By default the trace buffer is written to the logfile after each trace entry is complete. This can
be modified by setting TRACE_MODE to ACU_TCAP_TRACE_MODE_BLOCK (1) or

ACU_TCAP_TRACE_MODE_CYCLIC (2). In block mode the buffer is written when full, in cyclic

mode the buffer just wraps (discarding trace entries). The buffer is always written when a
message with trace level 0 or 1 is written, or when the trace mode is set (even if the value
doesn’t change).

The logfile is always opened in ‘append’ mode (although it may be truncated). On Linux
systems this allows multiple programs and ssaps to log to a common file.

Note On Windows systems, using a common log file can lead to corrupted log entries.

If the size of the logfile in bytes exceeds the LOGFILE_MAX_SIZE parameter, then a new logfile

logfile.1 (et seq) is opened. The number of old logfiles is restricted to LOGFILE_OLD_KEPT

(default is 5). The sequence number of the current logfile is kept in logfile.index.

On Linux systems the logfile rotation uses flock() (on the index file) to maintain consistency

between multiple applications. Some NFS file systems block the flock() call indefinitely, it can
be disabled by setting LOGFILE_FLOCK_INDEX to 0.

The logfile is formatted so that ‘ss7maint decode’ can be used to pretty-print the tcap

messages.

Functions are supplied so that the application can trace messages to the library log file.

Note The default level of tracing has a significant performance penalty.

Trace sources:
APPLICATION(0) to 0x00 16 trace sources available for application use

APPLICATION(15) 0x0f

API_ENTRY 0x10 Entry to API routine (not all functions make trace calls)

API_EXIT 0x11 Normal exit from API function

API_ERROR 0x12 Error exit from API function (might be an internal function)

API_EVENT 0x13 Significant event

API_INFO 0x14 Additional information

API_CONFIG 0x15 Configuration changes

API_OP_TIMER 0x16 Operation state engine and timers

ENCODER 0x20 TCAP message encoder

DECODER 0x21 TCAP message decoder

TCP 0x30 TCP/IP connection establishment and control

TCP_SEND 0x31 TCP/IP messages being sent

TCP_RECV 0x32 TCP/IP messages being received

Other values are reserved for future use.

Setting TRACE_LEVEL_ALL=14 during development may help identify application bugs.

MAN1201 Revision 6.16.1 PUBLIC Page 20

2.1.4.1 acu_tcap_trace/trace_v/trace_buf
void acu_tcap_trace_v(acu_tcap_ssap_t *ssap, unsigned int flags,

const void *buf, int buf_len, const char *fmt, va_list ap);

void acu_tcap_trace(acu_tcap_ssap_t *ssap, unsigned int flags,

const char *fmt, ...);

void acu_tcap_trace_buf(acu_tcap_ssap_t *ssap, unsigned int flags,

const void *buf, int buf_len, const char *fmt, ...);

Purpose

These functions output text to the trace buffer, acu_tcap_trace_buf() adds a hexdump of

buf following the text output.

Parameters

ssap The ssap structure the trace is for.

flags Usually ACU_TCAP_TRF(part, source, level)

or ACU_TCAP_TRFF(part, source, level, format)
 part One of FIRST, MIDDLE, LAST or ONLY indicating which part of the trace entry

is being generated.
 source APPLICATION(n) for n between 0 and 9, identifying the source of the

trace.
 level 0 to 15 indicating the level (high number for more verbose trace) of this call,

the default is usually 5.
 format Buffer format for ss7maint decode, one of:
 TCAP Complete ASN.1 BER encoded TCAP message.
 ASN1 Any ASN.1 BER encoded ASN.1 buffer.

buf Address of buffer area to hexdump following the format output.

buf_len Number of bytes to hexdump.

fmt printf format for trace arguments.

ap Variable argument list for underlying printf call.

The flags parameter specifies the trace source and level and also indicates which part of a

trace entry is being generated (allowing a single trace entry to be generated by multiple calls
to the trace functions). A short header including the system time is output at the start of each
trace entry. The trace is locked while a trace entry is generated (i.e. from the call specifying
FIRST to that specifying LAST) to avoid trace output from different threads being intermixed –

even when multiple threads try to write concurrently to the same log file.

The trace is output if the level in the call is less than that set using

acu_tcap_ssap_set_cfg_int() for the same source.

Note The trace is formatted by a fast local version of snprintf() which does not support floating point format

specifiers.

MAN1201 Revision 6.16.1 PUBLIC Page 21

2.1.4.2 acu_tcap_trace_error
int acu_tcap_trace_error(acu_tcap_ssap_t *ssap, const char *fname, int rval,

const char *fmt, ...);

Purpose

This function is used to generate a trace entry when one of the TCAP error codes is
generated.
It is loosely equivalent to calling acu_tcap_trace() with flags of ACU_TCAP_TRF(ONLY,

API_ERROR, 5).

Parameters

ssap The ssap structure the trace is for.

fname The name of function that is returning the error.

rval TCAP error number (one of ACU_TCAP_ERROR_xxx).

fmt printf style format string, followed by the arguments.

Return value

Always rval.

2.1.4.3 acu_tcap_strerror
const char *acu_tcap_strerror(int rval, unsigned int flags);

Purpose

This function returns a text string that describes a TCAP library error code.

Parameters

rval TCAP error number (one of ACU_TCAP_ERROR_xxx).

flags 0 => return descriptive text, see B.1.
1 => return the C name ”ACU_TCAP_ERROR_xxx”.

Return value

A pointer to a static const string describing the error, unless the error number is unknown in
which case the address of a static array filled with the text “error %d unknown” is returned.

The error text strings are defined by the ACU_TCAP_ERRORS define in tcap_api.h.

MAN1201 Revision 6.16.1 PUBLIC Page 22

2.1.5 SCCP access functions

2.1.5.1 acu_tcap_ssap_create
acu_tcap_ssap_t *acu_tcap_ssap_create(const char *cfg_file,

acu_tcap_ssap_flags_t flags);

Purpose

This function creates a new SCCP access point without establishing the connection to SCCP.
The application may set parameters from its own configuration information before the
connection to SCCP is established.

Parameters

cfg_file Name of the configuration file to use, may be NULL

If the file cannot be opened, and the name doesn’t contain a ‘/’ (or ‘\’) then the
library will look for the file in the directories ${HOME} and ${ACULAB_ROOT}/ss7

flags Bitwise OR of:
 ACU_TCAP_ITU Use ITU TCAP message formats.
 ACU_TCAP_ANSI Use ANSI TCAP message formats.
 ACU_TCAP_SERVER Application is a server process and will be given new

transactions (i.e.: inward BEGIN/QUERY messages).
 ACU_TCAP_UNI_SERVER Application will be given inward UNIDIRECTIONAL

messages.
 ACU_TCAP_STATUS_IND The application will be given all the status indications from

SCCP.
 ACU_TCAP_LOG_STDERR Write initialisation errors to stderr.

The SERVER, UNI_SERVER and LOG_APPEND flags can also be set from the configuration.

Return value

The address of an initialised acu_tcap_ssap_t structure, or NULL if malloc() fails or the

configuration file cannot be accessed.

2.1.5.2 acu_tcap_ssap_delete
void acu_tcap_ssap_delete(acu_tcap_ssap_t *ssap);

Purpose

This function deletes a SCCP access point, and any TCAP transactions created on it.

Parameters

ssap The address of the acu_tcap_ssap_t structure to delete.

Return value
None.

MAN1201 Revision 6.16.1 PUBLIC Page 23

2.1.5.3 acu_tcap_ssap_connect_sccp
int acu_tcap_ssap_connect_sccp(acu_tcap_ssap_t *ssap);

Purpose

This function causes the TCAP library to try to establish a TCP/IP connection between the
ssap and the SCCP driver code.

The local SSN and POINTCODE must be set before this is called.

After this function completes the TCP connection attempt continues asynchronously, and it
may subsequently succeed or fail and be automatically retried. When the connection attempt
completes, a message of type ACU_TCAP_MSG_CON_STATE will be sent to the ssap, indicating a

state transition. When that message is seen, the application can check the ssap connection
state, using acu_tcap_get_con_state(), to see whether the connection was successfully

established.

Note TCAP transactions cannot be created until the connection to SCCP has been established.

Parameters

ssap The address of the acu_tcap_ssap_t structure to connect to SCCP.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.5.4 acu_tcap_ssap_set_cfg_int/str
int acu_tcap_ssap_set_cfg_int(acu_tcap_ssap_t *ssap,

acu_tcap_cfg_param_t param, unsigned int i_val);

int acu_tcap_ssap_set_cfg_str(acu_tcap_ssap_t *ssap,

acu_tcap_cfg_param_t param, const char *s_val);

Purpose

These functions set a configurable value of the ssap.

Integer parameters can be set using either function.

Refer to section 2.1.3 for a list of configurable parameters.
Transactions inherit their configuration from the ssap.

Parameters

ssap The address of the acu_tcap_ssap_t structure to modify.

param Configuration parameter to modify.

i_val Integer value for parameter.

s_val String value for parameter.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 24

2.1.5.5 acu_tcap_ssap_get_locaddr/remaddr
acu_sccp_addr_t *acu_tcap_ssap_get_locaddr(acu_tcap_ssap_t *ssap);

acu_sccp_addr_t *acu_tcap_ssap_get_remaddr(acu_tcap_ssap_t *ssap);

Purpose

These functions return a pointer to the local/remote SCCP address information for this ssap.
The application can change the structure through the returned pointer. The values can also be
set from the configuration file and by the configuration functions.

The local SSN and POINTCODE values are used when connecting to SCCP.

Parameters

ssap The address of the acu_tcap_ssap_t structure.

Return value

The address of the acu_sccp_addr_t structure within the ssap data area, or NULL if the ssap

pointer is invalid.

See section B.2 for details of the acu_sccp_addr_t structure.

MAN1201 Revision 6.16.1 PUBLIC Page 25

2.1.6 Transaction functions

2.1.6.1 acu_tcap_transaction_create
acu_tcap_trans_t *acu_tcap_transaction_create(acu_tcap_ssap_t ssap);

Purpose

This function creates a new TCAP transaction on the specified ssap.

The local transaction id allocated is guaranteed not to be reused for at least 65536
allocate/free pairs. Under normal conditions it will take much longer for the id to get reused.

Parameters

ssap The ssap on which to create a transaction.

Return value

The address of an initialised acu_tcap_trans_t structure, or NULL if the ssap isn’t connected

to SCCP or if malloc() fails.

Note TCAP transactions cannot be created until the connection to SCCP has been established.

2.1.6.2 acu_tcap_transaction_restore
acu_tcap_trans_t *acu_tcap_transaction_restore(acu_tcap_ssap_t ssap,

unsigned int loc_id, unsigned int rem_id, unsigned int rem_id_len);

Purpose

This function creates a TCAP transaction on the specified ssap with the specified local and
remote transaction ids and in any state.

This allows an application that has saved the transaction ids (etc) in filestore to continue after
being killed and restarted.

The remote (and maybe local) SCCP addresses will need to be set (eg by writing through the
pointer returned by acu_tcap_trans_get_remaddr()) and any operation timers for pending

invokes restarted by calling acu_tcap_operation_restore().

If the original BEGIN (sent or received) contained an application context, call
acu_tcap_transaction_restore_app_ctx() to enable application contexts in later

messages.

While it can be used to allocate transactions in the idle state this is not recommended as
requesting some pairs of values may require the library allocate 16MB of memory for the
transaction id lookup table.

Parameters

ssap The ssap on which to create a transaction.

loc_id The local transaction id required. The high 12 bits must be correct for the ssap.
The required range can be set by configuring TRANID_RANGE.

If zero a local transaction id will be allocated.
rem_id The remote transaction id required.

rem_id_len The length (1 to 4 bytes) of the remote transaction id.
If zero the transaction will be created in the outgoing (BEGIN sent) state, if 5 (or

more) in the idle state.

Return value

The address of an initialised acu_tcap_trans_t structure, or NULL if the ssap isn’t connected

to SCCP, malloc() fails or if the local transaction is already allocated or isn’t in the correct

range for the ssap.

Note To avoid potential duplicate transactions ids restore all old transactions before creating any new ones.

Note Transactions can also be automatically restored on reception of unexpected CONTINUE or END messages
by configuring TRAN_RESTORE.

MAN1201 Revision 6.16.1 PUBLIC Page 26

2.1.6.3 acu_tcap_transaction_restore_app_ctx
int acu_tcap_transaction_restore_app_ctx(acu_tcap_trans_t *tran,

const void *app_ctx, int app_ctx_len);

Purpose
This function sets the flag (usually set if the received/transmitted BEGIN contains an
application context) that allows applications contexts in the later messages – especially the
first backwards message.

If an application context is specified it is assumed that only a BEGIN has been received and
the application context will be sent in the next (assumed first) backwards message. Normally
the library saves this from the received BEGIN.

Parameters
tran Restored transaction.

app_ctx The application context name, or (ANSI only) NULL for an integer

application context name.
app_ctx_len Length in bytes of the application context name, or the numeric application

context name if app_ctx is NULL.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.6.4 acu_tcap_transaction_delete
void acu_tcap_transaction_delete(acu_tcap_trans_t *tran);

Purpose

This function deletes a TCAP transaction data area and all memory associated with it.

This has the effect of a ‘pre-arranged’ end on any active TCAP transaction.

Every transaction structure (including those created when a BEGIN message is received)
must be explicitly deleted.

Parameters

tran The address of the acu_tcap_trans_t structure to delete.

Return value

None.

Note The transaction data isn’t actually deleted until the last message that references the transaction is freed.

2.1.6.5 acu_tcap_ssap_get_uni_transaction
acu_tcap_trans_t *acu_tcap_ssap_get_uni_transaction(acu_tcap_ssap_t ssap);

Purpose

This function returns the address of the transaction on which received unidirectional
messages are queued.

The transaction is created either by this call, or when the first unidirectional message is
received. If the transaction is deleted it will be re-created when needed.

Note An application will only be given unidirectional messages if ‘uni_server = y’ is set in the ssap’s

configuration.

Unidirectional messages can be sent from this transaction, or from another transaction
created by acu_tcap_transaction_create().

Parameters

ssap The ssap whose unidirectional transaction is required.

Return value

The address of an acu_tcap_trans_t structure, or NULL if malloc fails.

MAN1201 Revision 6.16.1 PUBLIC Page 27

2.1.6.6 acu_tcap_trans_set_userptr
void acu_tcap_trans_set_userptr(acu_tcap_trans_t *tran, void *userptr);

Purpose

This function saves the pointer to an application data area for this transaction.

Parameters

tran The address of the acu_tcap_trans_t structure to modify.

userptr The pointer to save.

2.1.6.7 acu_tcap_trans_get_userptr
void *acu_tcap_trans_get_userptr(acu_tcap_trans_t *tran);

Purpose

This function retrieves the pointer saved by acu_tcap_set_userptr().

Parameters

tran The address of the acu_tcap_trans_t structure.

Return value

The pointer saved previously.

2.1.6.8 acu_tcap_trans_get_ids
int acu_tcap_trans_get_ids(acu_tcap_trans_t *tran, unsigned int *loc_id,

unsigned int *rem_id, unsigned int *rem_id_len);

Purpose

This function gets the local and remote transaction identifiers.

Parameters

tran The address of the acu_tcap_trans_t structure to modify.

loc_id Address of location to write the local transaction id.

rem_id Address of location to write the remote transaction id.

rem_id_len Address of location to write the length of the remote transaction id.

Any of loc_id, rem_id and rem_id_len may be NULL in which case nothing is returned.

*rem_id_len will be set to zero if the remote transaction identifier is unknown.

ITU TCAP allows transaction identifiers to be between 1 and 4 bytes. ANSI TCAP always
uses 4 byte transaction identifiers.

All transaction identifiers created by this product are 4 bytes. The upper 12 bits are the same
for all the transactions allocated on a specific ssap, the lower 20 bits are allocated to allow fast
lookup while still guaranteeing that, even in the worst case, a transaction ID won't be
reallocated for over 98000 allocate/free (and usually much, much, less often).

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 28

2.1.6.9 acu_tcap_trans_set_cfg_int/str
int acu_tcap_trans_set_cfg_int(acu_tcap_trans_t *tran,

acu_tcap_cfg_param_t param, unsigned int i_val);

int acu_tcap_trans_set_cfg_str(acu_tcap_trans_t *tran,

acu_tcap_cfg_param_t param, const char *s_val);

Purpose

These functions set a configurable value of the transaction data area. The default values for
these are inherited from the ssap when a transaction is created.
acu_tcap_trans_set_cfg_str() can be used to set an integer parameter from a character

string value.

Refer to section 2.1.3 for a list of the configurable parameters.

Parameters

tran The address of the acu_tcap_trans_t structure to modify.

param Configuration parameter to modify.

i_val Integer value for parameter.

s_val String value for parameter.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.6.10 acu_tcap_trans_get_locaddr/remaddr
acu_sccp_addr_t *acu_tcap_trans_get_locaddr(acu_tcap_trans_t *tran);

acu_sccp_addr_t *acu_tcap_trans_get_remaddr(acu_tcap_trans_t *tran);

Purpose

These functions return a pointer to the local/remote SCCP address information for this
transaction. The application can change the structure through the returned pointer.

The default values for these are inherited from the ssap when a transaction is created.

The remote address will be set from information in the first message received for each
transaction.

To respond from the destination address in a received Begin or Unidirectional message
(rather than from the configured address) either configure respond_rx_loc_gt=y (not

Unidirectional) or set the transactions local address with:
 *acu_tcap_trans_get_locaddr(transaction) = *msg->tm_local_addr;

when processing the received message.

Parameters

tran Transaction.

Return value

The address of the structure or NULL if the tran pointer is invalid.

See section B.2 for details of the acu_sccp_addr_t structure.

MAN1201 Revision 6.16.1 PUBLIC Page 29

2.1.7 General message functions

The TCAP library uses a single structure to describe both transmit and receive messages. For
transmit messages the actual data is allocated using malloc(), receive messages usually

contain pointers into a large buffer used to receive the data from the driver. Failure to free
receive messages leads to communication problems with the driver.

The user-visible part of the message structure contains some fields that are written when
messages are decoded. These fields are not used for transmit messages.

2.1.7.1 acu_tcap_msg_alloc
acu_tcap_msg_t *acu_tcap_msg_alloc(acu_tcap_trans_t *tran);

Purpose

This function allocates a TCAP message for the specified transaction.

The message must be freed later by calling acu_tcap_msg_free().

Parameters

tran Transaction this message is for.

Return value

The address of a msg structure if successful, NULL on failure.

2.1.7.2 acu_tcap_msg_free
void acu_tcap_msg_free(acu_tcap_msg_t *msg);

Purpose

This function releases all resources associated with the specified msg.

Parameters

msg Address of message to free.

Note Every message must be explicitly freed using this function.

2.1.7.3 acu_tcap_msg_copy_rx_buffer
int acu_tcap_msg_copy_rx_buffer(acu_sccp_msg_t *msg);

Purpose

This function copies any data that msg references that is in the TCP/IP receive buffer area to a

malloced memory area and updates all of the pointers within the message structure to
reference the correct locations in the new buffer.

Freeing the space in the receive buffer area is necessary to stop the TCP connection blocking
if the message isn’t going to be freed quickly (e.g.: when waiting for further responses from a
remote system).

Parameters

msg Address of message to process.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.7.4 acu_tcap_msg_get_a1b
acu_asn1_buf_t *acu_tcap_msg_get_a1b(acu_tcap_msg_t *msg);

Purpose

This function returns the address of the asn1 encoder structure used to encode/decode the
message. This isn't needed for normal applications, but gives additional flexibility.

Parameters

msg Address of message.

MAN1201 Revision 6.16.1 PUBLIC Page 30

2.1.8 Message sending functions

To send a TCAP message, the application must call the following functions in turn:
- acu_tcap_msg_alloc() to allocate a message structure.

- acu_tcap_msg_init() to add the SCCP address information and the initial part of the

TCAP message.
- optionally acu_tcap_msg_add_dialogue() to a dialogue portion, usually used to convey

an application context.
- optionally acu_tcap_msg_add_dlg_userinfo() to add userinfo to the dialogue portion.

- optionally acu_tcap_msg_add_comp_xxx() to add each TCAP component.

- acu_tcap_msg_send() to finalise the message and send to SCCP and the remote

system.
- acu_tcap_msg_free() to free the message structure (or reuse it to send another

message for the same transaction).

acu_tcap_msg_add_comp_xxx()can be called multiple times in order to add more than one

component to a message.

Component parameters must be a single piece of BER encoded ASN.1.

ANSI component parameters must be coded as national/private, constructor with code 18, or
as universal, constructor with code 16 (i.e.: the first byte is either 0xf2 or 0x30). If the supplied

parameter is invalid it is enclosed in a PRV(18) constructed item. The constructed item is
always left unterminated when a component is added (allowing additional parameters to be
added).

It is possible to omit the component parameter when adding an invoke, result or error
component and then to build the component directly to the buffer using the ASN.1 encoder
functions defined in sections 2.2.3 and 2.3.2.1.

Note ITU specifies that the valid range for an invoke_id is -128 to 127. The TCAP library treats values 128 to 255
as equivalent to -128 to -1 to avoid problems with sign extension.

Note Do not directly modify any of the members of the acu_tcap_msg_t structure.

MAN1201 Revision 6.16.1 PUBLIC Page 31

2.1.8.1 acu_tcap_msg_init
int acu_tcap_msg_init(acu_tcap_msg_t *msg, acu_tcap_msg_type_t type);

Purpose
This function starts building a TCAP message for the specified transaction. The SCCP
address information and transaction identifiers are written to the start of msg.

The QOS settings are taken from the transaction data area, if necessary they can be changed
by calling acu_tcap_trans_set_cfg_int() prior to initialising the message.

For a ‘pre-arranged’ end, just call acu_tcap_transaction_delete() to delete the transaction

data areas.

Requesting ACU_TCAP_MSG_DATA allows the application to send an entire TCAP message (e.g.

one extracted from a received message). The data can be added using the ASN.1 encoder
functions e.g. acu_asn1_put_raw_octets() having called acu_tcap_msg_get_a1b() to

obtain the encoder’s data area. This is useful if the application is acting as an SCCP STP and
forwarding TCAP begin messages to a different global title or pointcode. This can also be
achieved through the SCCP API.

Parameters
msg Message being built

type Type of message to build, one of:
 ACU_TCAP_MSG_ITU_UNI Unidirectional.

ACU_TCAP_MSG_ITU_BEGIN Begin.

ACU_TCAP_MSG_ITU_END End.

ACU_TCAP_MSG_ITU_CONTINUE Continue.

ACU_TCAP_MSG_ITU_ABORT Abort.

ACU_TCAP_MSG_ANSI_UNI Unidirectional.

ACU_TCAP_MSG_ANSI_QUERY Query with permission (to release).

ACU_TCAP_MSG_ANSI_QUERY_WO Query without permission (to release).

ACU_TCAP_MSG_ANSI_RESPONSE Response.

ACU_TCAP_MSG_ANSI_CONV Conversation with permission (to release).

ACU_TCAP_MSG_ANSI_CONV_WO Conversation without permission (to release).

ACU_TCAP_MSG_ANSI_ABORT Abort.

ACU_TCAP_MSG_DATA TCAP message header not added.

Return value
Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.8.2 acu_tcap_msg_add_dialogue
int acu_tcap_msg_add_dialogue(acu_tcap_msg_t *mag, unsigned int errval,

const void *app_ctx, int app_ctx_len);

Purpose
This function adds a dialogue portion containing the requested application context name to
msg (any dialogue userinfo can be added later).

Dialogue portions are valid in Begin (ANSI Conversation), Unidirectional, Abort, and the first
backward message for a transaction. If necessary a dialogue portion will automatically be
added to the first backward message if one isn’t explicitly requested.

The type of the dialogue PDU is determined by the type of the TCAP message being built.

The app_ctx parameter is ignored when building an ITU Abort message unless it is the first

backwards message and the errval parameter is either

ACU_TCAP_AARE_REJECT_USER_APPLICATION_CONTEXT_NOT_SUPPORTED or

ACU_TCAP_AARE_REJECT_PROVIDER_NO_COMMON_DIALOGUE_PORTION in which case an AARE

pdu is generated (i.e.: that used in a Continue/End message) instead of the ABRT pdu that an
Abort message would normally contain.

A dialogue portion with a user-specified abstract syntax can be added to a ITU Abort message
by calling acu_tcap_msg_add_dialogue_userinfo() without calling this routine.

MAN1201 Revision 6.16.1 PUBLIC Page 32

Parameters
msg Message being built.

errval Error numbers for dialogue PDUs:
 ITU Begin/Unidirectional: ignored.
 ITU Continue/End/Abort (AARE) typically one of:
 ACU_TCAP_AARE_ACCEPTED_USER

 ACU_TCAP_AARE_REJECT_USER_NULL

 ACU_TCAP_AARE_REJECT_USER_NO_REASON

 ACU_TCAP_AARE_REJECT_USER_APPLICATION_CONTEXT_NOT_SUPPORTED

 ITU Abort (ABRT): abort source: 0 => user, 1 => provider.
 ANSI Abort: P-Abort-Cause, see 2.1.9.4.
 ANSI other messages: ignored.
app_ctx The application context name, or (ANSI only) NULL for an integer

application context name.
app_ctx_len Length in bytes of the application context name, or the numeric application

context name if app_ctx is NULL.

ITU ‘application context names’ are encoded as ASN.1 ‘object identifiers’. The app_ctx

pointer should reference the start of the object identifier data, (not the 0x06 byte at the start of

a BER encoded object identifier).

The application context will be omitted from an ANSI Unidirectional or Query message if
app_ctx is not NULL and app_ctx_len is zero.

An object identifier can be encoded using the acu_asn1_encode_object_id_str/int()

routines.

E.g.:
acu_tcap_msg_add_dialogue(msg, 0, app_ctx_buf,

 acu_asn1_encode_object_id_str(app_ctx_buf, sizeof app_ctx_buf,

 "0.0.17.773.1.1.1"))

Although the above object identifier is of TCAP itself, and would never actually appear as an
application context.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.8.3 acu_tcap_msg_add_dlg_userinfo
int acu_tcap_msg_add_dlg_userinfo(acu_tcap_msg_t *msg, const void *uinfo,

unsigned int len);

Purpose

This function adds user information to the dialogue. It can be called multiple times for a single
message.

The user information should be encoded as an ASN.1 EXTERNAL item or as a sequence of
ASN.1 EXTERNAL data items (with either a sequence tag (0x30), or the implicit constructed

tag (0xbe or 0xfd) that appears in the generated message).

It can also be used to add a dialogue portion with user-defined syntax to the later messages of
an ITU dialogue. In this case only a single piece of userinfo is allowed.

Parameters

msg Message being built.

uinfo Address of ASN.1 encoded user information.

len Number of bytes of user information.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 33

2.1.8.4 acu_tcap_msg_add_dlg_security_context
int acu_tcap_msg_add_dlg_security_context(acu_tcap_msg_t *msg,

const void *sec_ctx, int sec_ctx_len);

Purpose

This function adds a security context to an ANSI dialogue.

Parameters

msg Message being built.

sec_ctx The security context identifier, or NULL for an integer security context

identifier.
sec_ctx_len Length in bytes of the security context identifier, or the numeric security

context identifier.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.8.5 acu_tcap_msg_add_dlg_confidentiality
int acu_tcap_msg_add_dlg_confidentiality(acu_tcap_msg_t *msg,

const void *cfd_alg, int cfd_alg_len, const void *cfd_val,

unsigned int cfd_val_len);

Purpose

This function adds confidentiality information to an ANSI dialogue.

Parameters

msg Message being built.

cfd_alg The confidentiality algorithm identifier, or NULL for an integer identifier.

cfd_alg_len Length in bytes of the confidentiality algorithm identifier, or the numeric
confidentiality algorithm identifier.

cfd_val,

cfd_val_len
Pointer to, and length of, the ASN.1 encoded confidentiality value.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 34

2.1.8.6 acu_tcap_msg_add_comp_invoke
int acu_tcap_msg_add_comp_invoke(acu_tcap_msg_t *msg, int invoke_id,

int linked_id, int last_class, int tmo_secs, const void *op_code,

int op_code_len, const void *param, int param_len);

Purpose

This function adds a TCAP invoke component to the message being built.

Parameters

msg Message being built.

invoke_id Invoke identifier, In ANSI it may be ACU_TCAP_NO_INVOKE_ID to suppress

the inclusion of an invoke id.
linked_id Linked id, or ACU_TCAP_NO_INVOKE_ID if no linked-id is required.

last_class The TCAP operation class 0 or 1 to 4, bitwise ‘or’ in ACU_TCAP_LAST to

generate an ANSI ‘INVOKE_LAST’ component. The operation classes are:
 0 Operation state engine disabled, all message sequences are valid.
 1 Report success or failure (all responses valid).
 2 Report failure only (return-result not valid).
 3 Report success only (return-error not valid).
 4 Outcome not reported (neither return-result nor return-error valid).

tmo_secs Operation timeout, if zero the configured value is used.

op_code Address of an ITU global operation object identifier, or an ANSI private
operation. NULL for an ITU local operation or an ANSI national operation.

op_code_len Length in bytes of the operation code, or the numeric value if op_code is

NULL.

param,

param_len

Pointer to, and length of, any invoke parameter. If param is NULL or

param_len is 0 no parameter will be added.

Note The maximum timeout is 9 hours.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.8.7 acu_tcap_msg_add_comp_result

int acu_tcap_msg_add_comp_result(acu_tcap_msg_t *msg, int invoke_id,

int last, const void *op_code, int op_code_len, const void *param,

int param_len);

Purpose

This function adds a TCAP result component to the message being built.

Parameters

msg Message being built.

invoke_id Invoke identifier, In ANSI it may be ACU_TCAP_NO_INVOKE_ID to suppress

the inclusion of an invoke id.
last 0 or ACU_TCAP_LAST to generate a ‘RESULT_LAST’ component.

op_code Address of a global operation object identifier, or NULL for a local operation

(ignored for ANSI).
op_code_len Length in bytes of the operation code, or the numeric value if op_code is

NULL (ignored for ANSI).

param

param_len

Pointer to, and length of, any result parameter. If param is NULL or

param_len is 0 no parameter will be added.

ITU TCAP requires that the operation code and parameter both be present or both be absent.
The operation code will be added if any of op_code, op_code_len, param or param_len are

not NULL or zero. If the application specifies an operation code but doesn't specify a

parameter it must add a parameter directly to the message before sending it.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 35

2.1.8.8 acu_tcap_msg_add_comp_error
int acu_tcap_msg_add_comp_error(acu_tcap_msg_t *msg, int invoke_id,

const void *error_code, int error_code_len, const void *param,

int param_len);

Purpose

This function adds a TCAP error component to the message being built.

Parameters

msg Message being built.

invoke_id Invoke identifier, In ANSI it may be ACU_TCAP_NO_INVOKE_ID to

suppress the inclusion of an invoke id.
error_code Address of an ITU global error object identifier, or an ANSI private error,

NULL for an ITU local error or an ANSI national error.

error_code_len Length in bytes of the error code, or the numeric value if error_code is

NULL.

param

param_len

Pointer to, and length of, any error parameter. If param is NULL or

param_len is 0 no parameter will be added.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.8.9 acu_tcap_msg_add_comp_reject
int acu_tcap_msg_add_comp_reject(acu_tcap_msg_t *msg, int invoke_id,

acu_tcap_reject_problem_t problem, const void *param, int param_len);

Purpose

This function adds a TCAP component to the message being built.

Parameters

msg Message being built.

invoke_id Invoke identifier, or ACU_TCAP_NO_INVOKE_ID to suppress the invoke-id field

problem Problem type and code.

param,

param_len

ANSI only; pointer to, and length of, any reject parameter. If param is NULL

or param_len is 0 no parameter will be added.

The problem parameter encodes the problem type and the error value itself as a single field.

Valid values are listed in 2.1.9.6

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.8.10 acu_tcap_msg_add_ansi_abort_userinfo
int acu_tcap_msg_add_ans_abort_userinfo(acu_tcap_msg_t *msg,

const void *uinfo, unsigned int len);

Purpose

This function adds user information to an ANSI Abort message.

The userinfo is an arbitrary sequence of bytes.

Parameters

msg Message being built.

uinfo Address of the user information.

len Number of bytes of user information.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 36

2.1.8.11 acu_tcap_msg_send
int acu_tcap_msg_send(acu_tcap_msg_t *msg);

Purpose

This function adds any outstanding parameter terminators to the message being built, sets the
overall length fields, and sends the built message to SCCP over the TCP/IP connection.

When a TCAP message is built a single byte is allocated for the length field of all constructed
items. For lengths less than 128 this is later written with the actual length, for longer items a
two byte indefinite length terminator is normally appended. Two configuration parameters
affect the behaviour. Setting ENC_DEF_LEN=y (before calling acu_tcap_msg_init()) causes

the definite length encoding to be used for all constructed items. Setting
PREFERRED_MAXLEN=nnn causes this function to re-encode using the definite length encoding

if doing so would reduce the length of the tcap data below the specified size.

Note The definite length encoding for lengths above 127 is not normally done because it requires an
overlapping memmove() to make space for the additional byte.

This function does not free the message buffer. The application may use the buffer to build
and send another TCAP message, or call acu_tcap_msg_free() to free the message.

Parameters

msg Message to send.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.8.12 acu_tcap_msg_reply_reject
int acu_tcap_msg_reply_reject(acu_tcap_msg_t *msg);

Purpose

This function generates and sends a continue message containing a single reject component
that is the correct response to an ACU_TCAP_COMP_LOCAL_REJECT component returned by

acu_tcap_msg_get_component().

The application can also use the information from the local reject to add the reject component
to a different message.

Parameters

msg Received message containing the local reject component.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 37

2.1.9 Message receiving functions

TCAP messages received from SCCP (via TCP/IP) are queued on, and can be retrieved from
queues on both the ssap and transaction data areas.

Every message must be freed at some point by calling acu_tcap_msg_free().

The application must normally call acu_tcap_trans_unblock() after processing messages

that refer to a transaction in order to make any further messages for that transaction available
from the ssap queue. The block is applied in order to stop an application having more than
one thread processing messages for a single transaction.

If the application only ever uses a single thread to access TCAP then SINGLE_THREADED=y

can be configured and the block will not be applied.

The data bytes of the message itself are within a circular buffer used to receive data from the
TCP/IP connection. The application must call acu_tcap_msg_free() or

acu_tcap_msg_copy_rx_buffer() in a timely manner to avoid blocking messages for other

transactions.

The initial elements of acu_tcap_msg_t are exposed in the header file and can be read by the

application.

As well as received TCAP messages, other indications from the library to the application are
passed through this interface. These additional messages are only added to the ssap queue.

2.1.9.1 acu_tcap_ssap_msg_get

int acu_tcap_ssap_msg_get(acu_tcap_ssap_t *ssap, int tmo_ms,

acu_tcap_msg_t **msgp);

Purpose

This function retrieves the next inbound tcap message from the queue associated with the
specified ssap.

If the received message refers to an existing transaction then the tm_trans field will be set.

Note An application will only be given Begin/Query messages if ‘server = y’ is set in the ssap’s

configuration.

Parameters

ssap Address of ssap data area.

tmo_ms Time in milliseconds to wait for a message, 0 => don’t wait, -1 => wait forever.

msgp Address of parameter where the message structure address will be written.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

*msgp will be set to NULL if the function fails.

Note There are some circumstances where ACU_TCAP_ERROR_NO_MESSAGE will be returned even when asked

to wait indefinitely.

Note An indefinite wait will be interrupted if the application calls acu_tcap_ssap_wakeup_msg_get() from

a different thread.

The following fields of the message are set:
tm_msg_type Type of message/indication, one of:
 ACU_TCAP_MSG_DATA Data from remote TCAP ({L|X}UDT messages).
 ACU_TCAP_MSG_NOTICE Error report from SCCP ({L|X}UDTS message).
 ACU_TCAP_MSG_TIMEOUT Operation timeout.
 ACU_TCAP_MSG_CON_STATE Change in state of TCP/IP connections to SCCP.
 ACU_TCAP_MSG_USER_STATUS Change in status of remote user (from SCCP).
 ACU_TCAP_MSG_SP_STATUS Change in status of remote signalling point from

SCCP.
tm_ssap Address of associated ssap.

MAN1201 Revision 6.16.1 PUBLIC Page 38

tm_trans Address of associated existing transaction (may be NULL).

For DATA and NOTICE message the following are also set:

tm_local_addr Destination (ie our) address from SCCP message.

tm_remote_addr Source (ie remote) address from SCCP message.

tm_ret_opt Received SCCP ‘return on error’ option.

tm_seq_ctrl Received SCCP ‘sequential delivery’ option.

tm_ret_cause ‘Return cause’ from received {L|X}UDTS message.

tm_priority ANSI message priority, ITU importance (0xff if ITU option not present).

tm_p_abort_cause Not set until acu_tcap_msg_decode is called.

The dialogue portion and components of DATA and NOTICE messages can be decoded by

calling acu_tcap_msg_decode() and then acu_tcap_msg_get_component().

For TIMEOUT messages call acu_tcap_msg_get_component() to find the timed out operation.

For CON_STATUS call acu_tcap_msg_get_con_state() to find the connection states at the

time the message was generated, or acu_tcap_get_con_state() to find the current state.

For USER_STATUS and SP_STATUS call acu_tcap_msg_get_sccp_status() to determine the

concerned pointcode and SSN.

Note Remember to call acu_tcap_trans_unblock() when processing is finished, otherwise further

messages for the transaction cannot be retrieved from the ssap queue.

2.1.9.2 acu_tcap_trans_msg_get
int acu_tcap_trans_msg_get(acu_tcap_trans_t *trans, int tmo_ms,

acu_tcap_msg_t **msgp);

Purpose

This function retrieves the next inbound tcap message from the queue associated with the
specified transaction.

Refer to acu_tcap_ssap_msg_get() for information on the possible message types.

Parameters

trans Address of transaction data area.

tmo_ms Time in milliseconds to wait for a message, 0 => don’t wait, -1 => wait forever.

msgp Address of parameter where the message structure address will be written.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

*msgp will be set to NULL if the function fails.

2.1.9.3 acu_tcap_event_msg_get
int acu_tcap_event_msg_get(acu_tcap_event_t *event, acu_tcap_msg_t **msgp);

Purpose

This function retrieves the next inbound tcap message from one of the queues associated with
event. Refer to section 2.1.13 for more information on the event mechanism.

Refer to acu_tcap_ssap_msg_get() for information on the possible message types.

Parameters

event Address of an event data area.

msgp Address of parameter where the message structure address will be written.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

*msgp will be set to NULL if the function fails.

MAN1201 Revision 6.16.1 PUBLIC Page 39

2.1.9.4 acu_tcap_msg_decode
int acu_tcap_msg_decode(acu_tcap_msg_t *msg,

const acu_tcap_dialogue_t **dlgp);

Purpose

This function performs the initial decode of an inbound tcap data or notice message

If a data message is an ITU BEGIN or an ANSI QUERY then a new transaction is created by
the library. The application is responsible for freeing these transaction structures.

Parameters

msgp Message structure address (from one of the msg_get() functions).

dlgp Address of parameter where the dialogue structure address will be written.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

If the message doesn’t refer to a valid transaction then msg->tm_trans will be set to NULL

(even if it was not NULL before the call).

This function may return an error code due to an invalid TCAP message; in this case
tm_msg_type will have been changed (typically to ACU_TCAP_MSG_LOCAL_ABORT).

The tm_msg_type field of msg is changed to indicate the type of the TCAP message:

ACU_TCAP_MSG_LOCAL_ABORT The received message was a protocol error, a P-ABORT
message has been sent. msg->tm_p_abort_cause

contains the sent cause.
ACU_TCAP_MSG_P_ABORT A P-ABORT was received. msg->tm_p_abort_cause

contains the cause, one of:
 ACU_TCAP_P_ABORT_ITU_UNRECOGNIZED_MESSAGE_TYPE
 ACU_TCAP_P_ABORT_ITU_UNRECOGNIZED_TRANSACTION_ID
 ACU_TCAP_P_ABORT_ITU_BADLY_FORMATTED_TRANSACTION_PORTION
 ACU_TCAP_P_ABORT_ITU_INCORRECT_TRANSACTION_PORTION
 ACU_TCAP_P_ABORT_ITU_RESOURCE_LIMITATION
 ACU_TCAP_P_ABORT_ITU_ABNORMAL_DIALOGUE
 ACU_TCAP_P_ABORT_ANSI_UNRECOGNIZED_PACKAGE_TYPE
 ACU_TCAP_P_ABORT_ANSI_INCORRECT_TRANSACTION_PORTION
 ACU_TCAP_P_ABORT_ANSI_BADLY_STRUCTURED_TRANSACTION_PORTION
 ACU_TCAP_P_ABORT_ANSI_UNASSIGNED_RESPONDING_TRANSACTION_ID
 ACU_TCAP_P_ABORT_ANSI_PERMISSION_TO_RELEASE_PROBLEM
 ACU_TCAP_P_ABORT_ANSI_RESOURCE_UNAVAILABLE
 ACU_TCAP_P_ABORT_ANSI_UNRECOGNIZED_DIALOGUE_PORTION_ID
 ACU_TCAP_P_ABORT_ANSI_BADLY_STRUCTURED_DIALOGUE_PORTION
 ACU_TCAP_P_ABORT_ANSI_MISSING_DIALOGUE_PORTION
 ACU_TCAP_P_ABORT_ANSI_INCONSISTENT_DIALOGUE_PORTION

ACU_TCAP_MSG_ITU_UNI

ACU_TCAP_MSG_ITU_BEGIN

ACU_TCAP_MSG_ITU_END

ACU_TCAP_MSG_ITU_CONTINUE

ACU_TCAP_MSG_ITU_ABORT

ACU_TCAP_MSG_ANSI_UNI

ACU_TCAP_MSG_ANSI_QUERY

ACU_TCAP_MSG_ANSI_QUERY_WO

ACU_TCAP_MSG_ANSI_RESPONSE

ACU_TCAP_MSG_ANSI_CONV

ACU_TCAP_MSG_ANSI_CONV_WO

ACU_TCAP_MSG_ANSI_ABORT

A valid TCAP message of the specified type was
decoded.

Note The ANSI user abort information is passed to the application as if it were a component.

MAN1201 Revision 6.16.1 PUBLIC Page 40

If the message has a dialogue portion then dlgp will point to an acu_tcap_dialogue_t

structure (embedded in msg) that contains the following fields:

td_type The type of the received dialogue, one of:

 ACU_TCAP_DLG_ITU_USER_SYNTAX ITU dialogue with user defined syntax.
 ACU_TCAP_DLG_ITU_AARQ_AUDT ITU dialogue request or unitdata pdu.
 ACU_TCAP_DLG_ITU_AARE ITU dialogue response pdu.
 ACU_TCAP_DLG_ITU_ABRT ITU dialogue abort pdu.
 ACU_TCAP_DLG_ANSI ANSI dialogue.

td_flags Bit pattern indicating which of the fields below are valid:
 ACU_TCAP_DF_HAS_UI td_ui and td_ui_len.
 ACU_TCAP_DF_HAS_HEX_APP_CTX td_app_ctx and td_app_ctx_len.
 ACU_TCAP_DF_HAS_INT_APP_CTX in td_app_ctx_len (ANSI only).
 ACU_TCAP_DF_HAS_AARE_DIAG td_result is from an ITU AARE pdu, one of:
 ACU_TCAP_AARE_ACCEPTED_USER
 ACU_TCAP_AARE_ACCEPTED_PROVIDER
 ACU_TCAP_AARE_REJECT_USER_NULL
 ACU_TCAP_AARE_REJECT_USER_NO_REASON
 ACU_TCAP_AARE_REJECT_USER_APPLICATION_CONTEXT_NOT_SUPPORTED
 ACU_TCAP_AARE_REJECT_PROVIDER_NULL
 ACU_TCAP_AARE_REJECT_PROVIDER_NO_REASON
 ACU_TCAP_AARE_REJECT_PROVIDER_NO_COMMON_DIALOGUE_PORTION
 ACU_TCAP_DF_HAS_ABRT_SOURCE td_result is user/provider field from an ITU

ABRT pdu.
 ACU_TCAP_DF_HAS_USER_SYNTAX User syntax data in td_ui and td_ui_len.
 ACU_TCAP_DF_HAS_INT_SEC_CTX Integer security context in td_sec_ctx_len.
 ACU_TCAP_DF_HAS_OBJ_SEC_CTX td_sec_ctx and td_sec_ctx_len.
 ACU_TCAP_DF_HAS_INT_CFD_ALG Integer confidentiality algorithm ID in

td_cfg_alg_len.
 ACU_TCAP_DF_HAS_OBJ_CFD_ALG td_cfd_alg and td_cfg_alg_len.
 ACU_TCAP_DF_HAS_CFD_VAL td_cfd_val and td_cfg_val_len.

td_app_ctx, td_app_ctx_len Pointer to, and length of the application context name
(object identifier).

td_result Error code from ITU AARE or ABRT.

td_sec_ctx, td_sec_ctx_len Pointer to, and length of, security context object identifier
(ANSI only).

td_ui, td_ui_len Pointer to, and length of, dialogue user information.

td_cfd_alg, td_cfg_alg_len Pointer to, and length of, confidentiality algorithm ID object
identifier (ANSI only).

td_cfd_val, td_cfg_val_len Pointer to, and length of, ASN.1 encoded confidentiality
value (ANSI only).

2.1.9.5 acu_tcap_msg_has_components
int acu_tcap_msg_has_components(acu_tcap_msg_t *msg);

Purpose

This function is a predicate for determining whether an inbound message has components.

Note There is no need to call this before calling acu_tcap_msg_get_component().

Parameters

msg Address of message to check.

Return value

Non-zero if the message has components, zero otherwise.

MAN1201 Revision 6.16.1 PUBLIC Page 41

2.1.9.6 acu_tcap_msg_get_component
int acu_tcap_msg_get_component(acu_tcap_msg_t *msg,

const acu_tcap_component_t **component);

Purpose

This function decodes the next component from the given message. It should be called in a
loop until it returns an error.

Some information which isn’t strictly part of a TCAP component is also made available
through this interface.

Note acu_tcap_msg_decode() must be called on a received message before this function.

The component information is overwritten when acu_tcap_msg_get_component is called

again for the same msg, and discarded when msg itself is freed.

Parameters

msg Address of message to decode.
component Address where a pointer to the component information is written.

Return value

Zero if successful, ACU_TCAP_ERROR_NO_COMPONENT if there are no more components in the

message, ACU_TCAP_ERROR_xxx on failure.

If successful component will point to a structure with the following members:

tc_type Type of the received component, one of:
 ACU_TCAP_COMP_LOCAL_REJECT Malformed component received.
 ACU_TCAP_COMP_OP_TIMEOUT Operation timed out.
 ACU_TCAP_COMP_ANSI_ABORT Userinfo from ANSI abort.
 ACU_TCAP_COMP_ITU_INVOKE
 ACU_TCAP_COMP_ITU_RESULT_LAST
 ACU_TCAP_COMP_ITU_ERROR
 ACU_TCAP_COMP_ITU_REJECT
 ACU_TCAP_COMP_ITU_RESULT_NOTLAST
 ACU_TCAP_COMP_ANSI_INVOKE_LAST
 ACU_TCAP_COMP_ANSI_RESULT_LAST
 ACU_TCAP_COMP_ANSI_ERROR
 ACU_TCAP_COMP_ANSI_REJECT
 ACU_TCAP_COMP_ANSI_INVOKE_NOTLAST
 ACU_TCAP_COMP_ANSI_RESULT_NOTLAST

tc_flags Bit-pattern indicating which of the fields below are valid.
 ACU_TCAP_CF_HAS_INVOKE_ID tc_invoke_id.

 ACU_TCAP_CF_HAS_LINKED_ID tc_linked_id.

 ACU_TCAP_CF_HAS_PARAMETER tc_param and tc_param_len.
 ACU_TCAP_CF_HAS_HEX_OPCODE tc_op_code and tc_op_code_len.
 ACU_TCAP_CF_HAS_INT_OPCODE tc_op_code_val.

 ACU_TCAP_CF_INVOKE_ID_LOCAL tc_invoke_id is a local invoke id.

tc_invoke_id Invoke-id identifying the operation.

tc_linked_id Linked invoke-id from invoke message.

tc_op_code, tc_op_code_len Pointer to, and length of multi-byte operation/result/error
code, ITU global, ANSI private.

tc_op_code_val Integral operation/result/error code, ITU local, ANSI
national.

tc_param, tc_param_len Pointer to, and length of the component parameter.

tc_rejected_type For LOCAL_REJECT the original message type.

tc_reject_error For LOCAL_REJECT the reject cause to send.

acu_tcap_msg_reply_reject() can be used to send out a reject component in a Continue

message in response to a LOCAL_REJECT indication.

MAN1201 Revision 6.16.1 PUBLIC Page 42

The ‘problem code’ from received reject components is put into the tc_op_code_val field.

Valid values for ITU TCAP are:
ACU_TCAP_REJECT_ITU_GENERAL_UNRECOGNIZED_COMPONENT

ACU_TCAP_REJECT_ITU_GENERAL_MISTYPED_COMPONENT

ACU_TCAP_REJECT_ITU_GENERAL_BADLY_STRUCTURED_COMPONENT

ACU_TCAP_REJECT_ITU_INVOKE_DUPLICATE_INVOKE_ID

ACU_TCAP_REJECT_ITU_INVOKE_UNRECOGNIZED_OPERATION

ACU_TCAP_REJECT_ITU_INVOKE_MISTYPED_PARAMETER

ACU_TCAP_REJECT_ITU_INVOKE_RESOURCE_LIMITATION

ACU_TCAP_REJECT_ITU_INVOKE_INITIATING_RELEASE

ACU_TCAP_REJECT_ITU_INVOKE_UNRECOGNIZED_LINKED_ID

ACU_TCAP_REJECT_ITU_INVOKE_LINKED_RESPONSE_UNEXPECTED

ACU_TCAP_REJECT_ITU_INVOKE_UNEXPECTED_LINKED_OPERATION

ACU_TCAP_REJECT_ITU_RESULT_UNRECOGNIZED_INVOKE_ID

ACU_TCAP_REJECT_ITU_RESULT_RETURN_RESULT_UNEXPECTED

ACU_TCAP_REJECT_ITU_RESULT_MISTYPED_PARAMETER

ACU_TCAP_REJECT_ITU_ERROR_UNRECOGNIZED_INVOKE_ID

ACU_TCAP_REJECT_ITU_ERROR_RETURN_ERROR_UNEXPECTED

ACU_TCAP_REJECT_ITU_ERROR_UNRECOGNIZED_ERROR

ACU_TCAP_REJECT_ITU_ERROR_UNEXPECTED_ERROR

ACU_TCAP_REJECT_ITU_ERROR_MISTYPED_PARAMETER

And for ANSI TCAP are:
ACU_TCAP_REJECT_ANSI_GENERAL_UNRECOGNIZED_COMPONENT_TYPE

ACU_TCAP_REJECT_ANSI_GENERAL_INCORRECT_COMPONENT_PORTION

ACU_TCAP_REJECT_ANSI_GENERAL_BADLY_STRUCTURED_COMPONENT_PORTION

ACU_TCAP_REJECT_ANSI_GENERAL_INCORRECT_COMPONENT_CODING

ACU_TCAP_REJECT_ANSI_INVOKE_DUPLICATE_INVOKE_ID

ACU_TCAP_REJECT_ANSI_INVOKE_UNRECOGNIZED_OPERATION_CODE

ACU_TCAP_REJECT_ANSI_INVOKE_INCORRECT_PARAMETER

ACU_TCAP_REJECT_ANSI_INVOKE_UNRECOGNIZED_CORRELATION_ID

ACU_TCAP_REJECT_ANSI_RESULT_UNASSIGNED_CORRELATION_ID

ACU_TCAP_REJECT_ANSI_RESULT_UNEXPECTED_RETURN_RESULT

ACU_TCAP_REJECT_ANSI_RESULT_INCORRECT_PARAMETER

ACU_TCAP_REJECT_ANSI_ERROR_UNASSIGNED_CORRELATION_ID

ACU_TCAP_REJECT_ANSI_ERROR_UNEXPECTED_RETURN_ERROR

ACU_TCAP_REJECT_ANSI_ERROR_UNRECOGNIZED_ERROR

ACU_TCAP_REJECT_ANSI_ERROR_UNEXPECTED_ERROR

ACU_TCAP_REJECT_ANSI_ERROR_INCORRECT_PARAMETER

ACU_TCAP_REJECT_ANSI_TRANS_UNRECOGNIZED_PACKAGE_TYPE

ACU_TCAP_REJECT_ANSI_TRANS_INCORRECT_TRANSACTION_PORTION

ACU_TCAP_REJECT_ANSI_TRANS_BADLY_STRUCTURED_TRANSACTION_PORTION

ACU_TCAP_REJECT_ANSI_TRANS_UNASSIGNED_RESPONDING_TRANSACTION_ID

ACU_TCAP_REJECT_ANSI_TRANS_PERMISSION_TO_RELEASE

ACU_TCAP_REJECT_ANSI_TRANS_RESOURCE_UNAVAILABLE

MAN1201 Revision 6.16.1 PUBLIC Page 43

2.1.9.7 acu_tcap_trans_unblock
void acu_tcap_trans_unblock(acu_tcap_trans_t *trans);

Purpose

This function removes the block that stops inbound messages for the given transaction from
being retrieved from the corresponding ssap queue.

The block exists so that a pool of threads can be used to process messages from the ssap
queue without having to worry about multiple threads processing messages from the same
transaction. It also allows the application to use a separate thread for each transaction,
although this is discouraged because of the resource issues with large numbers of threads.

Parameters

trans Address of transaction data area.

2.1.9.8 acu_tcap_trans_block
int acu_tcap_trans_block(acu_tcap_trans_t *trans);

Purpose

This function sets the block that stops inbound messages for the given transaction from being
retrieved from the corresponding ssap queue.

The block is automatically set whenever a message is retrieved for a transaction unless
SINGLE_THREADED=y is configured.

It may be necessary to manually set the block on a newly created transaction.

Parameters

trans Address of transaction data area.

Return value

One if the block was already set, zero otherwise.

2.1.9.9 acu_tcap_ssap_wakeup_msg_get
void acu_tcap_ssap_wakeup_msg_get(acu_tcap_ssap_t *ssap);

Purpose

This function wakes up all threads sleeping in acu_tcap_ssap_msg_get() for the specified

ssap. This allows an application to shut down tidily.

If no threads are sleeping then the next call to .acu_tcap_ssap_msg_get() will not block.

Parameters

ssap Address of ssap data area.

Note If an application has multiple threads reading from the ssap queue then to ensure all are woken they
should call acu_tcap_ssap_wakeup_msg_get() after being woken.

2.1.9.10 acu_tcap_trans_wakeup_msg_get

void acu_tcap_trans_wakeup_msg_get(acu_tcap_trans_t *trans);

Purpose

This function wakes up all threads sleeping in acu_tcap_trans_msg_get() for the specified

transaction.

If no threads are sleeping then the next call to .acu_tcap_trans_msg_get() will not block.

Parameters

trans Address of the transaction data area.

MAN1201 Revision 6.16.1 PUBLIC Page 44

2.1.10 Operation and timer functions

These functions control the operation state machine and timers described in section 3.2.1.1.3
of Q.774. The timer functions can also be used by the application for any other purpose.

The state engine acts differently for each TCAP class (1 to 4). Setting the class to zero
disables the state engine and timeouts, all components will be delivered to the application
regardless of the sequence in which they arrive.

When a timer expires, a message with tm_msg_type set to ACU_TCAP_MSG_TIMEOUT will be

queued. It will have a single component that identifies the invoke id of the timed-out operation.

Note The timer resolution is 1 second. A 1 second timer is guaranteed to sleep for at least 1 second, but may
sleep for almost 3 seconds.

Note The maximum timeout is 9 hours.

2.1.10.1 acu_tcap_operation_timer_start
int acu_tcap_operation_timer_start(acu_tcap_trans_t *trans, int invoke_id,

unsigned int tmo_secs);

Purpose

This function starts the operation timer for the given invoke-id; if the timer is already running it
will be restarted with the new interval.

This can be used by an application to run a timer for its own purposes. The invoke_id

specified must not be used in an invoke message while the timer is running.

Parameters

trans Transaction data area.

invoke_id Invoke id of the operation.

tmo_secs Required timeout in seconds.

Return value

Zero if successful, ACU_TCAP_ERROR_MALLOC_FAILURE if the timer table needs extending and

realloc() fails.

2.1.10.2 acu_tcap_operation_timer_restore
int acu_tcap_operation_timer_restore(acu_tcap_trans_t *trans, int invoke_id,

unsigned int class, unsigned int tmo_secs);

Purpose

This function starts the operation timer for the given invoke-id; the operation state is set to that
for an outstanding invoke of the specified class.

This function would normally used on transactions created by
acu_tcap_transaction_restore() so that results from pending invokes are not rejected..

Parameters

trans Transaction data area.

invoke_id Invoke id of the operation.

class Class of the operation.

tmo_secs Required timeout in seconds.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 45

2.1.10.3 acu_tcap_operation_timer_restart
int acu_tcap_operation_timer_restart(acu_tcap_trans_t *trans, int invoke_id,

unsigned int tmo_secs);

Purpose

This function restarts the operation timer for the given invoke-id.
An error will be returned it the timer isn’t running (e.g.: if it has just expired).

This function can be used to extend the timeout of a TCAP operation.

Parameters

trans Transaction data area.

invoke_id Invoke id of the operation.

tmo_secs Required timeout in seconds.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.10.4 acu_tcap_operation_cancel

int acu_tcap_operation_cancel(acu_tcap_trans_t *trans, int invoke_id);

Purpose

This function cancels the operation timer for the given invoke-id. The timer is stopped and the
state machine set to the idle state.

Cancelling an operation is a local action; the remote system is not informed. The application
level protocol should allow for any messages that are not sent or discarded.

Parameters

trans Transaction data area.

invoke_id Invoke id of the operation.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 46

2.1.11 Connection status functions

The TCAP library connects to the SCCP driver using TCP/IP. It connects asynchronously and
will automatically attempt to reconnect if the connection fails for any reason.

Changes in the connections’ state are reported by queueing an ACU_TCAP_MSG_CON_STATE

message onto the ssap message queue. The application must wait until the IN_SERVICE state

is reported before creating any transactions.

Note The IDLE -> CONNECTING and CONNECTING -> CONNECTED transitions are not reported.

2.1.11.1 acu_tcap_get_con_state
int acu_tcap_get_con_state(acu_tcap_ssap_t *ssap, int con_id,

const acu_tcap_con_state_t **con_state);

Purpose

This function returns information about the current state of one of the TCP/IP connections to
SCCP.

Parameters

ssap Address of ssap data area.

con_id 0 for the connection to ‘host a’, 1 for that to ‘host b’.

con_state Pointer filled with the address of the connection state structure.

The acu_tcap_con_state_t structure contains the following fields:

cs_ipaddr IP address of the connected SCCP (host order).

cs_tcpport TCP port number of the connected SCCP.

cs_state The current state of the connection, one of:
 ACU_TCAP_CON_STATE_IDLE Not configured or connect failed.
 ACU_TCAP_CON_STATE_CONNECTING TCP connection being made.
 ACU_TCAP_CON_STATE_CONNECTED Initial message handshake in progress.
 ACU_TCAP_CON_STATE_IN_SERVICE Available for TCAP traffic.
 If IN_SERVICE the following bits can also be set:

 ACU_TCAP_CON_STATE_RX_BLOCKED No space in receive ring buffer area.
 ACU_TCAP_CON_STATE_RX_FLOW Receive flow controlled off.
 ACU_TCAP_CON_STATE_TX_BLOCKED No TCP transmit window.
 ACU_TCAP_CON_STATE_TX_FLOW Transmit flow controlled off.

cs_failure The reason why the last connection (or connect attempt) failed, one of:
 ACU_TCAP_CON_FAIL_SSAP_DELETED ssap deleted.
 ACU_TCAP_CON_FAIL_CON_TIMEOUT TCP/IP connect timed out.
 ACU_TCAP_CON_FAIL_CON_REJECTED TCP/IP connection rejected.
 ACU_TCAP_CON_FAIL_LOGIN_REJECTED Login sequence failed.
 ACU_TCAP_CON_FAIL_INWARD Disconnected by SCCP.
 ACU_TCAP_CON_FAIL_KEEPALIVE No response to keepalive.
 ACU_TCAP_CON_FAIL_BAD_MESSAGE Corrupt message received.

cs_fail_text Textual description of cs_failure, or one of the following texts when the login

fails:
 Bad Request Major discrepancy between the versions of the TCAP

library and the driver.
 Responder has gone The driver is no longer waiting for connections on the

requested TCP/IP port.
Driver is probably shut down.

 Unknown service TCAP isn’t configured in the ss7 driver configuration.
 Unknown service parameter TCAP isn’t configured on the requested pointcode.
 Incorrect password The passwords in the application and driver

configuration files do not match.
 Rejected by server Connection rejected by TCAP driver stub.
 Bad hash in response Three-way login handshake failed.

cs_tx_qlen The number of outbound tcap messages queued within the library.

MAN1201 Revision 6.16.1 PUBLIC Page 47

Application level acknowledgements are used on the TCP connection in order to avoid
blocking the TCP connection itself. Thus the BLOCKED states should not happen.

Receive flow control is most likely to occur if the application fails to free receive messages –
which have pointers directly into the receive ring buffer area.

If transmit flow control is reported the application should take steps to avoid sending further
messages. However all messages sent will be queued by the library.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.11.2 acu_tcap_msg_get_con_state
int acu_tcap_msg_get_con_state(acu_tcap_msg_t *msg,

const acu_tcap_con_state_t **cs_a, const acu_tcap_con_state_t **cs_b)

Purpose

This function resolves pointers to the connection state field(s) in messages of type
ACU_MSG_TCAP_CON_STATE.

This information relates to the state of the connections to SCCP at the time the indication was
generated.

Refer to acu_tcap_get_con_state() for details of the acu_tcap_con_state_t structure.

Parameters

msg Message structure address (from one of the msg_get() functions) .

cs_a Address of parameter where the ‘host a’ connection state structure address will be
written.

cs_b Address of parameter where the ‘host b’ connection state structure address will be
written (where SCCP is configured in ‘dual’ mode).

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

Note The addresses written to cs_a and cs_b point into the message itself.

MAN1201 Revision 6.16.1 PUBLIC Page 48

2.1.12 Remote SP and SSN status functions

The TCAP library receives status indications from SCCP that show the accessibility of remote
entities. The information is saved so that the application can synchronously determine the
current status.

The application can also ask to be notified when the status of a remote pointcode or ssn
changes. Such changes are reported by queueing an ACU_TCAP_MSG_SCCP_STATUS message

onto the ssap message queue.

Additionally the application can request to be given all of the raw status events from SCCP by
setting the ACU_TCAP_STATUS_IND flag when the ssap is created.

2.1.12.1 acu_tcap_get_sccp_status
int acu_tcap_get_sccp_status(acu_tcap_ssap_t *ssap, unsigned int pointcode,

unsigned int ssn, const acu_tcap_sccp_status_t **sccp_status);

Purpose

This function returns information about the current state of the pointcode and ssn.

Parameters

ssap Address of ssap data area.

pointcode SS7 pointcode of the remote system.

ssn ssn of remote application.

sccp_status Pointer filled with address of the sccp and user state structure.

The acu_tcap_sccp_status_t structure contains the following fields:

tsp_pc Remote pointcode.

tsp_ssn ssn of remote application.

tsp_host Either ‘a’ or ‘b’ depending of which SCCP host the information
came from.

tsp_user_status Status of the ssn, one of:
 ACU_SCCP_UIS User In Service.
 ACU_SCCP_UOS User Out of Service.

tsp_sp_status Status of the signalling point (from MTP3), one of:
 ACU_SCCP_SP_PROHIBIT Prohibited.
 ACU_SCCP_SP_ACCESS Accessible.

tsp_sccp_status Status of the remote SCCP, one of:
 ACU_SCCP_REM_SCCP_PROHIBIT Prohibited.
 ACU_SCCP_REM_SCCP_UNAVAIL Unavailable, reason unknown.
 ACU_SCCP_REM_SCCP_UNEQUIP Unequipped.
 ACU_SCCP_REM_SCCP_INACCESS Inaccessible.
 ACU_SCCP_REM_SCCP_CONGEST Congested.
 ACU_SCCP_REM_SCCP_AVAIL Available.

tsp_tx_cong_cost A measure of the level of congestion of the remote node.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 49

2.1.12.2 acu_tcap_msg_get_sccp_status
int acu_tcap_msg_get_sccp_status(acu_tcap_msg_t *msg,

const acu_tcap_sccp_status_t **sccp_status);

Purpose

This function returns the information about the state of a pointcode and ssn from an
ACU_TCAP_MSG_USER_STATUS or ACU_TCAP_MSG_SP_STATUS message.

Parameters

msg Message data area.

sccp_status Pointer filled with address of the sccp and user state structure (embedded in
the msg).

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.12.3 acu_tcap_enable_user_status
int acu_tcap_enable_user_status(acu_tcap_ssap_t *ssap,

unsigned int pointcode, unsigned, int ssn);

Purpose

This function enables the receipt of ACU_TCAP_MSG_USER_STATUS messages for the specified

pointcode and ssn.

Parameters

ssap ssap data area.

pointcode Remote SS7 pointcode from which user status indications are required.
ssn Associated remote SCCP ssn.

The pointcode and/or ssn may be specified as ~0u in which case indications will be given for

all pointcodes/ssns.

Note User status is only reported if the SS7 stack configuration file contains an SCCP [CONCERNED] section
for the pointcode and ssn.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.12.4 acu_tcap_enable_sp_status
int acu_tcap_enable_sp_status(acu_tcap_ssap_t *ssap, unsigned int pointcode);

Purpose

This function enables the receipt of ACU_TCAP_MSG_SP_STATUS messages for the specified

pointcode.

Parameters

ssap ssap data area.

pointcode Remote SS7 pointcode from which user status indications are required.

The pointcode may be specified as ~0u in which case indications will be given for all

pointcodes.

Note The ‘unavailable’, ‘unequipped’, ‘inaccessible’ and ‘congested’ statuses are only reported if the SS7 stack
configuration file contains an SCCP [CONCERNED] section for the pointcode.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 50

2.1.13 TCAP message events

The message receiving functions allow an application to wait for messages on an ssap or a
transaction, however there are cases where an application may need to wait for messages on
a group of transactions, or wait for messages from TCAP and events from some other part of
the system. The event mechanism described here solves both these problems.

On Microsoft Windows events are implemented using manual-reset events, on Linux systems
pipes are used. This allows the application to use WaitForMultipleObjects or poll/select

to wait for TCAP messages. Due to scalability problems with both of these it is inappropriate
to allocate an event for each transaction. The application can create an event that can be
signalled by messages being queued at several TCAP transactions, or queued at the ssap
itself.

Note The transactions must all be on the same ssap

2.1.13.1 acu_tcap_event_create
acu_tcap_event_t *acu_tcap_event_create(acu_tcap_ssap_t *ssap);

Purpose

This function creates an event structure.

Parameters

ssap ssap data area.

Return value

Address of an initialised event structure. NULL if one cannot be allocated or the ssap pointer is

invalid.

2.1.13.2 acu_tcap_event_delete
void acu_tcap_event_delete(acu_tcap_event_t *event);

Purpose

This function unlinks the event from any message queues and then deletes the structure itself.

Parameters

event Address of event structure.

Return value

None.

2.1.13.3 acu_tcap_event_wait
int acu_tcap_event_wait(acu_tcap_event_t *event, int tmo_ms);

Purpose

This function waits for the specified event to be signalled.

It is a simple wrapper for WaitForSingleObject() or poll().

Parameters

event Address of event data area.

tmo_ms Time to wait in milliseconds, 0 => don’t wait, -1 => wait for ever.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 51

2.1.13.4 acu_tcap_event_get_os_event
acu_tcap_os_event_t acu_tcap_event_get_os_event(acu_tcap_event_t *event);

Purpose
This function returns the operating system data item underlying the given event.

The return type is actually HANDLE for Windows and int for Linux systems.

Parameters
event Address of event data area.

Return value
For Windows the HANDLE of the windows event.

For Linux the file descriptor number of the read side of a pipe.
If the call is invalid 0 is returned; care is taken to ensure the pipe fd number isn’t zero, one or
two.

2.1.13.5 acu_tcap_event_clear
void acu_tcap_event_clear(acu_tcap_event_t *event);

Purpose
This function clears (i.e.: returns to the non-signalled state) the operating system item
underlying the given event.

The event is automatically cleared if when acu_tcap_event_msg_get() returns the last

message or fails because no messages are present.

Parameters
event Address of event data area.

Return value
None.

2.1.13.6 acu_tcap_event_ssap_attach
int acu_tcap_event_ssap_attach(acu_tcap_event_t *event,

acu_tcap_ssap_t *ssap);

Purpose
This function adds the message queue for ssap as a source for the event.

Note The ssap specified must be the same one specified when the event was created.

Parameters

event Address of event data area.

ssap Address of corresponding ssap data area.

Return value
Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.13.7 acu_tcap_event_ssap_detach

int acu_tcap_event_ssap_detach(acu_tcap_event_t *event,

acu_tcap_ssap_t *ssap);

Purpose

This function removes the message queue for the ssap from the sources for event. It

reverses the effect of acu_tcap_event_ssap_attach()

Parameters

event Address of event structure.

ssap Address of ssap data area.

Return value
Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 52

2.1.13.8 acu_tcap_event_ssap_detach_all
int acu_tcap_event_ssap_detach_all(acu_tcap_ssap_t *ssap);

Purpose

This function detaches the message queue for the ssap from all events. It is implicitly called if
the ssap is deleted.

Parameters

ssap ssap data area.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.13.9 acu_tcap_event_trans_attach

int acu_tcap_event_trans_attach(acu_tcap_event_t *event,

acu_tcap_trans_t *trans);

Purpose

This function adds the message queue for trans as a source for the event.

Note The transaction and event must have been created on the same ssap.

Parameters

event Address of event structures.

trans Transaction data area.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.13.10 acu_tcap_event_trans_detach
int acu_tcap_event_trans_detach(acu_tcap_avent_t *event,

acu_tcap_trans_t *trans);

Purpose

This function removes the message queue for trans from the sources for event. It reverses

the effect of acu_tcap_event_trans_attach()

Parameters

event Address of event data area.

trans Transaction data area.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

2.1.13.11 acu_tcap_event_trans_detach_all
int acu_tcap_event_trans_detach_all(acu_tcap_trans_t *trans);

Purpose

This function detaches the message queue for trans from all events. It is implicitly called if

the transaction is deleted.

Parameters

trans Transaction data area.

Return value

Zero if successful, ACU_TCAP_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 53

2.2 ASN.1 Encoder/Decoder functions
The TCAP library contains a simple ASN.1 BER encoder/decoder that is used internally and
can be used by applications to process TCAP dialogues and components.

This encoder does not parse the ASN.1 descriptions found in standards documents, but does
handle the correct encoding of multi-byte tags, multi-byte length fields, integers and both
definite and indefinite length constructed items.

A separate C call is used to encode/decode every field allowing the application complete
flexibility in the way that the data is processed.

ASN.1 tag values must be encoded by the ACU_ASN1_MAKE_TAG() #define.

The message definition based ASN.1 encoder and decoder (see 2.3) is a higher level
interface to these functions.

2.2.1 Header file tcap_asn1_codec.h

This header file defines the constants, structures and function prototypes of the
encoder/decoder. It is included by the tcap_api.h header file.

2.2.1.1 acu_asn1_buf_t structure

The ASN.1 encoder and decoder use the acu_asn1_buf_t structure to control the encoding

and decoding of ASN.1 data. The application has to access (but must not write to) some of the
fields; the offsets of those fields will not change between releases, maintaining binary
compatibility for applications. There are other undocumented fields which could change
between releases.

The following structure members can be accessed:
a1b_buf The start of ASN.1 buffer area.

a1b_end The end of the buffer area. i.e.: after the last byte to decode, or the
limit of the buffer for the encoder.

a1b_ptr The next byte to be decoded, or the location to write the next
encoded byte.

a1b_flags Flags, bitwise or of ACU_A1BF_xxx values.

a1b_error The error code for the first error detected since the structure was last
initialised.

a1b_error_offset The offset in the buffer (i.e.: a1b->a1b_ptr – a1b->a1b_buf) when

the error was detected.
a1b_error_format A printf format string that further describes the error.

a1b_error_val_1 The first integer parameter to the format string.

a1b_error_val_2 The second integer parameter to the format string

After using the encoder, the application should use the a1b_buf and a1b_ptr members to

locate the encoded data bytes.

The TCAP library uses the error fields to log any encode or decode errors the to ssap’s logfile.

2.2.1.2 Error codes for ASN.1 codec

The ASN.1 encoder and decoder functions return the following error codes, all of which are
small negative integers:

ACU_ASN1_ERROR_BAD_TAG Universal TAG must (not) be constructed.

ACU_ASN1_ERROR_TOOLONG Encoded data would be too long.

ACU_ASN1_ERROR_TOOCONSTRUCTED Too many levels of constructed ASN.1.

ACU_ASN1_ERROR_BAD_DATA Data length invalid for specified tag.

ACU_ASN1_ERROR_BAD_LENGTH Data item longer than data in buffer.

ACU_ASN1_ERROR_BAD_CODE Invalid multi-byte tag value.

ACU_ASN1_ERROR_NOTCONSTRUCTED Not inside a constructed item.

ACU_ASN1_ERROR_NOMEMORY malloc() failed.

ACU_ASN1_ERROR_BAD_MAGIC Supplied address isn’t a acu_asn1_buf_t structure.

ACU_ASN1_ERROR_TRUNCATED User supplied buffer too short.

MAN1201 Revision 6.16.1 PUBLIC Page 54

ACU_ASN1_ERROR_FIELD_MISSING Mandatory field absent.

ACU_ASN1_ERROR_FIELD_UNEXPECTED Field not in ASN.1 definition.

ACU_ASN1_ERROR_DEFN_ERROR Supplied definition doesn't match message.

ACU_ASN1_ERROR_DEFN_MISMATCH Supplied definition doesn't match values.

ACU_ASN1_ERROR_DEFN_NOT_FOUND Item not found.

2.2.1.3 ASN.1 tag values

ASN.1 defines four classes of tags: ‘Universal’, ‘Application specific’, ‘Context specific’ and
‘Private use’, each of which can be qualified as ‘constructed’ – meaning that the data part is
itself ASN.1 encoded. The data format for each of the Universal types is defined by the
standard, the format for the other classes will be that of one of the Universal types – but can
be ‘octetstring’ to allow for arbitrary data. The encoding scheme is independent of the class
(only the interpretation of the data is defined for Universal). See also Appendix D:

The tag value the application passes to the encoder (and gets back from the decoder) has the
‘class’, the ‘constructed’ flag and 24 bits of tag value in a single 32bit quantity. The least
significant 8 bits are the first (usually the only) byte written to the buffer, the most significant
24 contain the tag code itself (which is also in the least significant 5 bits for small values).

The following are defined to help the application handle the constants:

ACU_ASN1_UNI(code) Primitive universal tag with value ‘code’.

ACU_ASN1_APP(code) Primitive application tag with value ‘code’.
ACU_ASN1_CTX(code) Primitive context specific tag with value ‘code’.
ACU_ASN1_PRV(code) Primitive private tag with value ‘code’.
ACU_ASN1_CONS_UNI(code) Constructed universal tag with value ‘code’.

ACU_ASN1_CONS_APP(code) Constructed application tag with value ‘code’.
ACU_ASN1_CONS_CTX(code) Constructed context specific tag with value ‘code’.
ACU_ASN1_CONS_PRV(code) Constructed private tag with value ‘code’.

ACU_ASN1_GET_TAG_CODE(tag) Returns tag code.
ACU_ASN1_GET_TAG_CLASS(tag) Returns tag class.
ACU_ASN1_GET_TAG_CONSTRUCTED(tag) Returns non-zero if the tag is ‘constructed’.

The following constants are defined, the values match those from X.690:

Tag classes:

ACU_ASN1_TAG_UNIVERSAL 0x00 format defined by the standard.
ACU_ASN1_TAG_APPLICATION 0x40 format defined by the application.
ACU_ASN1_TAG_CONTEXT 0x80 format depends on the location of the tag.
ACU_ASN1_TAG_PRIVATE 0xc0 format defined elsewhere (used by ANSI TCAP).

Tag qualifier:
ACU_ASN1_TAG_CONSTRUCTED 0x20 data is ASN.1 BER encoded.

Universal tag codes:

ACU_ASN1_BOOLEAN 0x01

ACU_ASN1_INT 0x02

ACU_ASN1_BITSTRING 0x03

ACU_ASN1_OCTETSTRING 0x04

ACU_ASN1_NULL 0x05

ACU_ASN1_OBJ_ID 0x06

ACU_ASN1_OBJ_DESC 0x07

ACU_ASN1_EXTERNAL 0x08

ACU_ASN1_REAL 0x09

ACU_ASN1_ENUMERATED 0x0a

ACU_ASN1_SEQ 0x10

ACU_ASN1_SET 0x11

Note Tag value above 2^24-1 are not supported.

MAN1201 Revision 6.16.1 PUBLIC Page 55

2.2.2 Common functions

2.2.2.1 acu_asn1_buf_init
acu_asn1_buf_t *acu_asn1_buf_init(acu_asn1_buf_t *a1b, const unsigned char

*buf, unsigned int len, unsigned int flags)

Purpose

This function initialises the buffer control structure used by the ASN.1 encoder and decoder.

Parameters

a1b Structure to initialise. If NULL the structure will be allocated using malloc().

buf Address of buffer to use. If NULL the buffer will be allocated using malloc()

buf is defined const so that a const buffer can be passed to the decoder.

len Number of bytes in buffer, initial size if buf is NULL (when the buffer will be

extended as necessary).
flags Bitwise OR of:

ACU_A1BF_REINIT: re-use existing buffer.

ACU_A1BF_LOG_STERR: report any errors directly to stderr.

ACU_A1BF_DEFINITE_LEN: use fixed length encoding for all constructed items.

Return value

The address of an initialised acu_asn1_buf_t structure, or NULL if malloc() fails.

Note Applications should get acu_asn1_buf_init() to allocate the structure so that they are not dependant

upon the version of the header file used to compile the program.

2.2.2.2 acu_asn1_buf_free
void acu_asn1_buf_free(acu_asn1_buf_t *a1b)

Purpose

This function frees any memory allocated to a1b, including a1b itself.

2.2.2.3 acu_asn1_strerror
const char *acu_asn1_strerror(int rval, unsigned int flags);

Purpose

This function returns a text string that describes an ASN.1 encoder/decoder error code.

Parameters

rval ASN.1 encoder error number (one of ACU_ASN1_ERROR_xxx).

flags 0 => return descriptive text.

1 => return the C name; one of the ”ACU_ASN1_ERROR_xxx” strings.

Return value

A pointer to a static const string describing the error, unless the error number is unknown in
which case the address of a static array filled with the text “error %d unknown” is returned.

The error text strings are defined by the ACU_ASN1_ERRORS define in tcap_asn1_codec.h.

2.2.2.4 acu_asn1_fmt_errmsg
void acu_asn1_fmt_errmsg(acu_asn1_buf_t *a1b, char *buf, int buflen);

Purpose

This function writes a description of the first decode (or encode) error from a1b into buf.

Parameters

a1b Control structure on which error occurred.

buf Buffer to contain error message, will be ‘\0’ terminated.

buflen Size of buf in bytes, suggested minimum 160 bytes.

MAN1201 Revision 6.16.1 PUBLIC Page 56

2.2.3 ASN.1 Encoder Functions

The ASN.1 encoder functions all add the given item to the buffer. They correctly encode the
tag and length bytes, and then copy in the user specified data.

These functions return an error on failure, but are very unlikely to fail except due to coding
errors or if malloc() fails. Instead of checking the result of each call, the program can check

whether a1b->a1b_error is non-zero after completing the encoding.

The library remembers the number of constructed items, and the start point for a small
number (currently 16) so that constructed items can use the definite length format.

Many of the encoding routines are equivalent to calls to acu_asn1_put_octetstring() but

have different arguments; all can be used for any ASN.1 data type.

The tag values should be generated using one of the ACU_ASN1_xxx(code) defines.

Appendix D: contains a brief description of the format of ASN.1 BER encoded data.

2.2.3.1 acu_asn1_put_constructed
int acu_asn1_put_constructed(acu_asn1_buf_t *a1b, unsigned int tag);

Purpose

This function starts the encoding of a constructed item, writing the ASN.1 tag byte(s) and an
indefinite length mark (which may be overwritten with the actual length by
acu_asn1_put_end_constructed).

The ACU_ASN1_TAG_CONSTRUCTED bit is always set in the supplied tag.

Parameters

a1b Control structure for the request.

tag Tag to be encoded.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.3.2 acu_asn1_put_end_constructed
int acu_asn1_end_constructed(acu_asn1_buf_t *a1b);

Purpose

This function terminates the encoding of a constructed item, either replacing the indefinite
length written by acu_asn1_put_constructed() with the actual length, or writing an indefinite

length terminator.

Normally the definite length encoding is used for lengths less than 128, and the indefinite
length encoding for longer items.

If the ACU_A1BF_DEFINITE_LEN flag is set in a1b_flags, and the length is greater than 127,

then the data will be copied down the buffer to allow a multi-byte definite length field be
written. This gives a shorter encoding for lengths from 128 to 255 bytes.

Note TCAP applications can use the enc_def_len configuration parameter to set this flag.

Parameters

a1b Control structure for the request.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 57

2.2.3.3 acu_asn1_put_end_all_constructed
int acu_asn1_end_all_constructed(acu_asn1_buf_t *a1b, int depth);

Purpose

This function terminates the encoding of multiple constructed items. It calls
acu_asn1_end_constructed() until there are depth levels of constructed items.

Parameters

a1b Control structure for the request.

depth Required depth of construction.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.3.4 acu_asn1_put_int
int acu_asn1_put_int(acu_asn1_buf_t *a1b, unsigned int tag, int value);

Purpose

This function encodes a signed integer. One, two, three or four bytes may be needed
depending on the actual value.

Parameters

a1b Control structure for the request.

tag Tag to be encoded.

value Value to be encoded.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.3.5 acu_asn1_put_unsigned
int acu_asn1_put_unsigned(acu_asn1_buf_t *a1b, unsigned int tag, unsigned int

value, unsigned int length);

Purpose

This function encodes the least significant bits of an unsigned 32bit integer in the specified
number of bytes.

High bits of the supplied value are silently ignored.

Parameters

a1b Control structure for the request.

tag Tag to be encoded.

value Value to be encoded.

length Number of bytes to encode (0 to 4).

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 58

2.2.3.6 acu_asn1_put_octet_8
int acu_asn1_put_octet_8(acu_asn1_buf_t *a1b, unsigned int tag, unsigned int

val1, unsigned int val2);

Purpose

This function encodes two 32bit integers as eight bytes.

This function exists in order to encode ANSI transaction-ids.

Parameters

a1b Control structure for the request.

tag Tag to be encoded.

val1 First 32 bits of value to be encoded.

val2 Second 32 bits of value to be encoded.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.3.7 acu_asn1_put_bits32
int acu_asn1_put_bits32(acu_asn1_buf_t *a1b, unsigned int tag, unsigned int

val, unsigned int len);

Purpose

This function encodes a bitstring of 1 to 32 bits from an integer value.

Note In line with the ASN.1 specification, the first bit has value 0x80.

Parameters

a1b Control structure for the request.

tag Tag to be encoded.

val Data to be encoded.

len Number of bits to be encoded (1 to 32).

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.3.8 acu_asn1_put_bitstring
int acu_asn1_put_bitstring(acu_asn1_buf_t *a1b, unsigned int tag, const void

*buf, unsigned int len);

Purpose

This function encodes the given data as a bitstring.

Parameters

a1b Control structure for the request.

tag Tag to be encoded.

buf Pointer to data to be encoded.

len Number of bits to be encoded.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 59

2.2.3.9 acu_asn1_put_octetstring
int acu_asn1_put_octetstring(acu_asn1_buf_t *a1b, unsigned int tag, const

void *buf, unsigned int len);

Purpose

This function encodes the given data as an octetstring.

The constructed bit is not cleared from the tag, so this function can be used to add a
constructed item from a buffer containing its fields.

Parameters

a1b Control structure for the request.

tag Tag to be encoded.

buf Pointer to data to be encoded.

len Number of bytes to be encoded.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.3.10 acu_asn1_put_raw_octets

int acu_asn1_put_raw_octets(acu_asn1_buf_t *a1b, const void *buf, unsigned

int len);

Purpose

This function copies the given data into the target buffer. The caller is responsible for ensuring
that it is valid ASN.1

Parameters

a1b Control structure for the request.

buf Pointer to data to be copied.

len Number of bytes to be copied.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.3.11 acu_asn1_put_space
void *acu_asn1_put_space(acu_asn1_buf_t *a1b, unsigned int len);

Purpose

This function allocates space in the target buffer, returning a pointer to the space. The caller
can then copy the required ASN.1 into the buffer area.

Note The address returned must not be used after any other encoding function is called.

Parameters

a1b Control structure for the request.

len Number of bytes to be allocate.

Return value

Pointer to the allocated space if successful, NULL on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 60

2.2.3.12 acu_asn1_encode_object_id_str/int
int acu_asn1_encode_object_id_str(unsigned char *buf, int buflen, const char

*id_str);

int acu_asn1_encode_object_id_int(unsigned char *buf, int buflen, ...);

Purpose

These functions convert an ASN.1 object identifier to its binary form in the user-supplied
buffer.
acu_asn1_encode_object_id_str() converts from a string of numbers separated by dots,

acu_asn1_encode_object_id_int() converts from the list of numbers passed as arguments,

terminating on a argument of ~0u.

For example: both:
 acu_asn1_encode_object_id_str(buf, sizeof buf, "0.0.17.773.1.1.1")

and
 acu_asn1_encode_object_id_int(buf, sizeof buf, 0, 0, 17, 773, 1, 1, 1, ~0u)

generate the same 7 bytes {0x0, 0x11, 0x86, 0x5, 0x1, 0x1, 0x1} of a TCAP

‘Dialogue-as-id’ (see table 37/Q.773).

The encoded object identfier does not contain an ASN.1 type and length, these will normally
be added by a call to acu_asn1_put_octetstring().

Parameters

buf Buffer area in which to write the encoded object identifier.

buflen Maximum size of encoded object identifier.

id_str String form of object identifier to convert.

Return value

The number of bytes written into buf. If the encoded object identifier is longer than maxlen

then it is silently truncated.

MAN1201 Revision 6.16.1 PUBLIC Page 61

2.2.4 ASN.1 Decoder functions

The ASN.1 decoder functions process an input buffer sequentially (each function advances
the read pointer). The maximum depth of constructed items is limited to 32, of which 16 may
have definite length. Deeply constructed ASN.1 can be decoded in stages by using
acu_asn1_get_reference().

Any ASN.1 formatting errors (e.g.: a length that spans the end of the buffer) are reported by
the individual routines. The first such error is saved in the a1b_error fields of the

acu_asn1_buf_t structure.

2.2.4.1 acu_asn1_get_tag_len
int acu_asn1_get_tag_len(acu_asn1_buf_t *a1b, int *length);

Purpose

This function decodes the header of the next ASN.1 item.

Follow with a call to one of the other acu_asn1_get_xxx() functions to obtain the item’s

value, or call acu_asn1_get_tag_len() again to decode the contents of a constructed item.

The returned tag value is encoded as if by the ACU_ASN1_xxx(code) or

ACU_ASN1_xxx_CONS(code) defines. The ACU_ASN1_GET_TAG_xxx(tag) defines can be used

to extract the sub-fields (e.g., for diagnostic prints).

Parameters

a1b Control structure for the request.

length Address of where the item length will be written to.
This will be ACU_ASN1_INDEFINITE_LENGTH for indefinite length constructed items.

Return value

Zero with length zero for end of constructed item, zero with length -1 for end of buffer,
ACU_ASN1_ERROR_xxx on failure, otherwise the tag value for the next item.

2.2.4.2 acu_asn1_get_reference
int acu_asn1_get_reference(acu_asn1_buf_t *a1b, int data_only, const unsigned

char **bufptr);

Purpose

This function returns the address and length of an item. The item may be primitive or
constructed.

Parameters

a1b Control structure for the request.

data_only If non-zero bufptr will point to the first data byte, if zero it will point to the first

byte of the ASN.1 type field.
bufptr Address of where a pointer to the data will be written.

Return value

Length of the item if successful, ACU_ASN1_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 62

2.2.4.3 acu_asn1_get_int
int acu_asn1_get_int(acu_asn1_buf_t *a1b, int *value);

Purpose

This function obtains a signed integer value. The length of the ASN.1 field must be between 1
and 4.

Parameters

a1b Control structure for the request.

value Address of where the data value will be written.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.4.4 acu_asn1_get_unsigned
int acu_asn1_get_unsigned(acu_asn1_buf_t *a1b, unsigned int *value);

Purpose

This function obtains a zero to four-byte value as an unsigned 32-bit integer.

Parameters

a1b Control structure for the request.

value Address of where the data value will be written.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.4.5 acu_asn1_get_octet_8
int acu_asn1_get_octet_8(acu_asn1_buf_t_t *a1b, unsigned int *val_1, unsigned

int *val_2);

Purpose

This function obtains an eight-byte value as two 32-bit integers.

Parameters

a1b Control structure for the request.

val_1 Address of where the first 4 bytes of the data value will be written.

val_2 Address of where the second 4 bytes of the data value will be written.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.4.6 acu_asn1_get_octetstring
int acu_asn1_get_octetstring(acu_asn1_buf_t *a1b, void *buf, unsigned int

buflen);

Purpose

This function copies the parameter to the user-supplied buffer.

Parameters

a1b Control structure for the request.

buf Address of the buffer where the data will be written.

buflen Length of the buffer.

Return value

Length of the parameter if successful, ACU_ASN1_ERROR_xxx on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 63

2.2.4.7 acu_asn1_get_bits32
int acu_asn1_get_bits32(acu_asn1_buf_t *a1b, unsigned int *value);

Purpose

This function obtains the value of an ASN.1 bitfield that contains 1 to 32 bits returning the
value as an unsigned integer with zeros for all the absent bits.

Note In line with the ASN.1 specification, the first bit has value 0x80.

Parameters

a1b Control structure for the request.

value Address of where the data value will be written.

Return value

Zero if successful, ACU_ASN1_ERROR_xxx on failure.

2.2.4.8 acu_asn1_decode_object_id_str/int
int acu_asn1_decode_object_id_str(char *tgt, unsigned int tgtlen, const

unsigned char *obj, unsigned int objlen);

int acu_asn1_decode_object_id_int(unsigned int *tgt, unsigned int tgtlen,

const unsigned char *obj, unsigned int objlen);

Purpose

These functions convert the binary form of an ASN.1 object identifier to a NUL terminated
string or an array of integer values.

Parameters

tgt Address of the buffer where the decoded data will be written.

tgtlen Number of entries in the target array.

obj Address of the object identifier.

objlen Length of the object identifier.

Return value

On success acu_asn1_decode_object_id_str() returns zero and

acu_asn1_decode_object_id_int() returns the number of values written to tgt. On failure

both return one of the ACU_ASN1_ERROR_xxx values.

MAN1201 Revision 6.16.1 PUBLIC Page 64

2.3 Message definition based ASN.1 encoder and decoder
The functional encoder and decoder described in section 2.2 are simple and efficient, however
they do have drawbacks especially when trying to ensure that the ASN.1 matches that from a
protocol standard (e.g. GSM MAP). This is particularly true of the decoder, where the entire
message often needs to be validated before any of it is processed, and the sequence of
function calls to do this gets long and error-prone.

2.3.1 Codec data structures

The message definition based codec functions use a readonly message definition data
structure to define the format of an ASN.1 message. The encode and decode functions are
engines that use the definition to convert between a C structure and bytestream ASN.1.

To make this reliable the C structure and message definition must match exactly. Doing this
by hand would be very error prone so they are generated from the same source text using
pre-processor 'magic'.

Appendix E: gives a short explanation of the C pre-processor features used.

There are some examples in $ACULAB_ROOT/ss7/sample_code/tcap/asn1.

2.3.1.1 ASN.1 message definitions

Each ASN.1 message is described by a C pre-processor #define containing the sequence of

desired fields:
 #define msg_name(action) \

 action(FIELD_TYPE, (field_name, arguments)) \

 action(FIELD_TYPE, (field_name, arguments)) \

 ...

Each line (but notice the line continuations) describes a single ASN.1 field, the start or end of
a sequence/sequence of/choice, or is a reference to another message definition.

The field_name will be used for the name of a C struct/union member and may be printed in

error messages. The arguments usually include the asn1_tag (which has ACU_ASN1_

prepended, so will be CTX(n), INT, OCTETSTRING etc), and flags which should be 0 or

OPTIONAL (additional flag values may be defined in the future).

The valid FIELD_TYPEs and their arguments are:

Primitive numeric fields, encode to/from a1v_value, encoded if either a1v_value or

a1v_length non-zero.

INTEGER (field_name, asn1_tag, flags)

Signed integer, encoded in 1 to 4 bytes (regardless of a1v_length) depending on

the value.
UNSIGNED (field_name, asn1_tag, flags)

Unsigned integer, 0 to 4 bytes.
BOOLEAN (field_name, asn1_tag, flags)

Single byte value 0 or 1 (all non-zero values encode and decode as 1).
NULL (field_name, asn1_tag, flags)

Zero length item. If asn1_tag needs to be NULL, use UNI_NULL to avoid NULL being

expanded to ((void *)0).

BITS32 (field_name, asn1_tag, bit_width, flags)

Bit field with a default bit_width (0 to 32) bits. If a1v_length is greater than 32 the

encoder uses a1v_length - 32 bits. If a1v_value has high bits set, then the width

will be increased (to 8, 16, 24 or 32) in order to encode the full value.

Buffers, encoded from a1v_data if it is not NULL.

OCTETS (field_name, asn1_tag, flags)

Binary data encoded with the specified tag.
RAW (field_name, asn1_tag, flags)

An ASN.1 constructed item with the specified tag (the data excludes the tag).
ANY (field_name, flags)

MAN1201 Revision 6.16.1 PUBLIC Page 65

A single (primitive or constructed) ASN.1 item with any tag value (the data includes
the tag).

Non-primitive types, the field_name in the END line must match.

SEQ (field_name, asn1_tag, flags)

END_SEQ (field_name, end_flags)

This pair enclose the fields of a constructed item. Set end_flags to EXTENDABLE to

ignore additional fields (use when the ASN.1 definition ends with an ellipsis).
SEQ_OF (field_name, asn1_tag, flags)

END_SEQ_OF (field_name, max_reps, 0)

This pair defines and array with max_reps elements to hold the data for a ‘SEQUENCE

SIZE (1..max_reps) OF’. The enclosed item must be a single ASN.1 entity, either

primitive, a sequence, or a choice.
CHOICE (field_name, flags)

END_CHOICE (field_name, 0)

This pair define the fields of a ‘choice’. Only one of the enclosed fields can exist in
the actual ASN.1.

References to previously defined message definitions.
REF (field_name, ref_msg_name, flags)

A reference to another ASN.1 message definition is included at the current location.
The referenced item can be a single field, a sequence or a choice.

IMPLICIT (field_name, asn1_tag, ref_msg_name, flags)

As REF except the item is encoded with the tag specified.

DIR_REF (field_name, ref_msg_name, flags)

DIR_IMPL (field_name, asn1_tag, ref_msg_name, flags)

The definition of another ASN.1 message is expanded at the current location. The
referenced item must be a single field (not a sequence or choice), and, for DIR_REF,

not ANY or BITS32. These remove the C struct added by REF and IMPLICIT.

Primitive fields that are marked OPTIONAL will only be encoded if they contain user-specified

values (a1v_data non-NULL for OCTETS, RAW and ANY, otherwise a1v_length or a1v_integer

non-zero). Optional sequences and choices will not be encoded unless they contain at least
one field that would be encoded if all their fields were marked OPTIONAL.

A message definition must define a single ASN.1 field; it will either have just one field
definition, or the first will be a SEQ, SEQ_OF or CHOICE (and the last one the matching end).

As an optimisation the outer SEQ/SEQ_END can be omitted provided the definition is expanded

with ACU_A1T_SEQ_xxx()instead of ACU_A1T_xxx(). This optimisation doesn't change the

binary layout of the data structures, but saves a lot of typing.

2.3.1.2 Defining the message definition data

The structure for actual data that describes the message must be defined. Since this is
initialised data it would normally be defined in a .c (or .cpp) file.

The name of the data area is that of the message definition with _defn appended. The upper

case #define forms of the codec functions append this for you.

Depending on the definition, expand one of the following:
const ACU_A1T_DEFN(msg_name);

expands to const acu_a1t_defn_t msg_name_defn[] = { ... }; containing the

message definition data.
const ACU_A1T_SEQ_DEFN(msg_name);

as ACU_A1T_DEFN(msg_name) but adds the definitions for the omitted encapsulating

SEQ/END_SEQ.
const ACU_A1T_SEQ_EXT_DEFN(msg_name);

as ACU_A1T_SEQ_DEFN(msg_name) but sets the ACU_A1T_EXTENDABLE flag in the

END_SEQ().

If the message definition contains REF or IMPLICIT then the referenced structure needs to be

declared earlier in the source file.

MAN1201 Revision 6.16.1 PUBLIC Page 66

ACU_A1T_EXTERN_DEFN(msg_name); will generate the correct extern statement.

2.3.1.3 Defining the associated C structure

The C structure for the values of a message is defined by passing the name of the definition to
ACU_A1T_TYPE() (or ACU_A1T_SEQ_TYPE() if the outer SEQ/SEQ_END were omitted).

ACU_A1T_TYPE(msg_name) expands to struct msg_name { ... } where the structure

members depend on msg_name.

Most of the x(FIELD_TYPE, (arguments)) expand to: acu_a1t_value_t field_name;

acu_a1t_value_t has the following members:

const unsigned char *a1v_data Pointer to data to encode (non-numeric fields) /
decoded data (field name for CHOICE).

unsigned int a1v_length Length of encoded / decoded data.

int a1v_integer Numeric value, (ASN.1 tag for CHOICE).

The exceptions are:
REF and IMPLICIT expand to: struct ref_msg_name field_name;

SEQ and SEQ_OF expand to: struct { acu_a1t_value_t field_name_seq;

The decoder sets field_name_seq to reference the entire item.

The encoder will stop processing a SEQ_OF after an entry that encodes no actual data.

END_SEQ expands to: } field_name;.

END_SEQ_OF expands to: } field_name[max_reps];.

CHOICE expands to: acu_a1t_value_t field_name_choice; union {

The field field_name_choice is the discriminator for the union. The decoder sets the

a1v_integer field to the ASN.1 tag and the a1v_data to the name of the selected

field. The encoder will use the a1v_data or, if NULL, the a1v_integer field to

determine what to encode.
END_CHOICE expands to: } field_name;.

The codec functions treat these structures as arrays of acu_a1t_value_t; this means that

the function argument requires a cast, the upper case #define forms of the codec functions
contain the required cast.

ACU_A1T_TYPE(msg_name) and ACU_A1T_SEQ_TYPE(msg_name) only differ in that the latter

adds an additional member acu_a1t_value_t field_name_seq; at the start of the structure.

The nested struct and union types (for SEQ, SEQ_OF and CHOICE) are normally unnamed,

specifying #define ACU_A1T_NAMED_STRUCTS before including the asn1 header file causes

them to be named (allowing pointer types be defined).

The union member (added by END_CHOICE) is named. For C++ (or C if the compiler supports

anonymous unions) the union can be made anonymous by specifying #define

ACU_A1T_ANON_UNION before including the asn1 header file.

The ACU_A1T_TYPE(msg_name) expansion would typically follow the definition of msg_name in

the application's .h file.

MAN1201 Revision 6.16.1 PUBLIC Page 67

2.3.1.4 Example definition

A simple example will help explain things:

Q.773 defines a TCAP OPERATION (effectively) as:
 OPERATION ::= CHOICE {

 localValue INTEGER,

 globalValue OBJECT_IDENTIFIER }

and Invoke as:

 Invoke ::= SEQUENCE {

 invokeID INTEGER,

 linkedID [0] IMPLICIT INTEGER OPTIONAL,

 operationCode OPERATION,

 parameter ANY DEFINED BY operationCode OPTIONAL }

These can be converted mechanically to:

#define TCAP_OperationCode(x) \

 x(CHOICE, (operationCode, 0)) \

 x(INTEGER, (localValue, INT, 0)) \

 x(OCTETS, (globalValue, OBJ_ID, 0)) \

 x(END_CHOICE, (operationCode, 0))

#define TCAP_Invoke(x) \

 x(INTEGER, (invokeID, INT, 0)) \

 x(INTEGER, (linkedID, CTX(0), OPTIONAL)) \

 x(REF, (operationCode, TCAP_OperationCode, 0)) \

 x(ANY, (parameter, OPTIONAL))

The expansions of
ACU_A1T_TYPE(TCAP_OperationCode);

ACU_A1T_SEQ_TYPE(TCAP_Invoke);

give us the C structs:

struct TCAP_OperationCode {

 acu_a1t_value_t operationCode_choice;

 union {

 acu_a1t_value_t localValue;

 acu_a1t_value_t globalValue;

 } operationCode;

};

struct TCAP_Invoke {

 acu_a1t_value_t TCAP_Invoke_seq;

 acu_a1t_value_t invokeID;

 acu_a1t_value_t linkedID;

 struct TCAP_OperationCode operationCode;

 acu_a1t_value_t parameter;

};

which can easily be filled and inspected.

acu_asn1_trace_data() can be used to print out the C structure hierarchy.

The application will also need to expand ACU_A1T_DEFN(TCAP_OperationCode); and

ACU_A1T_SEQ_DEFN(TCAP_Invoke); but can ignore the contents.

MAN1201 Revision 6.16.1 PUBLIC Page 68

2.3.2 API functions

These functions interpret the message definition (treating it like a program) using the other
parameters as data. The structure containing the values to be encoded/decoded is defined by
the application using ACU_A1T_TYPE() (or ACU_A1T_SEQ_TYPE()) but is treated internally as

an array of acu_a1t_defn_t this usually requires a cast on the API calls. The structure’s size

is also passed in order to perform consistency tests.

An upper case version of these functions is provided (as a #define) that contains the required

casts, any sizeof requests and appends _defn to the name of the definition.

2.3.2.1 acu_asn1_encode_data
int acu_asn1_encode_data(acu_asn1_buf_t *a1b, const acu_a1t_defn_t *defn,

const acu_a1t_value_t *value, int value_len);

int ACU_ASN1_ENCODE_DATA(acu_asn1_buf_t *a1b, const acu_a1t_defn_t *defn,

const struct xxx *value);

Purpose

This function encodes the information from value into the buffer associated with the a1b

structure using the message definition in defn.

The a1b buffer must be in a valid state for the encode functions (see 2.2.3) to be called.

Parameters

a1b Control structure for the request, encoded data written at a1b->a1b_ptr.

defn Definition of ASN.1 message, generated by ACU_A1T_DEFN() or

ACU_A1T_SEQ_DEFN().

value Pointer to structure containing values to encode, the passed structure must be
of the type defined by expanding ACU_A1T_TYPE() or ACU_A1T_SEQ_TYPE() on

the same define that generated defn.

value_len sizeof *value, used to verfiy that value and defn match.

Return value

Zero on success; the a1b->a1b_ptr is advanced past encoded data. On failure one of the

ACU_ASN1_ERROR_xxx values.

If The function reports an error use acu_asn1_fmt_errmsg() (see 2.2.2.4) to get a printable

explanation of the error.

2.3.2.2 acu_asn1_decode_data
int acu_asn1_decode_data(acu_asn1_buf_t *a1b, const acu_a1t_defn_t *defn,

acu_a1t_value_t *value, int value_len);

int ACU_ASN1_DECODE_DATA(acu_asn1_buf_t *a1b, const acu_a1t_defn_t *defn,

struct xxx *value);

Purpose

This function decodes from the a1b structure into value using the message definition in defn.

Normally preceded by a call to acu_asn1_buf_init() that specifies the bounds of a receive

message, but may also be used to decode something that has just been encoded.

Parameters

a1b Control structure for the request. Data from a1b->a1b_buf to either

a1b->a1b_ptr or a1b->a1b_end is decoded.

defn Definition of ASN.1 message, generated by ACU_A1T_DEFN() or

ACU_A1T_SEQ_DEFN().

value Pointer to structure to contain the decoded values, the passed structure must
be of the type defined by expanding ACU_A1T_TYPE() or ACU_A1T_SEQ_TYPE()

on the same data as defn.

value_len sizeof *value, used to verfiy that value and defn match.

Return value

MAN1201 Revision 6.16.1 PUBLIC Page 69

Zero on success. On failure one of the ACU_ASN1_ERROR_xxx values.

If the function reports an error use acu_asn1_fmt_errmsg() (see 2.2.2.4) to get a printable

explanation of the error.

2.3.2.3 acu_asn1_trace_data
char *acu_asn1_trace_data(const acu_a1t_defn_t *defn,

const acu_a1t_value_t *value, int value_len, const char *hdr,

unsigned int flags);

char *ACU_ASN1_TRACE_DATA(const acu_a1t_defn_t *defn,

const struct xxx *value, const char *hdr, unsigned int flags);

Purpose

This function generates a textual representation of the ASN.1 defined by defn, with the

numeric values from value.

This function is useful for checking that the definitions are correct and that the application is
correctly coded as well as for tracing sent and received messages.

Parameters

defn Definition of ASN.1 message, generated by ACU_A1T_DEFN() or

ACU_A1T_SEQ_DEFN().

value Pointer to structure containing the values to trace, the passed structure must
be of the type defined by expanding ACU_A1T_TYPE() or ACU_A1T_SEQ_TYPE()

on the same data as defn.

value_len sizeof *value, used to verfiy that value and defn match.

hdr Text added to the start or every trace line, may be NULL.

flags Bitwise ‘or’ of the following:

 ACU_A1BF_TRACE_HEX Full hexdump (not just first 16 bytes).
 ACU_A1BF_TRACE_UNSET Trace fields that would not be encoded (no value

or unselected fields of choice).

 ACU_A1BF_TRACE_SEQS Trace all start of SEQ/SEQ_OF markers.

 ACU_A1BF_TRACE_ENDS Trace ‘end’ markers.
 ACU_A1BF_TRACE_NO_REF Don’t trace REF/IMPLICIT, enables TRACE_SEQS.

 ACU_A1BF_TRACE_RAW Trace some values in hex (for debugging the
library).

Setting ACU_A1BF_TRACE_UNSET with an all zero byte value buffer will show the C struct/union

names – useful for working out the field names themselves.

Setting ACU_A1BF_TRACE_NO_REF removes the traces for the C structures (adding in those for

SEQ) and gives a trace that is close to the original definition of the ASN.1. These are the
names that can be searched for with acu_asn1_find_defn().

Return value

Address of a malloced buffer containing the trace data, might be NULL if malloc() fails. The

caller must call acu_asn1_free_trace_data() to free the buffer.

Any error message from the encoder (used to generate the trace text) will be appended to the
output.

2.3.2.4 acu_asn1_free_trace_data
void acu_asn1_free_trace_data(char *trace_data);

Purpose

This frees the buffer allocated by acu_asn1_trace_data().

Note On windows, directly calling free(trace_data) will corrupt the malloc arena.

Parameters

trace_data Buffer to free.

MAN1201 Revision 6.16.1 PUBLIC Page 70

Return value

None.

2.3.2.5 acu_asn1_find_defn
int acu_asn1_find_defn(const acu_a1t_defn_t *defn,

const acu_a1t_value_t *value, const char *name, unsigned int ndx ,

const acu_a1t_defn_t **found_defn, const acu_a1t_value_t **found_value);

int ACU_ASN1_FIND_DEFN(const acu_a1t_defn_t *defn, const struct xxx *value,

const char *name, unsigned int ndx , const acu_a1t_defn_t **found_defn,

const acu_a1t_value_t **found_value);

Purpose

This function searches through the definition of an ASN.1 SEQ, SEQ_OF or CHOICE looking for a

field with the requested name.

If the requested name is that of the definition itself, then the end of the definition will be
located. This can be used to determine the size of the value structure. For SEQ_OF this will

find the end of the ndx’th element, set ndx to ~0u to find the end of the last one.

Locating fields by name is rather less efficient than indexing the C structure, but can be useful
in scripted and diagnostic tools.

The value parameter will typically need a cast since the function treats the C struct that the

application provides as an array.

Note The value parameter isn’t dereferenced so could be NULL if the intention is to find the offset of a field or

the size of the required data item.

Parameters

defn Definition of ASN.1 message, generated by ACU_A1T_DEFN() or

ACU_A1T_SEQ_DEFN().

value Pointer to structure containing the associated values, the passed structure
must be of the type defined by expanding ACU_A1T_TYPE() or

ACU_A1T_SEQ_TYPE() on the same data as defn.

name Field to search for, if NULL the definition that found_value references will be

located (not necessarily very useful).
ndx If the located item is a SEQ_OF this will index the sequence, otherwise

ignored.
found_defn On success will contain the address of definition information for the

parameter. May be NULL is the information isn’t wanted.

found_value On success will contain the address of value information for the parameter.
May be NULL is the information isn’t wanted.

Return value

Zero on success. On failure one of the ACU_ASN1_ERROR_xxx values.

If successful the found_value field can be used to read or write the value of a primitive ASN.1

field. The found_value and found_defn fields can be passed to acu_asn1_find_defn() to

search inside a constructed item.

MAN1201 Revision 6.16.1 PUBLIC Page 71

2.4 Thread support functions
Support functions are provided for multi-threaded applications. They provide an operating
independent interface to threads and thread synchronization functions.

Some of the functions are actually #defines within the header file tcap_synch.h. Because of

this, the function arguments may be evaluated more than once.

Additional error information may be available in an operating system dependant manner (e.g.:
by inspecting errno).

These functions are used within the TCAP library itself. They are exposed by its interface, and
portable applications may decide to use them internally.

On Linux systems the functions use the pthread library routines.

Note Do not cancel threads that are using the TCAP library.

2.4.1 Mutex functions

Mutexes are used to protect data areas from concurrent access by more than one thread.

The mutex functions are non-recursive under Linux. Under Windows an error message will be
output to stderr if a mutex is acquired recursively.

On Windows systems mutexes are implemented using the critical-section functions so that
acquiring an uncontested mutex does not require a system call.

2.4.1.1 acu_tcap_mutex_create
int acu_tcap_mutex_create(acu_tcap_mutex_t *mutex);

Purpose

This function initialises the mutex, allocating any operating system resources needed.

Parameters

mutex Address of the mutex to initialise.

Return value

Zero on success, -1 on failure.

2.4.1.2 acu_tcap_mutex_delete
void acu_tcap_mutex_delete(acu_tcap_mutex_t *mutex);

Purpose

This function frees all the operating system resources associated with the mutex. The mutex
must not be locked when it is deleted.

Parameters

mutex Address of the mutex delete.

MAN1201 Revision 6.16.1 PUBLIC Page 72

2.4.1.3 acu_tcap_mutex_lock
int acu_tcap_mutex_lock(acu_tcap_mutex_t *mutex);

Purpose

This function locks the mutex. If the mutex is already locked the thread will block until the
mutex is unlocked.

Parameters

mutex Address of the mutex to lock.

Return value

Zero on success, -1 on failure.

2.4.1.4 acu_tcap_mutex_trylock
int acu_tcap_mutex_trylock(acu_tcap_mutex_t *mutex);

Purpose

This function attempts to lock the mutex. If the mutex is already locked then it will return
immediately with a non-zero return value.

Parameters

mutex Address of the mutex to lock.

Return value

Zero on success, -1 on failure.

2.4.1.5 acu_tcap_mutex_unlock
void acu_tcap_mutex_unlock(acu_tcap_mutex_t *mutex);

Purpose

This function unlocks the mutex. A mutex can only be unlocked by the thread that locked it

Parameters

mutex Address of mutex to unlock.

MAN1201 Revision 6.16.1 PUBLIC Page 73

2.4.2 Condition variable functions

Condition variables allow one thread to wait until signalled by a different thread. To avoid
timing windows all accesses to a condition variable must be protected by the same mutex.

Under Windows, a condition variable is implemented using two manual reset events that are
used alternately, with the last thread to exit resetting the event. This avoids any problems
associated with PulseEvent() and kernel mode APC. It also allows the mutex to be

implemented using the critical section functions – avoiding a system call when the mutex is
available.

2.4.2.1 acu_tcap_condvar_create
int acu_tcap_condvar_create(acu_tcap_cond_t *condvar);

Purpose

This function initialises the condition variable, allocating any operating system resources
needed.

Parameters

condvar Address of the condition variable to initialise.

Return value

Zero on success, -1 on failure.

2.4.2.2 acu_tcap_condvar_delete
void acu_tcap_condvar_delete(acu_tcap_cond_t *condvar);

Purpose

This function frees the operating system resources allocated to the condition variable. No
threads must be waiting for a condition variable when it is deleted.

Parameters

condvar Condition variable to delete.

MAN1201 Revision 6.16.1 PUBLIC Page 74

2.4.2.3 acu_tcap_condvar_wait
int acu_tcap_condvar_wait(acu_tcap_cond_t *condvar, acu_tcap_mutex_t *mutex);

Purpose

This function waits for the condition variable to be signalled. The mutex is released atomically

with the wait and re-acquired before the function returns.

Parameters

condvar Condition variable to wait for.
mutex Mutex associated with this condvar.

Return value

Zero on success, -1 on failure.

2.4.2.4 acu_tcap_condvar_wait_tmo
int acu_tcap_condvar_wait_tmo(acu_tcap_cond_t *condvar,

acu_tcap_mutex_t *mutex, int millisecs);

Purpose

This function waits for the condition variable to be signalled. If the condition variable isn’t
signalled within the specified timeout it will return –1.

Note Since the pthread_cond_timedwait() takes an absolute timeout the Linux code has to add the

current time to the timeout. The pthread implementation almost certainly subtracts it before sleeping!

Parameters

condvar Condition variable to wait for.
millisecs The maximum time to wait in milliseconds.
mutex Mutex associated with this condvar.

Return value

Zero on success, -1 on failure or if the wait times out.

2.4.2.5 acu_tcap_condvar_broadcast
int acu_tcap_condvar_broadcast(acu_tcap_cond_t *condvar);

Purpose

This function signals the condition variable. All threads blocked in acu_tcap_condvar_wait()

or acu_tcap_condvar_wait_tmo() on the specified condition variable are woken up.

The calling thread must hold the mutex associated with the condvar.

Parameters

condvar Address of the condition variable to signal.

Return value

Zero on success, -1 on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 75

2.4.3 Thread functions

2.4.3.1 acu_tcap_thread_create
int acu_tcap_thread_create(acu_tcap_thrd_id_t *id,

ACU_TCAP_THREAD_FN((*fn), arg), void *fn_arg);

Purpose

This function creates a new thread to run the caller supplied function. The thread function can
be defined portably as:

static ACU_TCAP_THREAD_FN(fn, arg)

{

 ...

 acu_tcap_thread_exit(1, 0);

 return 0;

}

Parameters

id Data area to hold thread identification.

fn Function to call in the new thread.

fn_arg Argument to pass fn.

Return value

Zero on success, -1 on failure.

2.4.3.2 acu_tcap_thread_exit
void acu_tcap_thread_exit(int detach, unsigned int rval);

Purpose

This function causes the current thread to terminate itself.

Parameters

detach If non-zero the thread will exit and free all associated system resources.
If zero acu_tcap_thread_join() must be called to free the resources.

rval Return value to pass to the caller of acu_tcap_thread_join().

If a thread function returns (instead of calling acu_tcap_thread_exit) then it is not detached

and acu_tcap_thread_join must be called to free the operating system resources.

2.4.3.3 acu_tcap_thread_join
void acu_tcap_thread_join(acu_tcap_thrd_id_t *id, unsigned int *rval);

Purpose

This function waits for the specified thread to terminate, saves the thread return code, and
frees all the system resources associated with the thread.

Parameters

id Thread identification data for the thread (from acu_tcap_thread_create) .

rval Pointer to a where the thread return code will be written.

2.4.3.4 acu_tcap_thread_id
int acu_tcap_thread_id(void);

Purpose

This function returns an operating system supplied identifier for the current thread.

Return value

The operating system identifier for the current thread. This has the same value as the
att_thrd_id field of the acu_tcap_thrd_id_t structure.

MAN1201 Revision 6.16.1 PUBLIC Page 76

2.4.4 Thread Pool functions

Thread pools allow an application to execute a function in a different thread without the
overhead of creating a thread, and restricting the total number of threads by queuing the
request until a thread becomes available.

There is no requirement to use these functions; an application can handle threads itself.

2.4.4.1 acu_tcap_thread_pool_create
acu_tcap_thrd_pool_t *acu_tcap_thread_pool_create(unsigned int min_threads,

unsigned int max_threads, unsigned int max_queued_jobs);

Purpose

This function creates a thread pool.

Parameters

min_threads Minimum (initial) number of threads to create.

max_threads Maximum number of threads.

max_queued_jobs Maximum permitted length of pending job list.

Return value

The address of the pool; or NULL if the pool cannot be created.

The min_threads parameter allows a thread pool to be populated with the indicated number

of threads before acu_tcap_thread_pool_create() returns. If min_threads is zero, the

thread pool is initially empty.

The max_threads parameter allows a thread pool to be constrained to no more than the

indicated number of threads. If max_threads is large, the availability of system resources will

also constrain thread pool growth.

The default behaviour of acu_tcap_thread_pool_submit()is to add the user-supplied job to

a list of pending jobs if an idle thread is not available. The max_queued_jobs parameter limits

the maximum length of this pending job list.

2.4.4.2 acu_tcap_thread_pool_destroy
int acu_tcap_thread_pool_destroy(acu_tcap_thrd_pool_t *pool);

Purpose

This function destroys a thread pool.

Parameters
pool The pool address.

Return value

Zero if successful, ACU_TCAP_ERROR_BAD_THREAD_POOL on failure.

The call to acu_tcap_thread_pool_destroy() blocks until any active user-supplied jobs

have returned.

2.4.4.3 acu_tcap_thread_pool_num_active
int acu_tcap_thread_pool_num_active(acu_tcap_thrd_pool_t *pool);

Purpose

This function returns the number of threads running user-supplied jobs.

Parameters

pool The pool address.

Return value

Zero if successful, ACU_TCAP_ERROR_BAD_THREAD_POOL on failure.

MAN1201 Revision 6.16.1 PUBLIC Page 77

2.4.4.4 acu_tcap_thread_pool_num_idle
int acu_tcap_thread_pool_num_idle(acu_tcap_thrd_pool_t *pool);

Purpose

This function returns the number of idle threads in the pool.

Parameters

pool The pool address.

Return value

Zero if successful, ACU_TCAP_ERROR_BAD_THREAD_POOL on failure.

2.4.4.5 acu_tcap_thread_pool_num_jobs
int acu_tcap_thread_pool_num_jobs(acu_tcap_thrd_pool_t *pool);

Purpose

This function returns the number of jobs on the pool’s list of pending jobs.

Parameters

pool The pool address.

Return value

Zero if successful, ACU_TCAP_ERROR_BAD_THREAD_POOL on failure.

2.4.4.6 acu_tcap_thread_pool_submit
int acu_tcap_thread_pool_submit(acu_tcap_thrd_pool_t *pool,

void (*fn)(void *), void *arg, unsigned int flags);

Purpose

This function submits a user-supplied job to a thread pool.

If no idle threads are available (and the number of threads in the pool is below the limit set
during pool creation), some new threads will be added. If an attempt at pool growth fails to
produce an idle thread capable of handling the user’s job, the job will be added to the pool’s
list of pending jobs. The job list will be serviced in FIFO order as existing threads complete
their current jobs.

The above default behaviour may be modified by inclusion of the flags described below.

Parameters

pool The pool address.

fn Function to be called by a thread from the thread pool.
arg Argument to pass to fn.
flags A bitwise OR of zero or more of:
 ACU_TCAP_THREAD_POOL_F_BLOCKING If no idle threads are available, the call to

acu_tcap_thread_pool_submit() will block until

a thread becomes available.
 ACU_TCAP_THREAD_POOL_F_NO_JOB When no idle threads are available (and any

attempt at pool growth has failed), the function
and argument specified will not be added to the
pool’s list of outstanding jobs.

Return value

Zero if successful or one of the following on failure:
ACU_TCAP_ERROR_BAD_THREAD_POOL

ACU_TCAP_ERROR_THREAD_POOL_NO_FREE_THREADS

ACU_TCAP_ERROR_MALLOC_FAIL

MAN1201 Revision 6.16.1 PUBLIC Page 78

Appendix A: Building TCAP applications

A.1 Linux
The TCAP API header file includes all the necessary system headers.
Compile with –D_REENTRANT.

Link with –lpthread –Wl,--enable-new-dtags.

Link with –Wl,-rpath,$ACULAB_ROOT/lib64 to get the location of the libraries embedded in

the application image ($ACULAB_ROOT here must be expanded at program link time).

A.2 Windows
To obtain the correct definitions the symbol _WINSOCKAPI_ must be defined before

windows.h is included. One way to achieve this is to specify -D_WINSOCKAPI_= on the

compiler command line.

Since the TCAP library itself creates threads, the program must be compiled as a threaded
program. ie: build with -MT (or –MTd) not –ML.

The application must also include windows.h and winsock2.h before the TCAP API header

file.

MAN1201 Revision 6.16.1 PUBLIC Page 79

Appendix B: tcap_api.h

B.1 Error Codes
The error codes returned by the TCAP library functions are small negative integers. API
functions may return any of the error codes below, not just those identified in the section for
the API function itself.

In most cases more detailed information is written to the logfile.

ACU_TCAP_ERROR_SUCCESS

Call succeeded (guaranteed to be zero).
ACU_TCAP_ERROR_NO_COMPONENT

No more components in received message.
ACU_TCAP_ERROR_TIMEDOUT

Request timed out.
ACU_TCAP_ERROR_NO_MESSAGE

There are no messages on the specified queue.
ACU_TCAP_ERROR_NO_INFORMATION_AVAILABLE

Requested information isn’t available.
ACU_TCAP_ERROR_MALLOC_FAIL

The library failed to allocate memory for a data item.
Check the application for memory leaks.

ACU_TCAP_ERROR_NO_THREADS

The TCAP library failed to create a thread.
Check that the application isn’t using more threads than the operating system can
support.

ACU_TCAP_ERROR_BAD_TRANSACTION

The acu_tcap_trans_t parameter doesn’t reference a valid transaction data area.

ACU_TCAP_ERROR_BAD_SSAP

The acu_tcap_ssap_t parameter doesn’t reference a valid ssap data area.

ACU_TCAP_ERROR_BAD_MESSAGE

The acu_tcap_msg_t parameter doesn’t reference a valid message data area.

ACU_TCAP_ERROR_BAD_EVENT

The acu_tcap_event_t parameter doesn’t reference a valid event data area.

Note The above four errors are likely to be caused by the application using a stale pointer.
ACU_TCAP_ERROR_BAD_OS_EVENT

An internal function tried to use an invalid operating system event or file descriptor.
ACU_TCAP_ERROR_WRONG_MSG_TYPE

The message buffer isn’t the correct type for the called function.
ACU_TCAP_ERROR_ALREADY_CONNECTED

The ssap is already connected to (or is trying to connect to) SCCP.
ACU_TCAP_ERROR_NO_LOCAL_SSN

No local SCCP sub-system number has been set.
ACU_TCAP_ERROR_NO_LOCAL_POINTCODE

No local MTP3 pointcode has been set.
ACU_TCAP_ERROR_UNKNOWN_CONFIG_PARAM

Configuration parameter not known.
ACU_TCAP_ERROR_INVALID_CONFIG_VALUE

Invalid, or out of range, configuration parameter value.
ACU_TCAP_ERROR_CANNOT_OPEN_CONFIG_FILE

The configuration file cannot be opened.
ACU_TCAP_ERROR_BAD_TRANSACTION_STATE

The transaction isn’t in the correct state for the request.
ACU_TCAP_ERROR_INVOKE_ID_OUTSTATE

The operation state engine rejected the request because the specified invoke-id is
not in the correct state.

ACU_TCAP_ERROR_INVOKE_ID_IDLE

The operation state engine rejected the request because the specified invoke-id is

MAN1201 Revision 6.16.1 PUBLIC Page 80

not in use.
ACU_TCAP_ERROR_ASN1_ENCODING

An application supplied buffer isn’t valid ASN.1, or an error from the ASN.1
encoding functions.

ACU_TCAP_ERROR_INVALID_PROBLEM_TYPE

Requested reject problem doesn’t refer to a valid problem type.
ACU_TCAP_ERROR_INVALID_DIALOGUE_USERINFO

Supplied dialogue userinfo isn’t a valid ASN.1 external data item.
ACU_TCAP_ERROR_DIALOGUE_NOT_ALLOWED

The transaction state doesn’t allow a dialogue portion to be added to the current
message.

ACU_TCAP_ERROR_NO_REMOTE_TRANS_ID

The message requires a remote transaction-id, but none is available. E.g.: trying to
send a CONTINUE message on a newly created transaction.

ACU_TCAP_ERROR_INVALID_MSG_TYPE

The specified message type is invalid for the TCAP variant.
ACU_TCAP_ERROR_BUILD_SEQUENCE

The application is attempting to build a TCAP message in an order other than that
of the final message. E.g.: Trying to define the dialogue portion after a component
has been added.

ACU_TCAP_ERROR_INVALID_DIALOGUE_USER_SYNTAX
The received dialogue portion of an abort message isn’t an ASN.1 external data
item, or is one of the TCAP pdus.

ACU_TCAP_ERROR_BAD_ASN1
Received message is invalidly encoded ASN.1.

ACU_TCAP_ERROR_BAD_PROTOCOL_VERSION
None of the proposed protocol versions are supported.

ACU_TCAP_ERROR_BAD_TCAP_MSG
The received message isn’t encoded according to the protocol rules.

ACU_TCAP_ERROR_BAD_LOCAL_TID
The received message doesn’t contain a valid local transaction identifier. All local
transaction identifiers are 4 bytes long.

ACU_TCAP_ERROR_BAD_REMOTE_TID
The received message either doesn’t contain a remote transaction identifier,
contains one when it should not, or contains a different one from that already saved
for the local transaction.

ACU_TCAP_ERROR_UNKNOWN_MESSAGE_TYPE
The received message isn’t a valid TCAP message.

ACU_TCAP_ERROR_THREAD_POOL_NO_FREE_THREADS
No free threads, or thread pool job queue full.

ACU_TCAP_ERROR_BAD_THREAD_POOL
The acu_tcap_thrd_pool_t parameter doesn’t reference a valid thread pool data

area.

Note Do not confuse the above error codes with call control error codes that have the same numeric values.

MAN1201 Revision 6.16.1 PUBLIC Page 81

B.2 SCCP addresses

The acu_sccp_addr_t structure has the following fields:

sa_flags bitwise ‘or’ of the following:
 ACU_SCCP_SA_FLAGS_ROUTE_SSN route on SSN (even if global title present)
 ACU_SCCP_SA_FLAGS_RAW_GT raw global title (unknown sa_gti)

sa_valid indicates which address elements contain valid data, bitwise ‘or of:
 ACU_SCCP_SA_VALID_GTI
 ACU_SCCP_SA_VALID_SSN
 ACU_SCCP_SA_VALID_PC
 ACU_SCCP_SA_VALID_RL_PC
 ACU_SCCP_SA_VALID_TT
 ACU_SCCP_SA_VALID_NP
 ACU_SCCP_SA_VALID_ES
 ACU_SCCP_SA_VALID_NAI

sa_gti global title indicator (4 bits)

sa_ssn subsystem number

sa_pc SS7 signalling pointcode for/from SCCP address buffer

sa_rl_pc SS7 signalling pointcode from MTP3 routing label

sa_tt translation type (8 bits)

sa_np numbering plan (4 bits)

sa_es encoding scheme (4 bits)

sa_nai nature of address indicator (7 bits)

sa_gt.sag_num number of digits in sa_gt.sag_digits

sa_gt.sag_digits[] global title address information, two digits per byte

The global title indicator placed in outbound messages depends on which of the ss_tt,

sa_np, sa_es and sa_nai fields are marked as valid, not on the value of sa_gti.

The sa_gt.sag_num field contains the number of digits (not bytes) in the global title. The

application need not care about the odd/even field of the encoded global title.

The sa_rl_pc field contains the pointcode from the MTP3 routing label of received messages,

it has no effect on outward messages.

When routing using global titles, if the sa_pc field is set then the SCCP driver will not perform
global title translation and will send the message to that point code, if the sa_pc is not set then
global title translation is performed.

The SCCP protocol constrains the valid combinations of TT, NP, ES and NAI. NP and ES
must always be specified together. NAI is not valid for ANSI SCCP, and, for ITU and China
SCCP, must be specified on its own or with TT, NP and ES.

The first digit of the global title is encoded in the least significant 4 bits of
sa_gt.sag_digits[0] and the second digit in the most significant 4 bits. This matches the

protocol encoding, but is reversed from a normal hexdump of the address buffer.

MAN1201 Revision 6.16.1 PUBLIC Page 82

Appendix C: System limits
The following limits are inherent in the design of the TCAP product; however other constraints
(e.g. lack of memory) may apply first:

Dimension Limit Notes

Connections to an SCCP
system

4094 Also constrained by available server-side
resources.

Transactions per library ssap 983040 Costs a few kb per transaction.

Operations per transaction 256 No additional cost per operation.

Active timers per ssap None Timers are held in binary heap. Start and stop are
O(log active_timers).

MAN1201 Revision 6.16.1 PUBLIC Page 83

Appendix D: ASN.1 BER encoding
This section contains a brief description of the ASN.1 BER (Basic Encoding Scheme) used for
TCAP and associated protocols. For a complete definition refer to X.690 (formerly X.209).

BER encodes data in a byte aligned ‘type’, ‘length’, ‘value’ (TLV) manner, X.690 uses the term
‘identifier’ for the type and ‘contents’ for the value. The ’length’ is always exclusive – i.e.: the
‘identifier’ and ‘length’ bytes are excluded from the specified length

The ‘identifier’ field can specify that the ‘contents’ is further BER encoded data – i.e.: is a
‘constructed’ item. The ‘identifier’ and ‘length’ fields are usually a single byte, but the encoding
allows larger values to be described using multiple bytes. Constructed items can be marked
as having an ‘indefinite length’, in which case a terminating data item is used.

D.1 Basic encoding rules
Data items with small tags and short lengths are encoded as:

c l p t a g l e n g t h data bytes

Where:
cl Class of tag:
 00 Universal, data type and encoding is defined by X.680 and X.690.
 01 Application wide [APPLICATION n].
 10 Context specific [n].
 11 Private use [PRIVATE n] (Used by ANSI TCAP).
 The encoding rules do not depend on the class.
p 0 if primitive, 1 if constructed.
tag Identifier for data (zero to 30).
length Number of data bytes (zero to 127).

Tags larger than 30 are encoded by setting the tag bits of the initial byte to 31 and following it

with extra bytes. Each additional byte contains 7 bits of the tag value (most significant bits in
the first extra byte), all but the last extra byte having its most significant bit set. So a context-
specific primitive field with tag of 31 is encoded as 0x9f 0x1f, tag 127 as 0x9f 0x7f, and tag

128 as 0x9f 0x81 0x00 etc.

Lengths larger than 127 are encoded by setting the most significant bit of the length byte to a
1 and putting the number of bytes required to encode the length into the lower 7 bits. The
length itself then follows with 8 bits per byte and the most significant byte first. So a length of
128 is encoded as 0x81 0x80, 255 as 0x81 0xff, and 256 as 0x82 0x01 0x00 etc.

Constructed items can be encoded with an ‘indefinite length’. This is useful if the overall length
isn’t known when tag for the item is written. This is done by specifying 0x80 for the length byte

and using two zero bytes to terminate the constructed item. The TCAP library ASN.1 encoding
functions normally use the indefinite length form for all constructed items that exceed 127
bytes. The indefinite form uses one extra byte for lengths 128 to 255.

Note TCAP requires that definite length fields be encoded in their shortest form.

A data item might be defined as:

result [0] INTEGER,

Which is encoded ‘context specific’ ‘constructed’ 0, followed by the ‘universal’ coding for an
integer. Giving 0xa0 0x03 0x02 0x01 0x2a when result is 42 (or 0xa0 0x80 0x02 0x01 0x2a

0x00 0x00 if the indefinite length form is used).

More usually it would be defined as:

result [0] IMPLICIT INTEGER,

Which is encoded ‘context specific’ ‘primitive’ 0, followed by the data of the integer coding. i.e.:
0x80 0x01 0x2a.

MAN1201 Revision 6.16.1 PUBLIC Page 84

D.2 Universal tags
The common universal tags are:

0 Reserved for encoding indefinite length terminators.
1 Boolean One byte, 0 => false, other values => true.
2 Integer 2s compliment signed integer most significant byte first, encoded

in the minimum number of bytes.
3 Bitstring First byte indicates the number of unused bits in the last byte

[0..7]. Latter bytes contain bits with the 0x80 bit used first.
4 Octetstring Any sequence of bytes.
5 Null Length always zero, no data bytes.
6 Object Identifier See below.
8 External data See below.
10 Enumerated Encoded as an integer.
16 Sequence A constructed item where the data items have to appear in the

specified order.
17 Set A constructed item where the data items can appear in any order

and may be repeated.

X.690 allows octetstring and bitstring to be constructed (i.e.: made up of several concatenated
parts). However the TCAP specification requires that they be primitive.

D.2.1 Object Identifiers

Object identifiers are globally assigned hierarchic identifiers used for data structures and
protocols. In ASN.1 definitions they are typically specified as (for example):

{ itu-t recommendations q 773 modules (2) messages (1) version2 (2) }

Each field is converted to a number using the rules defined in Annex B of X.680. The latter
identifiers have the numeric value in parenthesis. The first identifier is one of itu-t (0), iso

(1) or joint-iso-itu-t (2). itu-t used to be ccitt.

If the first identifier is itu-t, the second is one of recommendation (0), question (1),

administration (2), network-operator (3), or identified-organization (4). For

recommendations the next identifier is based on the letter (with a => 1 and z => 26) and the

following one the number of the relevant document. Corporate bodies may have an object tree
subsidiary to the identified-organization identifier.

If the first identifier is iso, the second is one of standard (0), member-body (2) or

identified-organization (3).

The above example is thus the series of decimal numeric values 0, 0, 17, 773, 2, 1, 2. The
first two are converted to a single byte by multiplying the first by 40 and adding in the second.
Values greater than 127 are converted to multiple bytes by putting 7 bits into each byte and
setting the most significant bit of all but the last byte. So the data bytes that encode the above
example are 0x00 0x11 0x86 0x05 0x02 0x01 0x02.

D.2.2 External data

External data items are used to refer to ASN.1 definitions in other documents.
X.690 section 8.18 defines the external data type as:

[UNIVERSAL 8] IMPLICIT SEQUENCE {

 direct-reference OBJECT IDENTIFIER OPTIONAL,

 indirect-reference INTEGER OPTIONAL,

 data-value-descriptor ObjectDescriptor OPTIONAL,

 encoding CHOICE {

 single-ASN1-type [0] ABSTRACT-SYNTAX.&Type,

 octet-aligned [1] IMPLICIT OCTET STRING,

 arbitrary [2] IMPLICIT BIT STRING } }

In ITU TCAP they usually contain a direct reference to an object identifier that refers to a
standards document, and use the single-ASN.1-type encoding to encapsulate the relevant
data.

MAN1201 Revision 6.16.1 PUBLIC Page 85

Appendix E: C Pre-processor explained
The header files for the TCAP API make use of some little-used features of the C pre-
processor. This has been done in order to avoid error-prone replication of information, and to
ensure that sets of data, that would normally have to be defined separately, are always kept in
step. A simple example is defining the explanatory texts for error codes in the same place as
the error code itself. The message definitions of section 2.2.4 make heavy use of this.

Consider what happens when #define foo(x) x(args) is expanded: foo(bar) clearly

becomes bar(args). If we also have #define bar(args) then bar() is expanded AFTER

foo() allowing us to generate any text including args. So we have passed the name of one

#define as a parameter to a different #define.

If we replace the definition of foo with #define foo(x) x(args1) x(args2) then foo(bar)

is equivalent to bar(args1) bar(args2). This is useful because foo(baz) expands to

baz(args1) baz(args2) allowing us to feed the same set of arguments to more than one

#define.

A simple example:
 #define lights(x) x(red) x(orange) x(green)

 #define xx(colour) LIGHT_##colour,

 enum { lights(xx) NUM_LIGHTS };

 #undef xx

 #define xx(colour) #colour,

 static const char light_names[] = { lights(xx) };

 #undef xx

This expands to:
 enum { LIGHT_red, LIGHT_orange, LIGHT_green, NUM_LIGHTS };

 static const char light_names[] = { ”red”, ”orange”, ”green”, };

(We needed to add NUM_LIGHTS because a trailing comma isn’t valid in a C++ enum.)

Remember that # causes the parameter to be converted to a string and that ## causes

parameters to be concatenated.

In this case the enum definition would probably just follow the definition of lights (in the

header file), whereas the light_names array definition would more likely be in some C source

file associated with error messages and/or tracing.

The advantage of this is that, if we ever have to add another colour, adding it to the #define

automatically updates both definitions.

Compile time errors in these expansions can be difficult to locate, not helped by the very long
lines the expansions generate. Processing the pre-processor output through sed to break the

long lines can help somewhat, a suitable command is in the released tcap_asn1_codec.h

file.

MAN1201 Revision 6.16.1 PUBLIC Page 86

