

MANXXXX

Aculab SIP
programmer’s guide

Revision 6.7.2

MAN1763

MAN1763 PUBLIC 2

PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab plc and may be the
subject of patents pending or granted, and must not be copied or disclosed without prior
written permission. It should not be used for commercial purposes without prior agreement in
writing.

All trademarks recognised and acknowledged.

Aculab plc endeavours to ensure that the information in this document is correct and fairly
stated but does not accept liability for any error or omission.

The development of Aculab’s products and services is continuous and published information
may not be up to date. It is important to check the current position with Aculab plc.

Copyright © Aculab plc. 2018 all rights reserved.

Document Revision

Rev Date By Detail

1.0.0 31.11.05 DJL Initial release

1.0.1 20.02.06 DJL Typological changes only

1.1.0 06.07.06 SP Updates to support call redirect

1.2.0 15.11.06 SP Updates to include STUN, out of dialog and SRTP media
attributes. Re-worked the function
populate_media_answer() to allow for multiple media
streams

1.2.1 07.10.10 EBJ Updated to corporate fonts

1.2.2 20.10.10 DF Changed document name

1.2.3 16/12/10 NC Fixed link to example code

1.2.4 05/01/11 EBJ Hyperlinks removed

1.2.5 27/05/11 SWB STUN references removed

1.2.6 05/12/11 NC Updated document properties

6.7.0 10/03/17 NMC Added Forking

6.7.1 19/05/22 KGB Added enable_midcall_response_mask

6.7.2 13/03/24 ACP Format only

MAN1763 PUBLIC 3

CONTENTS

1 Introduction .. 5
1.1 Scope .. 6
1.2 Background to the Extended SIP API ... 7

2 SIP setups and clears ... 8
2.1 Incoming call with no early media – SDP in the INVITE. 8
2.2 Outgoing call with no early media – SDP in the INVITE. 12
2.3 Incoming call with early media – SDP in INVITE .. 14
2.4 Outgoing call with early media – SDP in the INVITE. ... 18
2.5 Incoming call with no SDP in the INVITE .. 19
2.6 Outgoing call with no SDP in the INVITE .. 22
2.7 Incoming call with black hole in SDP ... 24
2.8 Outgoing call with black hole in SDP ... 26
2.9 Incoming call with no media in SDP .. 27
2.10 Outgoing call with no media in SDP .. 30
2.11 Outgoing call with early media and forking – SDP in the INVITE. 32
2.12 Call cleared locally .. 33
2.13 Call cleared remotely ... 35

3 3pcc - mid call flows ... 36
3.1 Aculab sending re-INVITE with SDP (UAC) .. 36
3.2 Aculab receiving re-INVITE with SDP (UAS) .. 38
3.3 Aculab sending re-INVITE with black hole SDP (UAC).. 40
3.4 Aculab receiving re-INVITE with black hole SDP (UAS) 42
3.5 Aculab sending re-INVITE with no SDP (UAC) .. 43
3.6 Aculab receiving re-INVITE with no SDP (UAS) ... 44
3.7 Aculab rejecting a new media offer (UAS) .. 45
3.8 Handling a rejected mid call media offer (UAC) ... 47

4 Supplementary services.. 48
4.1 Hold – Aculab initiating hold request ... 48
4.2 Hold – Aculab responding to hold request .. 49
4.3 Reconnect – Aculab initiating reconnect request ... 50
4.4 Reconnect – Aculab responding to reconnect request 50
4.5 Transfer – Aculab initiating transfer ... 51
4.6 Transfer – Aculab responding to transfer request.. 53
4.7 Transfer – Aculab acting as transfer target ... 55

5 SIP mid call messages ... 58
5.1 Sending an INFO request ... 58
5.2 Receiving an INFO request .. 61

6 Miscellaneous call flows ... 63
6.1 Redirect an incoming call (send a 3xx response) ... 63
6.2 Outgoing call redirected (handle a 3xx response) .. 64

7 SIP out of dialog messages ... 66
7.1 Sending an OPTIONS request .. 66
7.2 Receiving an OPTIONS request .. 69

Appendix A: Handling dynamic memory allocation ... 73

MAN1763 PUBLIC 4

A.1 clone_media_offer ... 73
A.2 clone_media_descriptions ... 74
A.3 clone_payloads ... 75
A.4 clone_audio_video_payloads ... 76
A.5 clone_image_payloads .. 77
A.6 clone_control_payloads ... 78
A.7 clone_misc_attributes ... 79
A.8 free_media_offer .. 80
A.9 free_media_descriptions .. 81
A.10 free_payloads .. 82
A.11 free_audio_video_payloads .. 83
A.12 free_image_payloads ... 84
A.13 free_misc_attributes .. 85
A.14 free_string_list .. 85

Appendix B: Miscellaneous helper functions ... 86
B.1 populate_media_offer .. 86
B.2 populate_media_answer ... 87
B.3 modify_media_descriptions .. 89
B.4 get_acceptable_payload ... 92
B.5 audio_video_payload_is_supported ... 95
B.6 check_for_srtp .. 96
B.7 srtp_extract_tag ... 98
B.8 srtp_extract_crypto_suite .. 99
B.9 srtp_extract_key_param ... 100

MAN1763 PUBLIC 5

1 Introduction
The purpose of this guide is to illustrate to the application writer some typical SIP
usage scenarios and how these may be implemented with the Aculab Generic call
control and Extended SIP APIs. In addition to generic call control, it is now possible
using the extended SIP API, to provide the following new features:

• Third party call control; the ability to redirect media streams between different
end-points and retain the call control

• Fine control of SDP content, facilitating multiple media streams, non-RTP
payload types, third party call control

• Selective presentation of raw SIP messages, enabling applications to be more
“SIP aware” and have greater choice when responding to SIP requests

• Custom headers and message bodies in the call setup INVITE, adding greater
flexibility to call setups and providing a means of passing PSTN information over
IP calls

• Mid call signalling with custom headers and bodies, providing a means to send
PSTN information

• Unlimited sizes of data can be passed, and received as details, by the API; char*
types and linked lists are used to represent types whose size is undefined

The above features may be utilised in many different ways. However, third party call
control seems to be particularly useful in the call centre domain; whereas custom SIP
entities and mid call signalling may be used to enhance an existing gateway
application.

This guide may be used by existing and new developers alike: existing developers
will find the document useful to assist porting, and therefore enhancing, a gateway
application; new developers will discover how to exploit fine control over SIP/SDP
message to realise new opportunities for IP telephony deployments.

NOTE

Please refer to the sip_send_message and EV_DETAILS sections of the
Extended SIP API document for details of which SIP messages can be sent and
received. Additional functionality can be built in at a later date, please contact
Aculab support to discuss your needs.

To assist readability this guide has been divided into groups of scenarios, depicting
functionality, which an application may wish to implement:

• Setups and clears

• Supplementary services

• Mid call signalling

• Third party call control

• Out of dialog messages

• Miscellany

MAN1763 PUBLIC 6

In each group of scenarios, individual usages are identified and described in detail.
The content of usage descriptions comprising a textual overview, a schematic of the
SIP messages and API calls and, for reference, some snippets of example code.

Despite this document containing some very descriptive SIP message flows, an
application writer is advised to refer to one or more of the following documents, where
relevant, to reinforce their knowledge of a given application area:

RFC 2327 – Session Description Protocol (SDP)
RFC 3665 – Basic call flow examples
RFC 3666 – SIP/PSTN call flows
RFC 3264 – Offer/Answer model with SDP
RFC 3725 – Third party call control best practices
RFC 3515 – The REFER method
RFC 3204 – MIME media types for QSIG/ISUP
RFC 2976 – INFO method
RFC 3891 – Replaces header
Draft-ietf-sipping-service-examples-09 – Hold and transfer.

The documents may be found at the following sites:

http://www.ietf.org/html.charters/sip-charter.html

http://www.ietf.org/html.charters/sipping-charter.html

NOTE

The above documents assume some familiarity with RFC 3261 SIP: Session
Initiation Protocol.

1.1 Scope
This guide is intended to be of use in the development of applications which
implement features provided by the functionality of the Extended SIP API. It may also
be of value to the application writer who relies solely on Generic call control
mechanisms, but wishes to gain further insight to the workings of SIP.

It should be noted at this stage, that a call control application, which uses SIP via the
Generic Call control API, will not encounter the media events associated with session
negotiation or be able to realise some of the features illustrated in this guide. The
Generic call control API architecture and the “Aculab Media Handler Plugin” conceal
these aspects of the underlying protocol exchange.

MAN1763 PUBLIC 7

1.2 Background to the Extended SIP API
The Extended SIP API has been developed in order to facilitate the implementation of
applications, which require SIP specific functionality not available in a generic
telephony API. The Extended SIP API assists in the production of those applications
by providing greater access to the contents of the SIP messages (and to protocol
messages embedded therein, for example SDP, MIME) than that offered by the
Generic call control API.

To facilitate faithful representation of the information contained within SIP messages
no fixed size lists or buffers are used. Linked lists are used for collections of types
and char* buffers (in preference to fixed size char arrays) for strings are extensively
used. The developer porting an existing application to the Extended API should be
aware that the addressing and the display name fields within the sip_openout call

employ char*, rather than char[MAX_SIZE] types found in the call_openout.

Dynamically sized data types whether they be character pointers or linked lists,
typically employ the allocation of free store (heap) memory using C library calls such
as malloc. The programmer, hence, must be aware that such memory should be
“freed” when no longer required, otherwise memory starvation will occur eventually
resulting in system failure.

This guide provides helper functions to assist the application writer in correctly
allocating memory necessary to store received SIP/SDP information structures and
complementary routines to free this memory. The routines may be copied from either
from this document or from the example code available on the Aculab website.
Alternatively, the routines may merely be used as a starting point by the developer
wishing to produce a specific solution. These helper functions are described in
section Appendix A:

The Extended SIP API works well alongside the Generic call control API. To discover
more about the API functions provided by the Extended SIP API and how it coexists
with the Generic API, please refer to the “Extended SIP API Guide”.

MAN1763 PUBLIC 8

2 SIP setups and clears
This section describes how to set up and clear down basic SIP calls. Reference is
given to the accompanying example applications and to the commonly used C
functions that are defined in the appendices. In addition to the example applications
described in this document, there is one extra application, which will set up a call
using the 3rd party call control techniques described herein. No more detail on this
application will be given other than to note its name; Controller.exe.

The example code can be found in the Aculab installation directory under
Docs/SIPProgrammersGuide

NOTE

Each of the example programs that are distributed with this guide display the
current call flow on the screen. This display is very basic and if there are any
errors (protocol or otherwise) it is highly unlikely that these flows will be correct
when the application exits. They will only be correct when the call flow completes
successfully. This applies to all subsequent sections of the guide.

2.1 Incoming call with no early media – SDP in the INVITE.
This example shows how to handle a basic incoming SIP call. The application will
respond to an INVITE with the normal 100/180/200 sequence of responses and the
example will show where the application should configure, start and stop the media
resources. The application IncomingCalls with no command line options will run this
example.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

EV_INCOMING_CALL_DET

 Allocate resource, start RTP

INVITE with SDP

sip_openin()

sip_details()

(store incoming media offer)

ACK

Reserve media resource

sip_accept()

200 OK with SDP

EV_MEDIA

sip_details()

(codec to be used for call)

EV_CALL_CONNECTED

EV_WAIT_FOR_INCOMING

sip_incoming_ringing()

EV_WAIT_FOR_ACCEPT

180 Ringing

 RTP

100 Trying

Figure 2-1 Incoming call – no early media – SDP in INVITE

MAN1763 PUBLIC 9

Here the application must have at least one call handle open and waiting for SIP
calls. When using the extended SIP API, this is achieved by calling sip_openin

instead of call_openin. When a SIP User Agent sends an INVITE, an

EV_INCOMING_CALL_DET will be raised to the application. Up until this point, there is no
actual call in progress. Now that there is one, the application must reserve some
media resources. In this example, the far end sends an INVITE containing several
codecs. The application will simply choose the first supported codec in the list. At
EV_INCOMING_CALL_DET the application will need to call sip_details and store the

media offer that the SIP_DETAIL_PARMS structure contains. It is very important to note

that sip_free_details must be called after every call to sip_details. If this is not
done, the application will leak memory:

MAN1763 PUBLIC 10

Alerting a call:
ACU_ERR handle_ev_incoming_call_det(const ACU_CALL_HANDLE handle, ACU_MEDIA_OFFER_ANSWER** offer)

{

 ACU_ERR rc = 0;

 SIP_DETAIL_PARMS sip_detail_parms;

 SIP_INCOMING_RINGING_PARMS sip_incoming_ringing_parms;

 // Here it is necessary to call sip_details in order to determine what,

 // if there is one, is contained in the media offer.

 INIT_ACU_CL_STRUCT(&sip_detail_parms);

 sip_detail_parms.handle = handle;

 rc = sip_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Copy the media offer. clone_media_offer is defined in section A.1

 *offer = clone_media_offer(sip_detail_parms.media_offer_answer);

 // At this stage a real application would need to reserve some media resource.

 // This will not be done here as these examples are concerned only with the

 // SIP signalling.

 // Free the SIP_DETAIL_PARMS structure. This is essential after any call to

 // sip_details. If this function is not called, the application will leak memory.

 rc = sip_free_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_free_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Alert the call

 INIT_ACU_CL_STRUCT(&sip_incoming_ringing_parms);

 sip_incoming_ringing_parms.handle = handle;

 // Send the 180 Ringing response to the UAC.

 rc = sip_incoming_ringing(&sip_incoming_ringing_parms);

 if(0 != rc)

 {

 printf("Error in sip_incoming_ringing(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // There is a large amount of dynamic memory allocation involved when creating

 // a media offer or answer. This memory must be freed. free_media_offer is defined

 // in section 0

 free_media_offer(&sip_incoming_ringing_parms.media_offer_answer);

 return 0;

}

Accepting a call

MAN1763 PUBLIC 11

Now that the call has been alerted an EV_WAIT_FOR_ACCEPT will be raised. The
application will need to decide which media parameters the call will use based on the
media offer that was stored at EV_INCOMING_CALL_DET. It should then accept the call

with a call to sip_accept using these parameters.

ACU_ERR handle_ev_wait_for_accept(const ACU_CALL_HANDLE handle, ACU_MEDIA_OFFER_ANSWER* offer)

{

 ACU_ERR rc = 0;

 SIP_ACCEPT_PARMS accept;

 ACU_MEDIA_OFFER_ANSWER *temp_answer;

 INIT_ACU_STRUCT(&accept);

 accept.handle = handle;

 // There was an SDP body in the initial INVITE. An answer based on this

 // offer must be supplied here. populate_media_answer is defined in section B.2

 temp_answer = populate_media_answer(offer);

 accept.media_offer_answer = *temp_answer;

 // Send the 200 OK response.

 rc = sip_accept(&accept);

 if(0 != rc)

 {

 printf("Error in sip_accept(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free all dynamically assigned memory (0)

 free_media_offer(&temp_answer);

 free_media_offer(&offer);

 return 0;

}

The SIP service will now send a 200OK to the UAC containing an SDP body with the
above media description. At this point, an EV_MEDIA will be raised to the application,
which will then be able to extract all the media settings relevant to the call, then
configure and start the media. When the ACK is received from the UAC, an
EV_CALL_CONNECTED will be raised to the application. When the call clears down, the

application will receive an EV_IDLE and at this point should stop and release any
media resources and release the call handle. Clearing calls down is described in
more detail in sections 2.11 & 2.12.

MAN1763 PUBLIC 12

2.2 Outgoing call with no early media – SDP in the INVITE.
This example shows how to initiate a basic outgoing SIP call. It will indicate how the
application should populate an INVITE request and show where the application should

configure, start, and stop the media resources. The application OutgoingCalls with
the following command line options will run this example:

OutgoingCalls r=<REMOTE IP ADDRESS>

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

ACK

 Allocate resource, start RTP

Reserve media resource
sip_openout()

(port & caps provided by

media resource)
INVITE with SDP

EV_WAIT_FOR_OUTGOING

100 Trying

180 Ringing

EV_OUTGOING_RINGING

200 OK with SDP

EV_MEDIA

sip_details()

(codec to be used for call)

RTP

EV_CALL_CONNECTED

Figure 2-2 Outgoing call – no early media – SDP in INVITE

For outgoing calls with an SDP body, the application must supply a media offer when
initiating the call with sip_openout. After that, the only thing it needs to do is configure
the RTP stream when it receives an EV_MEDIA. Unlike the situation with incoming
calls, however, the application must reserve some media resource before the call to
sip_openout is made. An actual SIP call will be in progress at that stage and the
application must know that there is resource available to provide the media:

MAN1763 PUBLIC 13

Initiating an outgoing call
ACU_ERR open_outgoing(ACU_CALL_HANDLE *handle)

{

 ACU_ERR rc = 0;

 SIP_OUT_PARMS out;

 // When opening the SIP port for incoming calls using the SIP Bridge it is

 // necessary to use sip_openout instead of call_openout.

 INIT_ACU_CL_STRUCT(&out);

 // Populate the net and addressing fields

 out.net = settings.sip_port;

 out.originating_addr = (ACU_CHAR*)malloc(strlen(LOCAL_IP_ADDRESS) + 1);

 strcpy(out.originating_addr, LOCAL_IP_ADDRESS);

 out.destination_addr = (ACU_CHAR*)malloc(strlen (REMOTE_IP_ADDRESS) + 1);

 strcpy(out.destination_addr, REMOTE_IP_ADDRESS);

 // Before making an outbound call, a real application would need to reserve

 // some media resource.

 // An SDP body is required. The arguments to the function populate_media_offer (defined

 // in section B.1 will determine this SDP body.

 out.media_offer_answer = populate_media_offer(ACU_PCMA_PAYLOAD_NUMBER, 0, 0);

 // Send the INVITE to the UAS

 rc = sip_openout(&out);

 if(0 != rc)

 {

 printf("Error in sip_openout(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Store the call's handle to pass to the call control loop.

 *handle = out.handle;

 // There is a large amount of dynamic memory allocation involved when creating

 // a media offer or answer. This memory must be freed (0).

 free_media_offer(&out.media_offer_answer);

 return rc;

}

When the 200 OK is received from the UAS the SIP service will raise an EV_MEDIA to
the application, which can then configure and start the media stream. The SIP service

will also raise an EV_CALL_CONNECTED, which may be handled as the needs of the
application demands.

MAN1763 PUBLIC 14

2.3 Incoming call with early media – SDP in INVITE
This example shows how to handle an incoming SIP call with early media. This
means that the RTP stream will be started when the call is alerted. The application

will respond to an INVITE with the normal 100/180/200 sequence of responses but
this time the 180 will contain an SDP body. The example will also show where the
application should configure, start, and stop the media resources. The application
IncomingCalls with the following command line options will run this example:

IncomingCalls early

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

EV_INCOMING_CALL_DET

 Allocate resource, start RTP

INVITE with SDP

sip_openin()

sip_details()

(store incoming media offer)

ACK

Reserve media resource

sip_accept()

200 OK with SDP

EV_MEDIA

sip_details()

(codec to be used for call)

EV_CALL_CONNECTED

EV_WAIT_FOR_INCOMING

sip_incoming_ringing()

EV_WAIT_FOR_ACCEPT

180 Ringing with SDP

 RTP

100 Trying

Figure 2-3 Incoming call – early media – SDP in INVITE

Here the application must have at least one call handle open and waiting for SIP
calls. In this example, the far end sends an INVITE containing several codecs. The
application will simply choose the first supported codec in the list. This time, however,
the application will provide a media offer in the 180 Ringing response. This is

generated by the application calling sip_incoming_ringing when it receives an

EV_INCOMING_CALL_DET.

MAN1763 PUBLIC 15

Alerting a call with early media
ACU_ERR handle_ev_incoming_call_det(const ACU_CALL_HANDLE handle, ACU_MEDIA_OFFER_ANSWER** offer)

{

 ACU_ERR rc = 0;

 SIP_DETAIL_PARMS sip_detail_parms;

 SIP_INCOMING_RINGING_PARMS sip_incoming_ringing_parms;

 // Retrieve the call details

 INIT_ACU_CL_STRUCT(&sip_detail_parms);

 sip_detail_parms.handle = handle;

 rc = sip_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Copy the media offer (A.1).

 *offer = clone_media_offer(sip_detail_parms.media_offer_answer);

 // At this stage a real application would need to reserve some media resource.

 // Free the SIP_DETAIL_PARMS structure. This is essential after any call to

 // sip_details. If this function is not called, the application will leak memory.

 rc = sip_free_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_free_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Alert the call

 INIT_ACU_CL_STRUCT(&sip_incoming_ringing_parms);

 sip_incoming_ringing_parms.handle = handle;

 // It is the UAS in an initial INVITE transaction that specifies whether

 // a call will utilise early media. An answer to the media offer given in

 // the INVITE must be specified here. i.e. the 180 Ringing response will

 // contain an SDP body.

 sip_incoming_ringing_parms.send_early_media = 1;

 sip_incoming_ringing_parms.media_offer_answer = populate_media_answer(*offer);

 free_media_offer(offer);

 // The 200 OK must contain the same SDP body as the 180 Ringing. This must

 // be stored for later use.

 *offer = clone_media_offer(sip_incoming_ringing_parms.media_offer_answer);

 // Send the 180 Ringing response to the UAC.

 rc = sip_incoming_ringing(&sip_incoming_ringing_parms);

 if(0 != rc)

 {

 printf("Error in sip_incoming_ringing(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

MAN1763 PUBLIC 16

 // There is a large amount of dynamic memory allocation involved when creating

 // a media offer or answer. This memory must be freed (0).

 free_media_offer(&sip_incoming_ringing_parms.media_offer_answer);

 return 0;

}

The 180 Ringing response will now be sent. It will contain an SDP body
corresponding to the details set in the above function. An EV_MEDIA will now be raised

to the application, which should then start the media stream. An EV_WAIT_FOR_ACCEPT
will also be raised.

MAN1763 PUBLIC 17

Accepting a call with early media

This is identical to accepting a call with no early media (section 0) except that the first
supported codec has already been found before the call was alerted so there is no
need to search for it again.

ACU_ERR handle_ev_wait_for_accept(const ACU_CALL_HANDLE handle, ACU_MEDIA_OFFER_ANSWER* stored_answer)

{

 ACU_ERR rc = 0;

 SIP_ACCEPT_PARMS accept;

 ACU_MEDIA_OFFER_ANSWER *temp_answer;

 INIT_ACU_STRUCT(&accept);

 accept.handle = handle;

 // It is an early media call. The variable 'stored_answer' supplied to this function will contain the

 // answer given at EV_INCOMING_CALL_DET. The SDP body in the 200 OK must be the same.

 accept.media_offer_answer = *stored_answer;

 // Send the 200 OK response.

 rc = sip_accept(&accept);

 if(0 != rc)

 {

 printf("Error in sip_accept(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free all dynamically assigned memory

 free_media_offer(&stored_answer);

 return 0;

}

The 200 OK will now be sent to the UAC containing the same SDP body as the 180
Ringing. When the ACK is received from the UAC, an EV_CALL_CONNECTED will
be raised to the application.

MAN1763 PUBLIC 18

2.4 Outgoing call with early media – SDP in the INVITE.
This example shows how to handle an outgoing SIP call when the UAS establishes
the media stream early. This is the same as for example 2.2 the only difference since
the 180 (or possibly 183) response from the UAS will contain an SDP body. This
simply means that the EV_MEDIA will be raised to the application earlier than in the
previous example. All events should be handled in the same manner as before. This
is reflected in the fact that the OutgoingCalls application will use the same command
line as was used in the example where there was no early media:

OutgoingCalls r=<REMOTE IP ADDRESS>

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

ACK

 Allocate resource, start RTP

Reserve media resource
sip_openout()

(port & caps provided by

media resource)
INVITE with SDP

EV_WAIT_FOR_OUTGOING

100 Trying

180/183 Ringing/Progress

 with SDP

EV_OUTGOING_RINGING

200 OK with SDP

EV_MEDIA

sip_details()

(codec to be used for call)

RTP

EV_CALL_CONNECTED

Figure 2-4 Outgoing call – early media – SDP in INVITE

MAN1763 PUBLIC 19

2.5 Incoming call with no SDP in the INVITE
In this example, the incoming call will contain no media offer. The usual 100/180
sequence of messages will follow but now the 200 OK will need to contain a media
offer of its own. The ACK from the UAC will then contain the answer and the media
stream may be established in this manner. As such, this type of INVITE (containing no
SDP body) is considered to be a request for an offer from the UAS. The application
IncomingCalls with no command line options will run this example.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

EV_WAIT_FOR_INCOMING

sip_openin()

 Allocate resource, start RTP

Reserve media resource

RTP

INVITE with no SDP

EV_INCOMING_CALL_DET

sip_details()

(no codec or address)

100 Trying

sip_incoming_ringing()

180 Ringing

EV_WAIT_FOR_ACCEPT

sip_accept()

(providing media offer)
200 OK with SDP

ACK with SDP

EV_MEDIA

EV_CALL_CONNECTED

sip_details()

(codec and connection address)

Figure 2-5 Incoming call – no SDP in INVITE

The same sequence of events will occur in this example as in the example 2.1. The
handling of these events will be slightly different. At EV_INCOMING_CALL_DET, the

application will need to determine whether there is any SDP in the INVITE. If there is

not, it will need to make a not of this and provide an offer at EV_WAIT_FOR_ACCEPT:

Alerting a call with no SDP in the INVITE
ACU_ERR handle_ev_incoming_call_det(const ACU_CALL_HANDLE handle, ACU_MEDIA_OFFER_ANSWER** offer)

{

 ACU_ERR rc = 0;

 SIP_DETAIL_PARMS sip_detail_parms;

 SIP_INCOMING_RINGING_PARMS sip_incoming_ringing_parms;

 // Here it is necessary to call sip_details in order to determine what,

 // if there is one, is contained in the media offer.

 INIT_ACU_CL_STRUCT(&sip_detail_parms);

 sip_detail_parms.handle = handle;

 rc = sip_details(&sip_detail_parms);

 if(0 != rc)

 {

MAN1763 PUBLIC 20

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Determine if there is any media offer

 if(NULL != sip_detail_parms.media_offer_answer)

 {

 // Copy the media offer. From here the flow would be identical to example 2.1

 *offer = clone_media_offer(sip_detail_parms.media_offer_answer);

 }

 else

 {

 // The received INVITE contains no media offer.

 g_no_sdp_in_invite = 1;

 }

 // At this stage a real application would need to reserve some media resource.

 // This will not be done here as these examples are concerned only with the

 // SIP signalling.

 // Free the SIP_DETAIL_PARMS structure. This is essential after any call to

 // sip_details. If this function is not called, the application will leak memory.

 rc = sip_free_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_free_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Alert the call

 INIT_ACU_CL_STRUCT(&sip_incoming_ringing_parms);

 sip_incoming_ringing_parms.handle = handle;

 // Send the 180 Ringing response to the UAC.

 rc = sip_incoming_ringing(&sip_incoming_ringing_parms);

 if(0 != rc)

 {

 printf("Error in sip_incoming_ringing(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // As usual, all dynamicallly allocated memory must be freed.

 free_media_offer(&sip_incoming_ringing_parms.media_offer_answer);

 return 0;

}

Now the application knows that it needs to make an offer of its own, it can do so at
EV_WAIT_FOR_ACCEPT:

MAN1763 PUBLIC 21

Accepting a call where no media offer was made in the initial INVITE
ACU_ERR handle_ev_wait_for_accept(const ACU_CALL_HANDLE handle, ACU_MEDIA_OFFER_ANSWER* offer)

{

 ACU_ERR rc = 0;

 SIP_ACCEPT_PARMS accept;

 ACU_MEDIA_OFFER_ANSWER *temp_answer;

 INIT_ACU_STRUCT(&accept);

 accept.handle = handle;

 if(g_no_sdp_in_invite)

 {

 // There was no SDP body provided in the initial INVITE so it is up to

 // the UAS to provide one in the 200 OK. The UAC will provide an answer

 // in its ACK.

 temp_answer = populate_media_offer(ACU_PCMA_PAYLOAD_NUMBER, 0, 0);

 }

 else

 {

 // There was an SDP body in the initial INVITE. An answer based on this

 // offer must be supplied here.

 temp_answer = populate_media_answer(offer);

 }

 accept.media_offer_answer = *temp_answer;

 // Send the 200 OK response.

 rc = sip_accept(&accept);

 if(0 != rc)

 {

 printf("Error in sip_accept(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free all dynamically assigned memory

 free_media_offer(&temp_answer);

 free_media_offer(&offer);

 return 0;

}

The 200 OK will now be sent containing an SDP body. When the ACK is received
containing the answer, EV_MEDIA (at which point the application should start the
RTP stream) and then EV_CALL_CONNECTED will be raised.

MAN1763 PUBLIC 22

2.6 Outgoing call with no SDP in the INVITE
In this example, the call is being made to a UAS as usual but it is not providing an
SDP body in its INVITE. This is to be seen by the UAS as a request for a media offer
which should then supply such an offer in its 200 OK. Once this offer has been made,
the UAC will finally provide an SDP body (an answer to the UASs offer) in its ACK. The

application OutgoingCalls with the following command line will run this example:

OutgoingCalls r=<REMOTE IP ADDRESS> nosdp

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

EV_WAIT_FOR_OUTGOING

sip_openout()

(no media offer)

 Allocate resource, start RTP

Reserve media resource

RTP

INVITE with no SDP

100 Trying

180 Ringing

EV_OUTGOING_RINGING

200 OK with SDP

EV_MEDIA_PROPOSE

sip_details()

(get media offer)

ACK with SDP

sip_media_accept()

EV_MEDIA

EV_CALL_CONNECTED

sip_details()

(codec to be used for call)

Figure 2-6 Outgoing call – no SDP in INVITE

The outgoing call will be made in exactly the same manner as in example 2.2 with the
exception that the sip_out_parms.media_offer_answer field will NULL. The sequence of
events is the same as in the earlier examples for the first few events. This time,
however, an ACK will not automatically be sent on receipt of the 200 OK as only half
of the offer/answer exchange will have taken place. Instead of this, an

EV_MEDIA_PROPOSE will be raised to the application to indicate that it has received a
media offer from the UAS. This will be handled in a way that is very similar to

handling EV_INCOMING_CALL_DET/EV_WAIT_FOR_ACCEPT for an incoming call except that

a new API call sip_media_accept will be used:

Accepting a media offer made by the UAS
ACU_ERR handle_ev_media_propose(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_DETAIL_PARMS sip_detail_parms;

 SIP_MEDIA_ACCEPT_PARMS sip_media_accept_parms;

 ACU_MEDIA_OFFER_ANSWER* answer = NULL;

 // No SDP body was provided in the initial INVITE. This has prompted the UAS

 // to make its own media offer in the 200 OK.

MAN1763 PUBLIC 23

 // Retrieve call details.

 INIT_ACU_CL_STRUCT(&sip_detail_parms);

 sip_detail_parms.handle = handle;

 rc = sip_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Populate the SDP body of the response using the new media offer

 // as the starting point.

 answer = populate_media_answer(sip_detail_parms.media_offer_answer);

 if(NULL == answer)

 {

 // No supported codec has been offered. Reject call here.

 }

 INIT_ACU_CL_STRUCT(&sip_media_accept_parms);

 sip_media_accept_parms.handle = handle;

 sip_media_accept_parms.media_offer_answer = *answer;

 // Send the ACK containing an SDP body.

 rc = sip_media_accept(&sip_media_accept_parms);

 if(0 != rc)

 {

 printf("Error in sip_media_accept(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free the SIP_DETAIL_PARMS structure. This is essential after any call to

 // sip_details. If this function is not called, the application will leak memory.

 rc = sip_free_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_free_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free any dynamically assigned memory.

 free_media_offer(&answer);

 return 0;

}

MAN1763 PUBLIC 24

2.7 Incoming call with black hole in SDP
Black hole SDP describes the situation where an INVITE is made with an SDP body
but the connection address given in this body is 0.0.0.0. This is seen as an invitation
to establish a one-way media stream from UAC to UAS. The UAS can only listen for
RTP as it has not been provided with an address to send its media to. The application

IncomingCalls with no command line options will run this example.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

INVITE with blackhole SDP

sip_openin()

Allocate resource

and listen for RTP

Reserve media resource

One way RTP

100 Trying

EV_INCOMING_CALL_DET

sip_details()

(get codec range, c=0.0.0.0)

sip_incoming_ringing()

180 Ringing

EV_WAIT_FOR_ACCEPT

sip_accept()

(with media offer)
200 OK with SDP

ACK

EV_MEDIA

sip_details()

(codec range)

Figure 2-7 Incoming call – black hole in SDP

Handling incoming calls of this nature is identical to that in example 2.1. The only
exception to this is that it must be aware that the UAC supplied no connection
address. I.e. it should not start a media stream.

Alerting a call with black hole SDP
ACU_ERR handle_ev_incoming_call_det(const ACU_CALL_HANDLE handle, ACU_MEDIA_OFFER_ANSWER** offer)

{

 ACU_ERR rc = 0;

 SIP_DETAIL_PARMS sip_detail_parms;

 SIP_INCOMING_RINGING_PARMS sip_incoming_ringing_parms;

 // Here it is necessary to call sip_details in order to determine what,

 // if there is one, is contained in the media offer.

 INIT_ACU_CL_STRUCT(&sip_detail_parms);

 sip_detail_parms.handle = handle;

 rc = sip_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 if(NULL != sip_detail_parms.media_offer_answer)

 {

MAN1763 PUBLIC 25

 // Copy the media offer.

 *offer = clone_media_offer(sip_detail_parms.media_offer_answer);

 }

 // There is a media offer. It is now necessary to determine the nature of the offer.

 if(!strcmp((*offer)->connection_address.address, BLACKHOLE_CONNECTION_ADDRESS))

 {

 // Here it is assumed that if the global connection address is black hole

 // then it the entire media offer is black hole. A real application would

 // need to process each media stream in this manner.

 g_black_hole = 1;

 }

 // At this stage a real application would need to reserve some media resource.

 // This will not be done here as these examples are concerned only with the

 // SIP signalling.

 // Free the SIP_DETAIL_PARMS structure. This is essential after any call to

 // sip_details. If this function is not called, the application will leak memory.

 rc = sip_free_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_free_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Alert the call

 INIT_ACU_CL_STRUCT(&sip_incoming_ringing_parms);

 sip_incoming_ringing_parms.handle = handle;

 // Send the 180 Ringing response to the UAC.

 rc = sip_incoming_ringing(&sip_incoming_ringing_parms);

 if(0 != rc)

 {

 printf("Error in sip_incoming_ringing(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free any dynamically allocated memory

 free_media_offer(&sip_incoming_ringing_parms.media_offer_answer);

 return 0;

}

Accepting the call is identical to example 2.1. When the EV_MEDIA is raised to indicate

a successful offer/answer exchange, the global variable g_black_hole will indicate
that the application need only listen for RTP.

MAN1763 PUBLIC 26

2.8 Outgoing call with black hole in SDP
In this example, the outgoing INVITE will contain a standard (as in example 2.2) SDP
body except the connection address will be set to 0.0.0.0. This is known as black hole
SDP and indicates that the UAC intends to establish a one media stream to the UAS.
It will not need to listen for RTP coming from the UAS. The application OutgoingCalls
with the following command line will run this example:

OutgoingCalls r=<REMOTE IP ADDRESS> bh

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

EV_WAIT_FOR_OUTGOING

sip_openout()

(no connection address)

 Allocate resource, start RTP

Reserve media resource

One way RTP

INVITE with blackhole SDP

100 Trying

180 Ringing

EV_OUTGOING_RINGING

200 OK

EV_MEDIA

sip_details()

(address, codec)

EV_CALL_CONNECTED

ACK

Figure 2-8 Outgoing call – black hole in SDP

The only difference to example 2.2 is that the field:

sip_out_parms.media_offer_answer->connection_address.address

will contain the string “0.0.0.0”. Every other field must still be supplied.

MAN1763 PUBLIC 27

2.9 Incoming call with no media in SDP
Occasionally it is necessary to establish a session with no media stream at all. The
received INVITE will contain a minimal SDP body with no media lines (m=) or any of
the accompanying media attributes. In this situation, an application would neither
start, nor listen for, an RTP stream. The application IncomingCalls with no command
line options will run this example.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

EV_INCOMING_CALL_DET

INVITE with SDP, no media

sip_openin()

sip_details()

(store incoming media offer)

ACK

Reserve media resource

sip_accept()

200 OK with SDP, no media

EV_MEDIA

sip_details()

(no media lines)

EV_CALL_CONNECTED

EV_WAIT_FOR_INCOMING

sip_incoming_ringing()

EV_WAIT_FOR_ACCEPT

180 Ringing

100 Trying

DO NOT START MEDIA

Figure 2-9 Incoming call – no media in SDP

Handling this situation is similar to the case where the INVITE contains a black hole

connection address. When it receives an EV_INCOMING_CALL_DET it must call

sip_details and check whether the media offer contains any media lines. If it does,
the application must take note of this so that it does not start a media stream when it
receives the EV_MEDIA.

Alerting a call with no media lines offered
ACU_ERR handle_ev_incoming_call_det(const ACU_CALL_HANDLE handle, ACU_MEDIA_OFFER_ANSWER** offer)

{

 ACU_ERR rc = 0;

 SIP_DETAIL_PARMS sip_detail_parms;

 SIP_INCOMING_RINGING_PARMS sip_incoming_ringing_parms;

 // Here it is necessary to call sip_details in order to determine what,

 // if there is one, is contained in the media offer.

 INIT_ACU_CL_STRUCT(&sip_detail_parms);

 sip_detail_parms.handle = handle;

 rc = sip_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

MAN1763 PUBLIC 28

 // Copy the media offer.

 *offer = clone_media_offer(sip_detail_parms.media_offer_answer);

 // There is a media offer. It is now necessary to determine the nature of the offer.

 if(NULL == (*offer)->media_descriptions)

 {

 // There is an SDP body contained in the INVITE. There are no media (m=) lines.

 g_no_media_lines = 1;

 }

 // At this stage a real application would need to reserve some media resource.

 // Even if there is no media stream offered, it is likely that one will be

 // nefotiated at a later stage.

 // Free the SIP_DETAIL_PARMS structure. This is essential after any call to

 // sip_details. If this function is not called, the application will leak memory.

 rc = sip_free_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_free_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Alert the call

 INIT_ACU_CL_STRUCT(&sip_incoming_ringing_parms);

 sip_incoming_ringing_parms.handle = handle;

 // Send the 180 Ringing response to the UAC.

 rc = sip_incoming_ringing(&sip_incoming_ringing_parms);

 if(0 != rc)

 {

 printf("Error in sip_incoming_ringing(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free any dynamically allocated memory

 free_media_offer(&sip_incoming_ringing_parms.media_offer_answer);

 return 0;

}

When the EV_WAIT_FOR_ACCEPT arrives, the application needs to check the global

variable, g_no_media_lines, to see how to populate its answer:

MAN1763 PUBLIC 29

Accepting a call where no media stream was offered
ACU_ERR handle_ev_wait_for_accept(const ACU_CALL_HANDLE handle, ACU_MEDIA_OFFER_ANSWER* offer)

{

 ACU_ERR rc = 0;

 SIP_ACCEPT_PARMS accept;

 ACU_MEDIA_OFFER_ANSWER *temp_answer;

 INIT_ACU_STRUCT(&accept);

 accept.handle = handle;

 if(g_no_media_lines)

 {

 // No media lines were offered in the initial INVITE so no media lines

 // are required in the 200 OK. A connection address must still be supplied.

 // This will establish a session with no RTP.

 temp_answer = (ACU_MEDIA_OFFER_ANSWER*)malloc(sizeof(ACU_MEDIA_OFFER_ANSWER));

 memset(temp_answer, 0,sizeof(ACU_MEDIA_OFFER_ANSWER));

 temp_answer->connection_address.address_type = ACU_IPv4;

 temp_answer->connection_address.address = (ACU_CHAR*)malloc(strlen(LOCAL_CONNECTION_ADDRESS) + 1);

 strcpy(temp_answer->connection_address.address, LOCAL_CONNECTION_ADDRESS);

 }

 else

 {

 // There was an SDP body in the initial INVITE. An answer based on this

 // offer must be supplied here.

 temp_answer = populate_media_answer(offer);

 }

 accept.media_offer_answer = *temp_answer;

 // Send the 200 OK response.

 rc = sip_accept(&accept);

 if(0 != rc)

 {

 printf("Error in sip_accept(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free all dynamically assigned memory

 free_media_offer(&temp_answer);

 free_media_offer(&offer);

 return 0;

}

Now, when the EV_MEDIA is received, the application must check the variable

g_no_media_lines again. If it is set, the media stream should not be started.

MAN1763 PUBLIC 30

2.10 Outgoing call with no media in SDP
The application wishes to establish a session with a UAS with, for the time being at
least, no actual media. The flow of SIP messages will be as that for a normal call set
up, except there will be no RTP stream started when the call is connected. The
application OutgoingCalls with the following command line options will run this
example:

OutgoingCalls r=<REMOTE IP ADDRESS> nomedia

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

ACK

Reserve media resource
sip_openout()

(no media)
INVITE with SDP, no media

EV_WAIT_FOR_OUTGOING

100 Trying

180 Ringing

EV_OUTGOING_RINGING

200 OK with SDP, no media

EV_MEDIA

sip_details()

(no media lines)

EV_CALL_CONNECTED

DO NOT START MEDIA

Figure 2-10 Outgoing call – no media in SDP

Again, this deviates from example 2.2 only slightly. The sequence of events is
identical and the only change is there is considerably less work involved in populating

the out_sip_parms structure.

MAN1763 PUBLIC 31

Making an outgoing call with no media lines offered
ACU_ERR open_outgoing(ACU_CALL_HANDLE *handle)

{

 ACU_ERR rc = 0;

 SIP_OUT_PARMS out;

 // When opening the SIP port for incoming calls using the SIP Bridge it is

 // necessary to use sip_openout instead of call_openout.

 INIT_ACU_CL_STRUCT(&out);

 // Populate the net and addressing fields

 out.net = settings.sip_port;

 out.originating_addr = (ACU_CHAR*)malloc(strlen(settings.local_ip_address) + 1);

 strcpy(out.originating_addr, settings.local_ip_address);

 out.destination_addr = (ACU_CHAR*)malloc(strlen (settings.remote_ip_address) + 1);

 strcpy(out.destination_addr, settings.remote_ip_address);

 // Before making an outbound call, a real application may need to reserve

 // some media resource but it may well not. This method of establishing a

 // session may be used by a controller in a 3pcc call set up. If this is

 // the case, the controller itself will never start any media.

 // An SDP body is required with no media lines.

 out.media_offer_answer = (ACU_MEDIA_OFFER_ANSWER*)malloc(sizeof(ACU_MEDIA_OFFER_ANSWER));

 memset(out.media_offer_answer, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

 out.media_offer_answer->connection_address.address = (ACU_CHAR*)malloc(strlen(LOCAL_CONNECTION_ADDRESS) + 1);

 strcpy(out.media_offer_answer->connection_address.address, LOCAL_CONNECTION_ADDRESS);

 out.media_offer_answer->connection_address.address_type = ACU_IPv4;

 // Send the INVITE to the UAS

 rc = sip_openout(&out);

 if(0 != rc)

 {

 printf("Error in sip_openout(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Store the call's handle to pass to the call control loop.

 *handle = out.handle;

 // Free any dynamically allocated memory

 free_media_offer(&out.media_offer_answer);

 return rc;

}

Now, as with the incoming calls where no media stream is established, there is
nothing more for the application to do except handle the EV_CALL_CONNECTED as needs
of the application demand. If it is acting as a controller in a 3pcc call set up, this is

likely to be another outgoing call to another UAS with no SDP in the INVITE. The

application need do nothing on receipt of the EV_MEDIA except pop the call’s details off
the queue.

MAN1763 PUBLIC 32

2.11 Outgoing call with early media and forking – SDP in the INVITE.
This example shows how to handle an outgoing SIP call when the UAS establishes
the media stream early with forked responses. This is the same as for example 2.2
the only difference being the 18x and 200 responses may originate from different
sources. In this example the SIP User Agent may be a proxy relaying the 18x and
200 responses on behalf of two separate UAS servers. The first 180/183 response
will contain an SDP body from one UAS while the 200 OK response originates from
another UAS. This simply means that the EV_MEDIA will be raised to the application

earlier followed by EV_OUTGOING_RINGING or/and EV_PROGRESS event. Upon reception of

the 200 OK response the event EV_CONNECTED is raised. Due to the SIP service
recognising that the responses originate from different sources (i.e, contain different
‘To-tags’) an EV_FORKED event will also be raised. All events should be handled in the

same manner as before. In the case of an EV_FORKED it is recommended that a Re-
INVITE is sent to the UAS that responded with the 200 OK response. Please refer to
example 3.1 for more details.

Note that the media in the 200 response may differ to that received earlier in the 183
response therefore a new RTP session may need to be established via a Re-INVITE.

Figure 2-11 Outgoing call – early media and forking – SDP in INVITE

MAN1763 PUBLIC 33

2.12 Call cleared locally
This is identical to clearing a call down using the generic call control API except that
using the SIP Bridge API, the application controls the media resource and must
therefore stop the RTP stream and release the media resource. These actions are
not performed by the SIP Bridge API when the call idles.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

call_disconnect()

Stop RTP, free resources

RTP

BYE

200 OK or timeout

EV_IDLE

call_release()

Figure 2-12 Call cleared locally

Disconnecting a call
ACU_ERR disconnect_call(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 CAUSE_XPARMS disconnect;

 INIT_ACU_CL_STRUCT(&disconnect);

 disconnect.handle = handle;

 // Although the call was created using the SIP Bridge API, it needs to be

 // disconnected using the generic API call, call_disconnect.

 rc = call_disconnect(&disconnect);

 if(0 != rc)

 {

 printf("Error in call_disconnect(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return 0;

}

The SIP service will now send a BYE to the UAS. It will raise an EV_IDLE to the

application when either receives a 200 OK or the BYE times out. The application
should handle this as follows:

MAN1763 PUBLIC 34

Releasing a call
ACU_ERR handle_ev_idle(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 CAUSE_XPARMS release;

 // The call has received an EV_IDLE. Any previously allocated media resources

 // must be released here.

 INIT_ACU_CL_STRUCT(&release);

 release.handle = handle;

 // Although the call was created using the SIP Bridge API, it needs to be

 // released using the generic API call, call_release.

 rc = call_release(&release);

 if(0 != rc)

 {

 printf("Error in call_release(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return 0;

}

The call is now complete and all resources relating to it have been released.

MAN1763 PUBLIC 35

2.13 Call cleared remotely
Again, this is identical to clearing a call down using the generic call control API except
that using the SIP Bridge API, the application controls the media resource and must
therefore stop the RTP stream and release the media resource when the call idles.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

BYE

200 OK

RTP

EV_IDLE

call_release()

Stop RTP, free resources

Figure 2-13 Call cleared remotely

Here, the SIP service has received a BYE, automatically responded with a 200 OK and

raised an EV_IDLE to the application. This should be handled in the same manner as
the previous example.

MAN1763 PUBLIC 36

3 3pcc - mid call flows
The call flows in this section assume that a call is already established between the
local and remote SIP user agents. Reference is given to the accompanying example
applications and to the commonly used C functions that are defined in the
appendices. All of these examples assume a single media stream can be found in the
media offer. Multiple media offers involve more logic for the application but are dealt
with in essentially the same manner. The following methods, in conjunction with those
described earlier, can be used to implement the call flows shown in RFC3725 - Best
Current Practices for Third Party Call Control (3pcc) in the Session Initiation Protocol
(SIP).

3.1 Aculab sending re-INVITE with SDP (UAC)
For whatever reason the application wishes to re-negotiate the media stream. In SIP
terms, this will mean an INVITE being sent to the UAS with different media settings in
the SDP body to those currently being used. The flow of SIP messages will be the

same as that for an initial INVITE except that the UAS will not send any 180 response.

The application ReINVITE_UAC with no arguments will run this example.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

100 Trying

sip_media_propose()

(change in media settings)

Reconfigure RTP

RTP

INVITE with SDP

200 OK with SDP

EV_MEDIA

sip_details()

(new media settings)

New RTP

ACK

Figure 3-1 Aculab sending re-INVITE with SDP (UAC)

The example code here will establish a call as the UAS (using sip_openin) and re-

negotiate the codec to use G.729. The application calls sip_media_propose

populating the SIP_MEDIA_PROPOSE_PARMS structure with the existing call handle and
the new media offer. Here it is assumed that the call is already connected:

MAN1763 PUBLIC 37

Create a new media offer for an existing call.

ACU_ERR send_reinvite(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_MEDIA_PROPOSE_PARMS proposal;

 ACU_MEDIA_OFFER_ANSWER* offer = NULL;

 // populate_media_offer is defined in appendix B.1

 offer = populate_media_offer(ACU_G729_PAYLOAD_NUMBER, 0, 0);

 INIT_ACU_CL_STRUCT(&proposal);

 proposal.handle = handle;

 proposal.media_offer_answer = *offer;

 // Send the re-INVITE

 rc = sip_media_propose(&proposal);

 if(0 != rc)

 {

 printf("Error in sip_media_propose(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free any dynamically allocated memory.

 free_media_offer(&offer);

 return 0;

}

The INVITE with the new media offer will now be sent to the remote SIP which (if it is
happy with the offer) will respond with a 200OK containing its answer. In response to

this, the SIP service will raise an EV_MEDIA to the application, which should then
reconfigure the RTP stream as required. The UAS may, of course, reject the new
offer in which case it is up to the application to decide how to proceed.

MAN1763 PUBLIC 38

3.2 Aculab receiving re-INVITE with SDP (UAS)

This section will describe how to respond to a ReINVITE as described in section 3.1

above. The application ReINVITE_UAS with the following arguments will run this
example:

ReINVITE_UAS r=<REMOTE IP ADDRESS>

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

INVITE with SDP

sip_details()

(get new media offer)

Reconfigure RTP

RTP

EV_MEDIA_PROPOSE

sip_media_accept()

200 OK with SDP

ACK

EV_MEDIA

sip_details()

(get new media settings)

New RTP

Figure 3-2 Aculab receiving re-INVITE with SDP (UAS)

Here Aculab receives a new media offer mid call. This will prompt the SIP service to

raise an EV_MEDIA_PROPOSE to the application, which should call sip_details in order
to determine the nature of the new media offer. It will then accept the new media offer

using sip_media_accept (see section 3.7 for details on how to reject this offer):

MAN1763 PUBLIC 39

Accept a mid call media offer

ACU_ERR handle_ev_media_propose(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_DETAIL_PARMS sip_detail_parms;

 SIP_MEDIA_ACCEPT_PARMS sip_media_accept_parms;

 ACU_MEDIA_OFFER_ANSWER* answer = NULL;

 // Retrieve call details.

 INIT_ACU_CL_STRUCT(&sip_detail_parms);

 sip_detail_parms.handle = handle;

 rc = sip_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Populate the SDP body of the response using the new media offer

 // as the starting point.

 answer = populate_media_answer(sip_detail_parms.media_offer_answer);

 if(NULL == answer)

 {

 // No supported codec has been offered.

 // The new offer should be rejected here. See section 3.7

 }

 INIT_ACU_CL_STRUCT(&sip_media_accept_parms);

 sip_media_accept_parms.handle = handle;

 sip_media_accept_parms.media_offer_answer = *answer;

 // Send the 200 OK response

 rc = sip_media_accept(&sip_media_accept_parms);

 if(0 != rc)

 {

 printf("Error in sip_media_accept(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free any dynamically allocated memory

 free_media_offer(&answer);

 // Free the SIP_DETAIL_PARMS structure.

 rc = sip_free_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_free_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return 0;

}

A 200 OK will now be sent to the far end. The application will receive an EV_MEDIA
and should then reconfigure the RTP stream accordingly.

MAN1763 PUBLIC 40

3.3 Aculab sending re-INVITE with black hole SDP (UAC)

Sending a mid call re-INVITE with black hole SDP (c=0.0.0.0) is the method described
in RFC2543 (the original SIP standard, superseded by RFC3261) by which a UAC
would place a UAS on hold. This has been deprecated as the means to place a call
on hold (although many user agents still use this method) but is used instead in
various third party call control scenarios. Used on its own, however, it is
indistinguishable from placing a call on hold. The application ReINVITE_UAC with the
following command line options will run this example:

ReINVITE_UAC bh

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

100 Trying

sip_details()

(no address)
Reconfigure RTP (stop listening)

RTP

INVITE with blackhole SDP

200 OK with SDP

EV_MEDIA

sip_media_propose()

(no connection address)

ACK

New RTP (one way)

Figure 3-3 Aculab sending re-INVITE with black hole SDP (UAC)

Here the UAC will call sip_media_propose specifying a connection address of

“0.0.0.0” in the SIP_MEDIA_PROPOSE_PARMS and setting all other parameters to be the
same as the current media session. A re-INVITE will then be sent to the UAS
containing an SDP connection address of c=0.0.0.0:

MAN1763 PUBLIC 41

Create a new media offer for an existing call with black hole SDP

ACU_ERR send_black_hole_reinvite(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_MEDIA_PROPOSE_PARMS sip_media_proposal_parms;

 ACU_MEDIA_OFFER_ANSWER* offer = NULL;

 // The second paramter here specifies that the offer is to contain

 // a connection address of "0.0.0.0"

 offer = populate_media_offer(ACU_PCMA_PAYLOAD_NUMBER, TRUE, 0);

 INIT_ACU_CL_STRUCT(&sip_media_proposal_parms);

 sip_media_proposal_parms.handle = handle;

 sip_media_proposal_parms.media_offer_answer = *offer;

 // Send the re-INVITE

 rc = sip_media_propose(&sip_media_proposal_parms);

 if(0 != rc)

 {

 printf("Error in sip_media_propose(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free any dynamically allocated memory.

 free_media_offer(&offer);

 return 0;

}

The re-INVITE will now be sent to the UAS and an EV_MEDIA will be raised to the
application when the SIP service receives the 200 OK from the far end. It should then
reconfigure the media resource so that it no longer listens for RTP. It will keep
sending RTP as before unless this was also re-negotiated to use a different codec.

MAN1763 PUBLIC 42

3.4 Aculab receiving re-INVITE with black hole SDP (UAS)

This section will describe how to respond to a ReINVITE as described in section 3.3

above. The application ReINVITE_UAS with the following arguments will run this
example:

ReINVITE_UAS r=<REMOTE IP ADDRESS>

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

INVITE blackhole SDP

sip_details()

(c=0.0.0.0)

RTP

EV_MEDIA_PROPOSE

sip_media_accept()

200 OK with SDP

Reconfigure RTP (stop sending)

New RTP (one way)

ACK

100 Trying

EV_MEDIA

sip_details()

Figure 3-4 Aculab receiving re-INVITE with black hole SDP (UAS)

On receipt of the re-INVITE, the SIP service will raise an EV_MEDIA_PROPOSE to the

application, which, as usual, will have to call sip_details in order to determine the
nature of the re-INVITE. In this case, the connection address is found to be “0.0.0.0”,
i.e. black hole SDP. There is no need for any code here as accepting this re-INVITE
is the same as that described in section 3.2 (for that matter, it is essentially the same
as section 2.1). The only extra work that is required is for the application to note that
there is a connection address of “0.0.0.0” given in the media offer (a straight forward
strcmp) so that, when the EV_MEDIA is raised, it can stop sending any RTP.

MAN1763 PUBLIC 43

3.5 Aculab sending re-INVITE with no SDP (UAC)
Although in this example there is already a media stream established, this method will
more normally be used in a 3pcc call set up scenario. It is a request to the UAS to
make an offer of its own which, in a 3pcc situation, would generally be used by a
controller to construct another offer to another user agent. The basic method

described here is all that is needed to do this. The application ReINVITE_UAC with the
following command line options will run this example:

ReINVITE_UAC nosdp

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

100 Trying

sip_media_request_proposal()

Reconfigure RTP

RTP

INVITE with no SDP

200 OK with SDP

EV_MEDIA_PROPOSE

sip_details()

(get new offer)

sip_media_accept()

ACK with SDP

EV_MEDIA

sip_details()

(get new settings)

New RTP

Figure 3-5 Aculab sending re-INVITE with no SDP (UAC)

The application will populate a SIP_MEDIA_REQUEST_PROPOSAL_PARMS structure (this

consists only of the call’s handle) and call sip_media_request_proposal. In response
to this, the SIP service will send a re-INVITE to the UAS, which contains no SDP
body.

Requesting a new media offer from a UAS

ACU_ERR request_new_media_offer(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_MEDIA_REQUEST_PROPOSAL_PARMS sip_media_request_proposal_parms;

 // The re-INVITE is to be sent with no SDP body, i.e. it is a request to the

 // UAS for a new media offer.

 INIT_ACU_CL_STRUCT(&sip_media_request_proposal_parms);

 sip_media_request_proposal_parms.handle = handle;

 // Send the re-INVITE

 rc = sip_media_request_proposal(&sip_media_request_proposal_parms);

 if(0 != rc)

 {

 printf("Error in sip_media_request_proposal(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return 0;

}

The UAS will realise that this is a request for a media offer and will provide its own in

MAN1763 PUBLIC 44

the 200 OK. The SIP service will raise an EV_MEDIA_PROPOSE to the application which
will need to process this offer in exactly the same manner as in section 2.6. An
answer to the media offer will be given in the ACK after a call to sip_media_accept.

An EV_MEDIA will then be raised to the application, which can then reconfigure the
RTP as appropriate.

3.6 Aculab receiving re-INVITE with no SDP (UAS)

This section will describe how to respond to a ReINVITE as described in section 3.5

above. The application ReINVITE_UAS with the following arguments will run this
example:

ReINVITE_UAS r=<REMOTE IP ADDRESS>

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

INVITE with no SDP

sip_media_propose()

Reconfigure RTP

RTP

EV_MEDIA_REQUEST_PROPOSAL

200 OK with SDP

100 Trying

ACK with SDP

EV_MEDIA

sip_details()

(get new media settings)

New RTP

Figure 3-6 Aculab receiving re-INVITE with no SDP (UAS)

Unlike as in previous examples, when a re-INVITE with no SDP is received, the

application need not determine this from the result of a call to sip_details as this will
have been done by the SIP service itself. Instead, the service will raise an
EV_MEDIA_REQUEST_PROPOSAL to the application which should read this as a

requirement for it to make a proposal of its own with a call to sip_media_propose. This
should be done in the same way as in section 3.1 although instead, the SIP service
will supply a media offer in the 200 OK rather than an INVITE. Once the ACK

(containing an SDP body) has been received from the UAC, an EV_MEDIA will be
raised to the application, which should reconfigure the RTP stream accordingly.

MAN1763 PUBLIC 45

3.7 Aculab rejecting a new media offer (UAS)
In some instances (or possibly the majority) the application may wish to reject a mid
call media offer. For example, a UAC wishes to reduce the bandwidth being used by

the call by changing the codec from G711 to G723. It would send a re-INVITE to the
UAS containing a new offer that reflects this. However, the UAS does not support

G723 and would need to reject the new offer. The application ReINVITE_UAS with the
following arguments will run this example:

ReINVITE_UAS r=<REMOTE IP ADDRESS> reject

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

INVITE with new offer

RTP

100 Trying

EV_MEDIA_PROPOSE

sip_details()

(get new offer)

sip_media_reject_proposal()

488

ACK

Figure 3-7 Aculab rejecting a new media offer (UAS)

There is very little to this. An EV_MEDIA_PROPOSE would be raised to the application on

receipt of a re-INVITE. The application would then call sip_details to determine the
nature of the new offer and, based on certain criteria (which would be defined by the
programmer), would accept or reject the offer. Here it will be rejected automatically.

MAN1763 PUBLIC 46

Rejecting a new media offer

ACU_ERR handle_ev_media_propose(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_DETAIL_PARMS sip_detail_parms;

 SIP_MEDIA_REJECT_PROPOSAL_PARMS sip_media_reject_proposal_parms;

 // Retrieve call details.

 INIT_ACU_CL_STRUCT(&sip_detail_parms);

 sip_detail_parms.handle = handle;

 rc = sip_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // An application would usually have certain criteria that it would

 // use in order to determine whether a re-INVITE should be accepted

 // or rejected. For the purposes of this example it is rejected

 // regardless of the offer's contents.

 INIT_ACU_CL_STRUCT(&sip_media_reject_proposal_parms);

 sip_media_reject_proposal_parms.handle = handle;

 rc = sip_media_reject_proposal(&sip_media_reject_proposal_parms);

 if(0 != rc)

 {

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free the SIP_DETAIL_PARMS structure.

 rc = sip_free_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_free_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return 0;

}

Notice two points from the above code and call flow. Firstly, if nothing else is
supplied, the default SIP response sent when an offer is rejected is ‘488 – Not
acceptable here’, however, any valid SIP code may be supplied in the
sip_media_reject_proposal_parms.protocol_specific. sip_code field. Secondly, the
media resource has not been modified in any way. It is possible that either the UAC
or UAS would want to clear down the call at this point but certainly not required.
Taking this SIP transaction on its own, there is no need to modify the media at all.

MAN1763 PUBLIC 47

3.8 Handling a rejected mid call media offer (UAC)

This section will describe what happens when a re-INVITE sent to a UAS has been

rejected. The application ReINVITE_UAC with no arguments will run this example.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

RTP

Re-INVITE

EV_MEDIA_REJECT_PROPOSAL

sip_media_propose()

ACK

100 Trying

488 Not acceptable here

Figure 3-8 Handling a rejected mid call media offer (UAC)

There is essentially nothing to say here as the above figure says it all. When the UAS
rejects the re-INVITE, an EV_MEDIA_REJECT_PROPOSAL will be raised to the application
and the RTP stream will require no modification as in section 3.7. In the
accompanying example code, the UAC will clear down the call but there is no reason
why an application must do this.

MAN1763 PUBLIC 48

4 Supplementary services
The call flows in this section assume that a call is already established between the
local and remote SIP user agents. Reference is given to the accompanying example
applications where appropriate. This guide is concerned with the extended SIP API,
however, the user wishing to implement hold, reconnect or transfer should follow the
same guidelines whilst bearing the following in mind:

1. Wherever sip_feature_send is used, substitute call_feature_send in its place.

2. The media handling will be dealt with by the SIP service (through the Media
Handler Plugin) and so no EV_MEDIAs will be raised.

4.1 Hold – Aculab initiating hold request

Placing a call on hold with the extended SIP API is almost the same as placing a call
on hold with the generic call control API. The notable exception being that, if the call
was opened with sip_openin/out rather than call_openin/out, an EV_MEDIA will be

raised to the application after the EV_HOLD. Placing a call on hold is illustrated in the
call transfer example applications that accompany sections 4.5, 4.6 & 4.7 below.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

100 Trying

call_hold()

Stop RTP

RTP

INVITE with sendonly

200 OK

ACK

No RTP

EV_HOLD

EV_MEDIA

sip_details()

Figure 4-1 Hold – Aculab initiating hold request

MAN1763 PUBLIC 49

4.2 Hold – Aculab responding to hold request
Responding to a hold request with the extended SIP API is the same as described in
the generic call control API guide except that sip_feature_send is used instead of

call_feature_send and an EV_MEDIA will be raised. Responding to a hold request is
illustrated in the call transfer example applications that accompany sections 4.5, 4.6 &
4.7 below.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

INVITE with sendonly SDP

sip_feature_send()

(HOLD_ACKNOWLEDGE_CMD)

Stop RTP

RTP

EV_EXTENDED

EV_EXT_HOLD_REQUEST

200 OK

ACK

No RTP

EV_MEDIA

sip_details()

Figure 4-2 Hold – Aculab responding to hold request

When the SIP service receives an INVITE with an SDP containing the a= attribute of

a=sendonly, it will recognise this as a hold request and, instead of raising an

EV_MEDIA_PROPOSE, it will raise an EV_EXTENDED with state_xparms.extended_state =

EV_EXT_HOLD_REQUEST. To accept this request, the application needs to call

sip_feature_send:

Acknowleding a hold request

ACU_ERR handle_ev_ext_hold_request(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_FEATURE_DETAIL_PARMS sip_feature_detail_parms;

 // Received hold request. Here the application will blindly accept all such

 // requests. This will not always be the case. If, for any reason, an

 // application wishes to reject the hold request, it should set

 // sip_feature_detail_parms.feature.hold.command = HOLD_REJECT_CMD; instead.

 INIT_ACU_CL_STRUCT(&sip_feature_detail_parms);

 sip_feature_detail_parms.handle = handle;

 sip_feature_detail_parms.feature_type = FEATURE_HOLD_RECONNECT;

 sip_feature_detail_parms.feature.hold.command = HOLD_ACKNOWLEDGE_CMD;

 rc = sip_feature_send(&sip_feature_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_feature_send(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return 0;

}

MAN1763 PUBLIC 50

The 200 OK will now be sent (containing the attribute, a=recvonly) and an EV_MEDIA
will be raised to the application, which should pause the media stream.

4.3 Reconnect – Aculab initiating reconnect request
Reconnecting a call that has previously been placed on hold with the extended SIP
API is almost the same as reconnecting a call with the generic call control API. The

notable exception being that, if the call was opened with sip_openin/out rather than

call_openin/out, an EV_MEDIA will be raised to the application after the

EV_CALL_CONNECTED. Reconnecting a call is illustrated in the call transfer example
applications that accompany sections 4.5, 4.6 & 4.7 below. In this case, the following
application and arguments must be used:

Transferor reconnect

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

100 Trying

call_reconnect()

Restart RTP

No RTP

INVITE with sendrecv

200 OK

ACK

RTP

EV_CALL_CONNECTED

EV_MEDIA

sip_details()

Figure 4-3 Reconnect – Aculab initiating reconnect request

4.4 Reconnect – Aculab responding to reconnect request
Responding to a reconnect request with the extended SIP API is the same as
described in the generic call control API guide except that sip_feature_send is used

instead of call_feature_send and an EV_MEDIA will be raised. Responding to a
reconnect is illustrated in the call transfer example applications that accompany
sections 4.5, 4.6 & 4.7 below.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

INVITE with sendrecv SDP

sip_feature_send()

(RECONNECT_ACKNOWLEDGE_CMD)

Restart RTP

No RTP

EV_EXTENDED

EV_EXT_RECONNECT_REQUEST

200 OK

ACK

RTP

EV_MEDIA

sip_details()

Figure 4-4 Reconnect – Aculab responding to reconnect request

MAN1763 PUBLIC 51

When the SIP service receives an INVITE with an SDP body containing the a=

attribute of a=sendrecv and the call is currently on hold, it will recognise this as a

reconnect request and, instead of raising an EV_MEDIA_PROPOSE, it will raise an

EV_EXTENDED with state_xparms.extended_state = EV_EXT_RECONNECT_REQUEST. To
accept this request, the application needs to call sip_feature_send:

Acknowledging a reconnect request

ACU_ERR handle_ev_ext_reconnect_request(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_FEATURE_DETAIL_PARMS sip_feature_detail_parms;

 INIT_ACU_CL_STRUCT(&sip_feature_detail_parms);

 sip_feature_detail_parms.handle = handle;

 // The transferor has decided not to transfer the call and wishes to

 // reconnect instead. If it is desired that the reconnect should not

 // take place, RECONNECT_REJECT_CMD should be used instead.

 sip_feature_detail_parms.feature_type = FEATURE_HOLD_RECONNECT;

 sip_feature_detail_parms.feature.hold.command = RECONNECT_ACKNOWLEDGE_CMD;

 rc = sip_feature_send(&sip_feature_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_feature_send(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return 0;

}

The 200 OK will now be sent (with a=sendrecv in the SDP body) and an EV_MEDIA
will be raised to the application which should restart the media stream.

4.5 Transfer – Aculab initiating transfer
In SIP terms this party in a call transfer scenario is know as the transferor. Transfer is
one of the more complex call flows in SIP. Aculab have implemented Attended Call
Transfer as defined in section 2.5 of Session Initiation Protocol Service Examples (to
find the latest revision of this document, go to URL http://www.ietf.org/ and then
search on ‘ sipping service examples ’). Initiating a call transfer in SIP is an identical
process to that described in the generic Call Control API Guide with the following
exceptions:

1. When call_transfer is called, the enquiry call will receive an extra EV_HOLD.

2. call/sip_openout may be used instead of call_enquiry as call_enquiry in SIP
simply creates a normal outgoing call.

With these two points to bear in mind, the reader is referred to the Call Transfer
section starting at 4.58 of the generic Call Control API Guide.

The call flow shown below shows when the several EV_MEDIAs will be raised in a call
transfer scenario. These are needed for the application to know when and where to
start/stop the media streams.

MAN1763 PUBLIC 52

The application Transferor.exe

Application
Aculab SIP

Service

Media

Resource

SIP

User Agent 1

call_hold()

100 Trying

RTP

SIP

User Agent 2

INVITE with sendonly

200 OK with SDP

EV_HOLD

ACK

Stop RTP

No RTP

call_enquiry()

INVITE with SDP

100 Trying

200 OK with SDP

EV_WAIT_FOR_OUTGOING

EV_OUTGOING_RINGING

EV_MEDIA

Reserve media resource

sip_details()

Allocate resource, start RTP

RTP

EV_CALL_CONNECTED

ACK

call_transfer()

INVITE with sendonly

200 OK with SDP

EV_MEDIA

sip_details()

EV_HOLD

Stop RTP

EV_MEDIA

sip_details()

No RTP

ACK

REFER

202 Accepted

NOTIFY

200 OK

INVITE/200/ACK

RTP

BYE

200 OK

NOTIFY

200 OK

BYE

200 OK

EV_IDLE

Free resources

call_release()

EV_IDLE

Free resources

call_release()

Figure 4-5 Transfer – Aculab initiating transfer

MAN1763 PUBLIC 53

4.6 Transfer – Aculab responding to transfer request
In SIP terms this party in a call transfer scenario is know as the transferee. The
application Transferee.exe with the following arguments will run this example:

Transferee r=<TRANSFEROR IP ADDRESS>

Application
Aculab SIP

Service

Media

Resource

SIP

User Agent 1

RTP

SIP

User Agent 2

INVITE with sendonly

Stop RTP

No RTP

EV_EXTENDED

EV_EXT_HOLD_REQUEST

sip_feature_send()

(HOLD_ACKNOWLEDGE_CMD)
200 OK with SDP

ACK

EV_MEDIA

sip_details()

INVITE/200/ACK

INVITE/200/ACK - hold

REFER
EV_EXTENDED

EV_EXT_TRANSFER_INFORMATION

sip_feature_send()

FEATURE_TRANSFER
202 Accepted

NOTIFY

200 OK

No RTP

INVITE with Replaces

100 Trying

200 OK

EV_MEDIA

sip_details()
Reconfigure and

start RTP
RTP

ACK

NOTIFY

200 OK

BYE

200 OK

BYE/200

Figure 4-6 Transfer – Aculab responding to transfer request

As can be seen in the above call flow, the transferee needs to be able to react to two

additional extended events, EV_EXT_HOLD_REQUEST and EV_EXT_TRANSFER_INFORMATION.
The hold request should be handled in the same way as in section 4.2. The
EV_EXT_TRANSFER_INFORMATION is handled in a similar fashion as follows:

MAN1763 PUBLIC 54

Handling a transfer request from a transferor

ACU_ERR handle_ev_ext_transfer_information(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_FEATURE_DETAIL_PARMS sip_feature_detail_parms;

 INIT_ACU_CL_STRUCT(&sip_feature_detail_parms);

 sip_feature_detail_parms.handle = handle;

 // Received some transfer information. This can either be a REFER request

 // (as it is in this case) or an INVITE with Replaces. If the transfer is

 // to be rejected, the application must specify a valid SIP code in

 // the sip_feature_detail_parms.feature.transfer.failure_code field.

 sip_feature_detail_parms.feature_type = FEATURE_TRANSFER;

 // This is where the offer to the transfer target is populated. It is not

 // mandatory to supply a media offer here but the normal offer/answer

 // exchange must take place so it either must be supplied here or in the

 // 200 OK response from the transfer target.

 sip_feature_detail_parms.feature.transfer.media_offer_answer =

populate_media_offer(ACU_PCMA_PAYLOAD_NUMBER, 0, 0);

 // Send the INVITE with Replaces

 rc = sip_feature_send(&sip_feature_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_feature_send(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free any dynamically allocated memory

 free_media_offer(&sip_feature_detail_parms.feature.transfer.media_offer_answer);

 return 0;

}

As noted in the above code, receipt of an EV_EXT_TRANSFER_INFORMATION may be the

result of either a REFER request or an INVITE with Replaces. In the case of the

transferee it is the REFER as can be seen from the above call flow (the INVITE with
Replaces will be dealt with in section 4.7 below). Several messages will be sent by
the SIP service in response to this API call:

1. The REFER from the transferor will be acknowledged with a ‘202 Accepted’.

2. The transferor will be informed that the transfer is about to take place with a

NOTIFY message (which the transferor will acknowledge with a 200 OK).

3. An INVITE with Replaces will be sent to the transfer target, the details of which

will be contained in the Refer-to header of the REFER request.

Once the 200 OK has been received from the transfer target, an EV_MEDIA will be
raised with the new media settings. The application will then reconfigure the RTP
stream so that it is now sending to the transfer target. Behind the scenes, the SIP
service will send a NOTIFY to the transferor to inform it that the transfer has been

successful. The transferor will in turn send a BYE message, which will be

acknowledged with a 200 OK. Unlike other call scenarios, this BYE request will not

result in an EV_IDLE being raised to the application as the call handle is now
associated with the call to the transfer target.

MAN1763 PUBLIC 55

4.7 Transfer – Aculab acting as transfer target
In SIP terms this party in a call transfer scenario is know as the transfer target. The
application TransferTarget.exe with no arguments will run this example.

Application
Aculab SIP

Service

Media

Resource

SIP

User Agent 1

EV_INCOMING_CALL_DET

RTP

SIP

User Agent 2

INVITE with SDP

Allocate resource,

start RTP

No RTP

INVITE with Replaces

RTP

INVITE/200/ACK - hold

100 Trying

sip_details()

sip_incoming_ringing()

180 Ringing

EV_WAIT_FOR_ACCEPT

sip_accept()

200 OK with SDP

EV_MEDIA

sip_details()

ACK

EV_CALL_CONNECTED

INVITE - hold

100 Trying

sip_feature_send()

(HOLD_ACKNOWLEDGE_CMD)

EV_EXTENDED

EV_EXT_HOLD_REQUEST

EV_MEDIA

sip_details()

Stop RTP

REFER/202

NOTIFY/200

100 Trying

200 OK

EV_EXTENDED

EV_EXT_TRANSFER_INFORMATION

sip_feature_send()

(FEATURE_TRANSFER)

EV_MEDIA

sip_details()

Reconfigure RTP

ACK

RTP

BYE

200 OK

NOTIFY/200

BYE/200

Figure 4-7 Transfer – Aculab acting as transfer target

As can be seen in the following call flow, the same two additional extended events
must be catered for by the application as are in example 4.6 above. The

EV_EXT_HOLD_REQUEST is the extra hold that is mentioned in section 4.5 and should be
handled in the same way as in section 4.2.

The EV_EXT_TRANSFER_INFORMATION should be handled in a similar manner as in
section 4.6 the difference being that a media answer must be provided to the offer
given in the INVITE with Replaces. It is possible that this INVITE will not contain a
media offer in which case the transfer target would have to provide one here. For the
purposes of these examples it is assumed that such an offer exists in the INVITE and

MAN1763 PUBLIC 56

the reader is referred to section 2.9 for how to handle an INVITE with Replaces
containing no SDP body.

Handling a transfer request from a transferee

ACU_ERR handle_ev_ext_transfer_information(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_FEATURE_DETAIL_PARMS sip_feature_detail_parms;

 SIP_DETAIL_PARMS sip_detail_parms;

 // Retrieve the call details

 INIT_ACU_CL_STRUCT(&sip_detail_parms);

 sip_detail_parms.handle = handle;

 rc = sip_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 INIT_ACU_CL_STRUCT(&sip_feature_detail_parms);

 sip_feature_detail_parms.handle = handle;

 // Received some transfer information. This can either be a INVITE with Replaces

 // (as it is in this case) or a REFER . If the transfer is to be rejected, the

 // application must specify a valid SIP code in

 // the sip_feature_detail_parms.feature.transfer.failure_code field.

 sip_feature_detail_parms.feature_type = FEATURE_TRANSFER;

 // This field is mandatory for the transfer target. It will comprise either the

 // answer in an offer/answer exchange (this is most likely) or an offer if the

 // INVITE with Replaces did not contain an offer.

 sip_feature_detail_parms.feature.transfer.media_offer_answer =

populate_media_answer(sip_detail_parms.media_offer_answer);

 // Send the appropriate SIP message(s)

 rc = sip_feature_send(&sip_feature_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_feature_send(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free the SIP_DETAIL_PARMS structure. This is essential after any call to

 // sip_details. If this function is not called, the application will leak memory.

 rc = sip_free_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_free_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return 0;

}

In response to the call to sip_feature_send, the SIP service will send a 200 OK to the

transferee and raise an EV_MEDIA to the application now that the new media settings
are known. The application should then reconfigure the media stream accordingly.

MAN1763 PUBLIC 57

There is nothing left for the application to do but it should be noted that this is a small
amount of SIP signalling remaining for the call transfer scenario to be complete.
When the transfer target receives the ACK from the transferee it will clear down the
original call by sending a BYE to the transferor, which will acknowledge with a 200 OK.

As in section 4.6, this will not result in an EV_IDLE being raised to the application as
the call handle is now associated with a call to the transferee.

MAN1763 PUBLIC 58

5 SIP mid call messages
It is currently possible to send two mid call SIP messages in addition to re-INVITE.

They are the INFO and NOTIFY methods. Here we will only describe the INFO method,
as the two are essentially identical.

NOTE

By default, where appropriate, Aculab SIP will respond to mid call messages.

Please refer to the enable_midcall_response_mask in the Extended SIP API
document for details of which messages can be set to enable the application to
respond to them instead.

This would need to be used in conjunction with response_notification_mask,
detailed below, to inform the application of the arrival of such messages.

5.1 Sending an INFO request

The application wishes to send an INFO mid call. The application MidCallMessage_UAC

with no arguments (use the NOTIFY argument to send NOTIFY instead of INFO) will

establish an inbound call and send a mid call INFO.

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

200 OK

sip_send_request()

RTP

INFO

EV_DETAILS

sip_details()

check response code

sip_free_details()

Figure 5-1 Sending a mid call INFO request

Creating a mid call message is very similar to other API calls. The point to really be
aware of is that the application will need to be notified of the response. This will not
automatically occur and so an additional parameter must be set when calling
sip_openin (or sip_openout). In order for an application to be notified of these
messages it must open the call in the following way:

Opening a call so that it is notified of INFO responses

ACU_ERR open_incoming(ACU_CALL_HANDLE *handle)

{

 ACU_ERR rc = 0;

 SIP_IN_PARMS in;

 // When opening the SIP port for incoming calls using the SIP Bridge it is

 // necessary to use sip_openin instead of call_openin.

 INIT_ACU_CL_STRUCT(&in);

 in.net = settings.sip_port;

 // This application needs to be notified of any response to any mid call

 // message that it will send. EV_DETAILS will be raised on

 // receipt of any such message.

 in.response_notification_mask = ACU_SIP_INFO_NOTIFICATION;

MAN1763 PUBLIC 59

 rc = sip_openin(&in);

 if(0 != rc)

 {

 printf("Error in sip_openin(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Store the call's handle to pass to the call control loop.

 *handle = in.handle;

 return 0;

}

Now that this is set, any response to an INFO or NOTIFY will be raised to the

application via an EV_DETAILS. Now that the application will be notified of any
response, we need to know how to send the message:

Sending a mid call INFO message

ACU_ERR send_mid_call_info(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_SEND_REQUEST_PARMS sip_send_request_parms;

 ACU_RAW_MESSAGE_BODY acu_raw_message_body;

 ACU_UCHAR MSG_BODY[] = {

 'T', 'h', 'i', 's', ' ', 'i', 's', ' ', 't', 'h', 'e', ' ', 'm', 'e', 's', 's', 'a', 'g',

 'e', ' ', 'b', 'o', 'd', 'y', ' ', 'o', 'f', ' ', 'a', ' ', 'm', 'i', 'd', ' ', 'c', 'a',

 'l', 'l', ' ', 'S', 'I', 'P', ' ', 'm', 'e', 's', 's', 'a', 'g', 'e', '.', '\n', '\0'};

 // Only the handle & message_type fields are mandatory. Here, for purposes

 // of illustration, all fields are populated.

 INIT_ACU_CL_STRUCT(&sip_send_request_parms);

 sip_send_request_parms.handle = handle;

 sip_send_request_parms.message_type = ACU_SIP_INFO_NOTIFICATION;

 sip_send_request_parms.custom_headers = "Subject: Test INFO message";

 memset(&acu_raw_message_body, 0, sizeof(ACU_RAW_MESSAGE_BODY));

 // The message body defined above is clearly not an ISUP message and is used only for

 // illustrative purposes.

 acu_raw_message_body.body_type = "application/isup";

 acu_raw_message_body.body = (ACU_UCHAR*) MSG_BODY;

 acu_raw_message_body.body_length = sizeof(MSG_BODY);

 sip_send_request_parms.message_bodies = &acu_raw_message_body;

 // Send INFO to UAS.

 rc = sip_send_request(&sip_send_request_parms);

 if(0 != rc)

 {

 printf("Error in sip_send_request(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return 0;

}

MAN1763 PUBLIC 60

Now the message has been sent, an EV_DETAILS will be raised when any response
is received. The application should call sip_details at this point but beyond that it is
free to do as it chooses.

MAN1763 PUBLIC 61

5.2 Receiving an INFO request

The application wishes to be notified of any INFO requests that may be sent to it. The

application MidCallMessage_UAS with the following arguments will run this example:

MidCallMessage_UAS r=<REMOTE IP ADDRESS>

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

200 OK

RTP

INFO

EV_DETAILS

sip_details()

check details

sip_free_details()

Figure 5-2 Receiving a mid call INFO request

Similarly to the preceding example, the application will not automatically be notified of

any mid call INFO messages. In order for the application to be notified, it must set an

extra field in the SIP_OPENIN/OUT_PARMS:

Opening a call so that it is notified of INFO requests

ACU_ERR open_outgoing(ACU_CALL_HANDLE *handle)

{

 ACU_ERR rc = 0;

 SIP_OUT_PARMS out;

 // When opening the SIP port for incoming calls using the SIP Bridge it is

 // necessary to use sip_openout instead of call_openout.

 INIT_ACU_CL_STRUCT(&out);

 out.net = settings.sip_port;

 out.originating_addr = (ACU_CHAR*)malloc(strlen(settings.local_ip_address) + 1);

 strcpy(out.originating_addr, settings.local_ip_address);

 out.destination_addr = (ACU_CHAR*)malloc(strlen(settings.remote_ip_address) + 1);

 strcpy(out.destination_addr, settings.remote_ip_address);

 // Populate the media offer

 out.media_offer_answer = populate_media_offer(ACU_PCMA_PAYLOAD_NUMBER, 0, 0);

 // The application needs to be notified of any inbound INFO requests. Set this

 // so that an EV_DETAILS willbe raised when any such message is received.

 out.request_notification_mask = ACU_SIP_INFO_NOTIFICATION;

 // Send the INVITE

 rc = sip_openout(&out);

 if(0 != rc)

 {

 printf("Error in sip_openout(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Store the call's handle to pass to the call control loop.

 *handle = out.handle;

MAN1763 PUBLIC 62

 // There is a large amount of dynamic memory allocation involved when creating

 // a media offer or answer. This memory must be freed.

 free_media_offer(&out.media_offer_answer);

 return rc;

}

Therefore, if an application needs to be notified of receipt of mid call requests it

assigns the appropriate value to the request_notification_mask parameter. If it
needs to be notified of responses to such requests, it must set the

response_notification_mask.

Little else needs to be done in this example. If a mid call INFO is received, an

EV_DETAILS will be raised. At this point, the application should call sip_details but it is

entirely up to the application how it uses the information contained in the INFO. The
200 OK response will be automatically generated by the SIP service.

MAN1763 PUBLIC 63

6 Miscellaneous call flows

6.1 Redirect an incoming call (send a 3xx response)
In this example the application behaves as a redirect server. The application
Redirector with the following arguments will run the example:

Redirector r=<REDIRECTED CONTACT 1> r=<REDIRECTED CONTACT 2>...

The 3 dots indicating that many contacts may be supplied. The default 3xx response
(302) may be changed with c=301 (or any other response code).

SIP

User Agent

Aculab SIP

Service
Application

Media

Resource

EV_INCOMING_CALL_DET

INVITE

sip_openin()

sip_disconnect()

Providing alternate

contact details

ACK

EV_WAIT_FOR_INCOMING

EV_IDLE

3xx

100 Trying

Figure 6.1 – Redirecting an incoming call

As can be seen above, this is a very simple feature to implement. On receipt of an
EV_INCOMING_CALL_DET the application will call sip_disconnect providing a list of
alternative contact details and a response code. This response will then be sent and
the call will idle. No EV_MEDIA will be raised in this scenario and so no media stream
will be established.

Redirecting a call:

ACU_ERR handle_ev_incoming_call_det(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_DISCONNECT_PARMS sip_disconnect_parms;

 // Normally, an appllication would call sip_incoming_ringing here to send

 // a 180 response back to the caller. Here we wish to send a 3xx response

 // containing redirect information - i.e. alternative contact address(es).

 INIT_ACU_CL_STRUCT(&sip_disconnect_parms);

 sip_disconnect_parms.handle = handle;

 sip_disconnect_parms.sip_code = settings.sip_code; // 3xx

 // See parse_command_line for where the contact list is set up.

 sip_disconnect_parms.redirect_contact_list = settings.redirect_contacts;

 rc = sip_disconnect(&sip_disconnect_parms);

 if(0 != rc)

 {

 printf("Error in sip_disconnect(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // As with the rest of the SIP API, the API structures are populated with char*'s

MAN1763 PUBLIC 64

 // rather than fixed length arrays. Any dynamically allocated memory must be freed.

 // free_string_list is defined in section 0

 free_string_list(&sip_disconnect_parms.redirect_contact_list);

 return 0;

}

The list of alternative contacts is supplied by the command line in this example
(unlikely in a real application). The set up of the list can be found in Redirector.c
(parse_command_line()).

6.2 Outgoing call redirected (handle a 3xx response)
The application attempts to make an outgoing call but receives a 3xx response
indicating that the call is being redirected. The application Redirectee with the
following arguments will run this example:

Redirectee r=<REMOTE IP ADDRESS>

If there is no redirect server or other UA that may be able to redirect INVITEs, the
application Redirector may be used instead.

Application
Aculab SIP

Service

Media

Resource

SIP

User Agent 1

SIP

User Agent 2 /

Redirect server

sip_openout()

INVITE

EV_WAIT_FOR_OUTGOING

EV_EXT_DIVERSION

EV_MEDIA

Reserve media resource

sip_recall()

Using contacts found above.

Allocate resource, start RTP

RTP

EV_CALL_CONNECTED

ACK

sip_details()

INVITE

100 Trying

200 OK

100 Trying

3xx

sip_details()

Retrieve contacts from

3xx response

180 Ringing

EV_OUTGOING_RINGING

Figure 6.2 – Handling a redirected call

The application makes a call to sip_openout to a UA or SIP server but instead of
receiving a 180 response it gets a 3xx response. These category of responses
contain alternative contact details for the UAC to try (in the form of one or more
Contact headers). In response to this, the SIP service will raise an EV_EXTENDED
event with the extended_state field set to EV_EXT_DIVERSION. The application
should then call sip_details to retrieve the redirection information from the
sip_detail_parms.redirect_info field. The application can then choose one of the
available contacts and provide it as input to sip_recall.

MAN1763 PUBLIC 65

Handling a 3xx response:
ACU_ERR handle_ev_ext_diversion(const ACU_CALL_HANDLE handle)

{

 ACU_ERR rc = 0;

 SIP_DETAIL_PARMS sip_detail_parms;

 SIP_RECALL_PARMS sip_recall_parms;

 // Retrieve the media settings for the call.

 INIT_ACU_CL_STRUCT(&sip_detail_parms);

 sip_detail_parms.handle = handle;

 rc = sip_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 if(NULL == sip_detail_parms.redirect_info)

 {

 printf("sip_details returned no contact information.\n");

 return -1;

 }

 INIT_ACU_CL_STRUCT(&sip_recall_parms);

 sip_recall_parms.handle = handle;

 // There may be multiple contacts in sip_detail_parms.redirect_info. Here we simply use the first one.

 // There may also be

 sip_recall_parms.destination_addr =

(ACU_CHAR*)malloc(strlen(sip_detail_parms.redirect_info->contact_list->string) + 1);

 strcpy(sip_recall_parms.destination_addr, sip_detail_parms.redirect_info->contact_list->string);

 rc = sip_recall(&sip_recall_parms);

 if(0 != rc)

 {

 printf("Error in sip_recall(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Free the SIP_DETAIL_PARMS structure. This is essential after any call to

 // sip_details. If this function is not called, the application will leak memory.

 rc = sip_free_details(&sip_detail_parms);

 if(0 != rc)

 {

 printf("Error in sip_free_details(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return rc;

}

A new (and identical apart from the Cseq and To headers) INVITE will now be sent to
the new contact address. The call flow will then be the same as for a normal outgoing
call. It could, of course, be redirected again.

MAN1763 PUBLIC 66

7 SIP out of dialog messages
The SIP service provides support for sending and receiving out of dialog SIP
messages. The possible message types are as follows:

• NOTIFY

• REGISTER

• SUBSCRIBE

• OPTIONS

There is a considerable variation in the amount of work that would need to be done
behind the scenes in order to fully implement these methods, for example, if an
application wished to accept REGISTER requests it would essentially be a SIP
registrar which would involve a lot more than simply sending a 200 OK to REGISTER
requests. Construction of NOTIFY requests and processing of SUBSCRIBE requests
would depend entirely on the event notification scheme that is to be implemented.
However, in terms of the extended SIP API, the handling of these messages is
basically the same – they use the same API calls and the same events are raised. As
such, these examples will concentrate only on the OPTIONS method as all UAs
should implement this in order to conform to RFC 3261.

7.1 Sending an OPTIONS request
The application wishes to send an OPTIONS request to a remote party. The
application OutOfDialog_UAC with the following arguments will run this example:

OutOfDialog_UAC r=<remote IP address>

SIP

User Agent

Aculab SIP

Service
Application

ACU_SIP_EV_RESPONSE

OPTIONS

sip_set_message_notification()

sip_read_response()

200 OK

sip_send_out_of_dialog_request()

Figure 7.1 – Sending an out of dialog request

Not all applications would necessarily be interested in receiving notification of
responses to the out of dialog requests that it sends. For example, an application that
is performing event notification functions may not be interested in the contents of
responses to NOTIFY requests. In the case of OPTIONS, however, the purpose is to
determine the remote party’s capabilities so notification of the response is very likely
to be required. This does not happen automatically, the application must make a call
to sip_set_message_notification() in order to specify which responses the application
is interested in. Once this is done, the OPTIONS request may be sent.

MAN1763 PUBLIC 67

Requesting notification of responses:

ACU_ERR set_response_notification(const ACU_PORT_ID sip_port)

{

 ACU_ERR rc = ERR_NO_ERROR;

 SIP_MESSAGE_NOTIFICATION_PARMS sip_message_notification_parms;

 INIT_ACU_CL_STRUCT(&sip_message_notification_parms);

 sip_message_notification_parms.port_id = sip_port;

 // This parameter specifies which requests the application is interested in

 // being notified of any response. Here, only the OPTIONS request is of

 // interest.

 sip_message_notification_parms.response_notification_mask = ACU_SIP_OPTIONS_NOTIFICATION;

 rc = sip_set_message_notification(&sip_message_notification_parms);

 if(ERR_NO_ERROR != rc)

 {

 printf("Error in sip_set_message_notification(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 return ERR_NO_ERROR;

}

Sending an OPTIONS request:

ACU_ERR send_options_request(const ACU_PORT_ID sip_port, ACU_POINTER *transaction_id)

{

 // Send the OPTIONS request. The following fields of sip_send_out_of_dialog_request_parms

 // are optional and are only described here:

 //

 // request_uri - Request-URI to be used for this request. If not present, the 'to' field is used

 // local_address - reserved for future use

 // custom_headers - A CRLF delimited list of additional SIP headers to be included in the request

 // message_bodies - A list of message bodies to be included in the request

 ACU_ERR rc = ERR_NO_ERROR;

 SIP_SEND_OUT_OF_DIALOG_REQUEST_PARMS sip_send_out_of_dialog_request_parms;

 INIT_ACU_CL_STRUCT(&sip_send_out_of_dialog_request_parms);

 sip_send_out_of_dialog_request_parms.message_type = ACU_SIP_MESSAGE_OPTIONS;

 // Using dummy IP addresses for the purposes of these examples

 sip_send_out_of_dialog_request_parms.from = "sip:192.168.100.100";

 sip_send_out_of_dialog_request_parms.to = "sip:192.168.100.101";

 rc = sip_send_out_of_dialog_request(&sip_send_out_of_dialog_request_parms);

 if(ERR_NO_ERROR != rc)

 {

 printf("Error in sip_send_out_of_dialog_request(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Store the transaction ID so the response may be matched to the request

 *transaction_id = sip_send_out_of_dialog_request_parms.transaction_id;

 return ERR_NO_ERROR;

}

Now the OPTIONS request has been sent, the SIP service will raise an

MAN1763 PUBLIC 68

ACU_SIP_EV_RESPONSE when the response has been received. At this point, the
application should retrieve the response using sip_read_response(). No discussion of
processing the response will be given as that is a matter for the application’s own
local policy. Here, it will simply be shown how to retrieve the response from the SIP
service. It is assumed that the application has set up the relevant event queue and an
event has been raised. For more information on setting up event queues and waiting
for events, see the V6 resource management API guide (acu_allocate_event_queue()
& acu_get_event_from_queue()) and the V6 call control API guide
(call_set_port_notification_queue()).

Reading a SIP response:

ACU_ERR handle_port_event(const ACU_PORT_ID sip_port, const ACU_POINTER transaction_id)

{

 ACU_ERR rc = ERR_NO_ERROR;

 CALL_PORT_NOTIFICATION_PARMS call_port_notification_parms;

 SIP_READ_MESSAGE_PARMS sip_read_message_parms;

 // Retrieve the event

 INIT_ACU_CL_STRUCT(&call_port_notification_parms);

 call_port_notification_parms.port_id = sip_port;

 rc = call_get_port_notification(&call_port_notification_parms);

 if(ERR_NO_ERROR != rc)

 {

 printf("Error in call_get_port_notification(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Check the event type

 switch(call_port_notification_parms.event)

 {

 case ACU_SIP_EV_RESPONSE:

 INIT_ACU_CL_STRUCT(&sip_read_message_parms);

 sip_read_message_parms.port_id = sip_port;

 rc = sip_read_response(&sip_read_message_parms);

 if(ERR_NO_ERROR != rc)

 {

 printf("Error in sip_read_response(): %d, %s\n", rc, error_2_string(rc));

 }

 // Check the transaction ID matches that returned by sip_send_out_of_dialog_request()

 // In these examples there is no real need as only one request has been sent but

 // in general, an application would need to match requests with responses.

 if(sip_read_message_parms.transaction_id != transaction_id)

 {

 printf("Error. Transaction ID does not match request.\n");

 rc = -1;

 }

 break;

 case ACU_SIP_EV_REQUEST:

 // In these examples, this would indicate a serious error as

 // notifications of requests has not been set. In general this

 // should be handled. See section 7.2.

 rc = -1;

 break;

 case ACU_SIP_EV_REQUEST_TIMEOUT:

MAN1763 PUBLIC 69

 // The OPTIONS request has received no response. Here an application would

 // call sip_read_timeout() in order to retrieve the transaction ID of the request.

 // In these examples, it is known as only one request has been sent.

 break;

 default:

 break;

 }

 return rc;

}

The response to an OPTIONS request will contain information about the capabilities
of the remote user agent. It is up to the individual application as to what it does with
that information.

7.2 Receiving an OPTIONS request
The application wishes to process incoming OPTIONS requests and send appropriate
responses. The application OutOfDialog_UAS will run this example.

SIP

User Agent

Aculab SIP

Service
Application

ACU_SIP_EV_REQUEST

OPTIONS

sip_set_message_notification()

sip_send_out_of_dialog_response()

200 OK

sip_read_request()

Figure 7.2 Receiving an out of dialog request

The application will need to request notification of incoming OPTIONS messages.
This is done in exactly the same manner as it is in section 7.1 except that:

sip_message_notification_parms.response_notification_mask =

ACU_SIP_OPTIONS_NOTIFICATION;

is replaced by:

sip_message_notification_parms.request_notification_mask =

ACU_SIP_OPTIONS_NOTIFICATION;

and:

sip_message_notification_parms.enable_response_mask =

ACU_SIP_OPTIONS_NOTIFICATION;

is added. This additional parameter specifies that the application would like to create
and send the response itself. If it is not set, the SIP service will create a default
response. In the case of OPTIONS, the SIP service can only create a very limited
response as it has no knowledge of the capabilities of the particular media server in
use.

The application now needs to call sip_set_message_notification as in example 7.2. It
is entirely possible that an application would wish to receive notification of both
requests and responses, in which case, both request and response masks would
need to be set.

Reading a SIP request:

It is assumed that an OPTIONS request has been received and an event has been

MAN1763 PUBLIC 70

raised to acu_get_event_from_queue. See the V6 resource management API guide
for more details on event queues.

ACU_ERR handle_port_event(const ACU_PORT_ID sip_port)

{

 ACU_ERR rc = ERR_NO_ERROR;

 CALL_PORT_NOTIFICATION_PARMS call_port_notification_parms;

 SIP_READ_MESSAGE_PARMS sip_read_message_parms;

 // Retrieve the event

 INIT_ACU_CL_STRUCT(&call_port_notification_parms);

 call_port_notification_parms.port_id = sip_port;

 rc = call_get_port_notification(&call_port_notification_parms);

 if(ERR_NO_ERROR != rc)

 {

 printf("Error in call_get_port_notification(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 // Check the event type

 switch(call_port_notification_parms.event)

 {

 case ACU_SIP_EV_RESPONSE:

 // In these examples, this would indicate a serious error as

 // notifications of responses has not been set. In general this

 // should be handled. See section 7.1.

 rc = -1;

 break;

 case ACU_SIP_EV_REQUEST:

 INIT_ACU_CL_STRUCT(&sip_read_message_parms);

 sip_read_message_parms.port_id = sip_port;

 rc = sip_read_request(&sip_read_message_parms);

 if(ERR_NO_ERROR != rc)

 {

 printf("Error in sip_read_response(): %d, %s\n", rc, error_2_string(rc));

 }

 // Usually, an application would need to parse the message in order to determine

 // the message type. Here, only notification of OPTIONS messages has been

 // requested so it is known to be an OPTIONS. For OPTIONS, no further processing

 // is necessary.

 rc = send_options_response(sip_port, sip_read_message_parms.transaction_id); // See below.

 break;

 case ACU_SIP_EV_REQUEST_TIMEOUT:

 // In these examples, this would indicate a serious error as timeouts

 // only occur for requests. In general this would indicate a previously

 // sent request has timed out. See section 7.1

 break;

 default:

 break;

 }

 return rc;

}

Sending an OPTIONS response:

MAN1763 PUBLIC 71

ACU_ERR send_options_response(const ACU_PORT_ID sip_port, const ACU_POINTER transaction_id)

{

 ACU_ERR rc = ERR_NO_ERROR;

 SIP_SEND_OUT_OF_DIALOG_RESPONSE_PARMS sip_send_out_of_dialog_response_parms;

 // This is an example SDP body containing much of what Aculab supports in terms

 // of media capablities. In general, an application would only offer a subset

 // of this. The actual capabilities would need to be ascertained from the particular

 // hardware or software that is being used (e.g. Prosody X, Prosody S...) and the

 // specific needs of the application.

 // Note. This is not necessary for all out of dialog requests. Some responses may

 // require a message body (which may or may not be SDP) and others will not. This will

 // depend on the application. Most will require additional processing according to

 // the application's needs.

 static const char* SDP_BODY =

 "v=0\r\n"

 "o=Aculab 0 0 IN IP4 192.168.1.2\r\n"

 "s=Example SDP body\r\n"

 "c=IN IP4 192.168.1.2\r\n"

 "t=0 0\r\n"

 "m=audio 0 RTP/AVP 18 8 4 0 96\r\n"

 "a=rtpmap:18 G729/8000\r\n"

 "a=fmtp:18 annexb=no\r\n"

 "a=rtpmap:8 PCMA/8000\r\n"

 "a=rtpmap:4 g723/8000\r\n"

 "a=rtpmap:0 PCMU/8000\r\n"

 "a=rtpmap:96 telephone-event/8000\r\n"

 "a=fmtp:96 0-15"

 "m=video 0 RTP/AVP 34\r\n"

 "a=rtpmap:34 H263/90000\r\n"

 "a=fmtp:34 CIF=1 QCIF=1 SQCIF=1 MaxBR=10240\r\n"

 "m=image 1211 UDPTL t38\r\n"

 "a=T38MaxBitRate:14400\r\n"

 "a=T38FaxMaxBuffer:1024\r\n"

 "a=T38FaxUDPEC:t38UDPRedundancy\r\n"

 "a=T38FaxVersion:2\r\n"

 "a=T38FaxRateManagement:transferredTCF\r\n"

 "a=T38FaxMaxDatagram:160\r\n";

 // Add other assorted SIP headers. Again, these will vary according to the

 // application's needs.

 static const char* ADDITIONAL_OPTIONS_HEADERS =

 "Allow: INVITE, ACK, BYE, CANCEL, OPTIONS, NOTIFY, REFER, PRACK, INFO\r\n"

 "Supported: 100rel, timer, replaces\r\n"

 "Accept: application/sdp, application/isup, application/qsig, multipart/mixed\r\n"

 "Accept-Encoding: identity\r\n"

 "Accept-Language: en\r\n";

 INIT_ACU_CL_STRUCT(&sip_send_out_of_dialog_response_parms);

 sip_send_out_of_dialog_response_parms.port_id = sip_port;

 sip_send_out_of_dialog_response_parms.transaction_id = transaction_id;

 // The application may wish to reject the request in which case a suitable SIP response code must be used.

 sip_send_out_of_dialog_response_parms.sip_code = 200;

MAN1763 PUBLIC 72

 sip_send_out_of_dialog_response_parms.message_bodies =

 (ACU_RAW_MESSAGE_BODY*)malloc(sizeof(ACU_RAW_MESSAGE_BODY));

 memset(sip_send_out_of_dialog_response_parms.message_bodies, 0, sizeof(ACU_RAW_MESSAGE_BODY));

 sip_send_out_of_dialog_response_parms.message_bodies->body_type = "application/sdp";

 sip_send_out_of_dialog_response_parms.message_bodies->body_length = strlen(SDP_BODY);

 sip_send_out_of_dialog_response_parms.message_bodies->body = (unsigned char*)SDP_BODY;

 sip_send_out_of_dialog_response_parms.custom_headers = (char*)ADDITIONAL_OPTIONS_HEADERS;

 rc = sip_send_out_of_dialog_response(&sip_send_out_of_dialog_response_parms);

 if(ERR_NO_ERROR != rc)

 {

 printf("Error in sip_send_out_of_dialog_response(): %d, %s\n", rc, error_2_string(rc));

 return rc;

 }

 free(sip_send_out_of_dialog_response_parms.message_bodies);

 return ERR_NO_ERROR;

}

MAN1763 PUBLIC 73

Appendix A: Handling dynamic memory allocation
Most commonly, SIP messages contain SDP bodies describing the media session.
These message bodies are presented to the application in the structure
ACU_MEDIA_OFFER_ANSWER. Due to the nature of SDP, this structure contains
several linked lists and many strings whose length will vary from message to
message. This means that the application will need to handle a large amount of
dynamic memory allocation and subsequent releasing of that memory. These
functions are intended to make this process straight forward.

A.1 clone_media_offer
/*--\

| |

| clone_media_offer() |

| |

| Copy all elements of a media offer for later use. |

| |

\--*/

ACU_MEDIA_OFFER_ANSWER *clone_media_offer(const ACU_MEDIA_OFFER_ANSWER* offer)

{

 ACU_MEDIA_OFFER_ANSWER *temp;

 if(NULL == offer)

 {

 // No media offer present

 return NULL;

 }

 temp = (ACU_MEDIA_OFFER_ANSWER*)malloc(sizeof(ACU_MEDIA_OFFER_ANSWER));

 memset(temp, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

 // Copy connection address information

 temp->connection_address.address_type = offer->connection_address.address_type;

 if(NULL != offer->connection_address.address)

 {

 temp->connection_address.address = (ACU_CHAR*)malloc(strlen(offer->connection_address.address) + 1);

 strcpy(temp->connection_address.address, offer->connection_address.address);

 }

 // Copy raw SDP

 if(NULL != offer->raw_sdp)

 {

 temp->raw_sdp = (ACU_CHAR*)malloc(strlen(offer->raw_sdp) + 1);

 strcpy(temp->raw_sdp, offer->raw_sdp);

 }

 // clone_media_descriptions is defined in section 0

 temp->media_descriptions = clone_media_descriptions(offer->media_descriptions);

 return temp;

}

MAN1763 PUBLIC 74

A.2 clone_media_descriptions
/*--\

| |

| clone_media_descriptions() |

| |

| Copy all media descriptions for a given media offer. |

| |

\--*/

ACU_MEDIA_DESCRIPTION *clone_media_descriptions(ACU_MEDIA_DESCRIPTION *media_descriptions)

{

 ACU_MEDIA_DESCRIPTION *new_desc;

 if(NULL == media_descriptions)

 {

 // There is no media description to copy

 return NULL;

 }

 // Although there may be several media descriptions this function is

 // recursive so only enough memory for one media description needs to

 // be allocated here.

 new_desc = (ACU_MEDIA_DESCRIPTION*)malloc(sizeof(ACU_MEDIA_DESCRIPTION));

 memset(new_desc, 0, sizeof(ACU_MEDIA_DESCRIPTION));

 if(NULL != media_descriptions->next)

 {

 // The next media description in the list is not NULL

 // so it needs to be copied first.

 new_desc->next = clone_media_descriptions(media_descriptions->next);

 }

 // Now copy all of the media attributes contained in the media description

 new_desc->connection_address.address_type = media_descriptions->connection_address.address_type;

 if(NULL != media_descriptions->connection_address.address)

 {

 new_desc->connection_address.address = (ACU_CHAR*)malloc(MAXADDR);

 strcpy(new_desc->connection_address.address, media_descriptions->connection_address.address);

 }

 if(NULL != media_descriptions->transport)

 {

 new_desc->transport = (ACU_CHAR*)malloc(strlen(media_descriptions->transport) + 1);

 strcpy(new_desc->transport, media_descriptions->transport);

 }

 new_desc->packet_length = media_descriptions->packet_length;

 new_desc->media_direction = media_descriptions->media_direction;

 new_desc->media_type = media_descriptions->media_type;

 new_desc->port = media_descriptions->port;

 // Copy the payloads given in this media description. clone_payloads is defined in section 0

 new_desc->payloads = clone_payloads(media_descriptions->payloads, media_descriptions->media_type);

 // Copy any miscellaneous attributes. clone_misc_attributes is defined in section 0

 new_desc->miscellaneous_attributes = clone_misc_attributes(media_descriptions->miscellaneous_attributes);

MAN1763 PUBLIC 75

 return new_desc;

}

A.3 clone_payloads
/*--\

| |

| clone_payloads() |

| |

| Check media type and copy all payloads in the list. |

| |

\--*/

ACU_PAYLOAD *clone_payloads(const ACU_PAYLOAD *payloads, const ACU_MEDIA_TYPES media_type)

{

 ACU_PAYLOAD *new_payload = NULL;

 if(NULL == payloads)

 {

 return NULL;

 }

 switch(media_type)

 {

 case ACU_AUDIO:

 case ACU_VIDEO:

 // clone_audio_video_payloads is defined in section A.4

 new_payload = clone_audio_video_payloads(payloads);

 break;

 case ACU_IMAGE:

 // clone_image_payloads is defined in section 0

 new_payload = clone_image_payloads(payloads);

 break;

 case ACU_CONTROL:

 // clone_control_payloads is defined in section 0

 new_payload = clone_control_payloads(payloads);

 break;

 case ACU_TEXT:

 case ACU_APPLICATION:

 default:

 // Nothing to copy

 break;

 }

 return new_payload;

}

MAN1763 PUBLIC 76

A.4 clone_audio_video_payloads
/*--\

| |

| clone_audio_video_payloads() |

| |

| Copy payloads for media types ACU_AUDIO and ACU_VIDEO |

| |

\--*/

ACU_PAYLOAD *clone_audio_video_payloads(const ACU_PAYLOAD *payloads)

{

 ACU_PAYLOAD *new_payload = NULL;

 // Although there may be several payloads this function is recursive

 // so only enough memory for one payload needs to be allocated here.

 new_payload = (ACU_PAYLOAD*)malloc(sizeof(ACU_PAYLOAD));

 memset(new_payload, 0, sizeof(ACU_PAYLOAD));

 if(NULL != payloads->next)

 {

 // The next payload in the list is not NULL so it needs to be copied first.

 new_payload->next = clone_audio_video_payloads(payloads->next);

 }

 // Copy payload attributes

 new_payload->payload.audio_video.clock_rate = payloads->payload.audio_video.clock_rate;

 new_payload->payload.audio_video.packet_length = payloads->payload.audio_video. packet_length;

 if(NULL != payloads->payload.audio_video.payload_specific_options)

 {

 ACU_CHAR *options;

 options = (ACU_CHAR*)malloc(strlen(payloads->payload.audio_video.payload_specific_options)+1);

 strcpy(options, payloads->payload.audio_video.payload_specific_options);

 new_payload->payload.audio_video.payload_specific_options = options;

 }

 if(NULL != payloads->payload.audio_video.rtp_payload_name)

 {

 ACU_CHAR *payload_name;

 payload_name = (ACU_CHAR *)malloc(strlen(payloads->payload.audio_video.rtp_payload_name) + 1);

 strcpy(payload_name, payloads->payload.audio_video.rtp_payload_name);

 new_payload->payload.audio_video.rtp_payload_name = payload_name;

 }

 new_payload->payload.audio_video.rtp_payload_number = payloads->payload.audio_video.rtp_payload_number;

 return new_payload;

}

MAN1763 PUBLIC 77

A.5 clone_image_payloads
/*--\

| |

| clone_image_payloads() |

| |

| Copy payloads for media type ACU_IMAGE |

| |

\--*/

ACU_PAYLOAD *clone_image_payloads(const ACU_PAYLOAD *payloads)

{

 ACU_PAYLOAD *new_payload = NULL;

 // Although there may be several payloads this function is recursive

 // so only enough memory for one payload needs to be allocated here.

 new_payload = (ACU_PAYLOAD*)malloc(sizeof(ACU_PAYLOAD));

 memset(new_payload, 0, sizeof(ACU_PAYLOAD));

 if(NULL != payloads->next)

 {

 // The next payload in the list is not NULL so it needs to be copied first.

 new_payload->next = clone_image_payloads(payloads->next);

 }

 // Copy payload attributes

 if(NULL != payloads->payload.image.image_payload_name)

 {

 ACU_CHAR* image_payload_name;

 image_payload_name = (ACU_CHAR*)malloc(strlen(payloads->payload.image.image_payload_name) + 1);

 strcpy(image_payload_name, payloads->payload.image.image_payload_name);

 new_payload->payload.image.image_payload_name = image_payload_name;

 }

 return new_payload;

}

MAN1763 PUBLIC 78

A.6 clone_control_payloads
/*--\

| |

| clone_control_payloads() |

| |

| Copy payloads for media type ACU_CONTROL |

| |

\--*/

ACU_PAYLOAD *clone_control_payloads(const ACU_PAYLOAD *payloads)

{

 ACU_PAYLOAD *new_payload = NULL;

 // Although there may be several payloads this function is recursive

 // so only enough memory for one payload needs to be allocated here.

 new_payload = (ACU_PAYLOAD*)malloc(sizeof(ACU_PAYLOAD));

 memset(new_payload, 0, sizeof(ACU_PAYLOAD));

 if(NULL != payloads->next)

 {

 // The next payload in the list is not NULL so it needs to be copied first.

 new_payload->next = clone_control_payloads(payloads->next);

 }

 // Copy payload attributes

 new_payload->payload.control.dummy = payloads->payload.control.dummy;

 return new_payload;

}

MAN1763 PUBLIC 79

A.7 clone_misc_attributes
/*--\

| |

| clone_misc_attributes() |

| |

| Copy ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE linked list |

| |

\--*/

ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE *clone_misc_attributes(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE *misc_attributes)

{

 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE *new_attribute;

 if(NULL == misc_attributes)

 {

 // There are no miscellaneous attributes

 return NULL;

 }

 // Although there may be several attributes this function is recursive

 // so only enough memory for one attribute needs to be allocated here.

 new_attribute = (ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE*)malloc(sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 memset(new_attribute, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 if(NULL != misc_attributes->next)

 {

 // The next attribute in the list is not NULL so it needs to be copied first.

 new_attribute->next = clone_misc_attributes(misc_attributes->next);

 }

 // Copy miscellaneous attribute

 if(NULL != misc_attributes->attribute)

 {

 new_attribute->attribute = (ACU_CHAR*)malloc(strlen(misc_attributes->attribute) + 1);

 strcpy(new_attribute->attribute, misc_attributes->attribute);

 }

 return new_attribute;

}

MAN1763 PUBLIC 80

A.8 free_media_offer
Use this function to free any dynamically allocated ACU_MEDIA_OFFER_ANSWER
structures.

/*--\

| |

| free_media_offer() |

| |

| Free all dynamically allocated memory in a ACU_MEDIA_OFFER_ANSWER structure |

| |

\--*/

void free_media_offer(ACU_MEDIA_OFFER_ANSWER** stored_offer)

{

 // Free contents of global connection address

 free((*stored_offer)->connection_address.address);

 (*stored_offer)->connection_address.address = NULL;

 // Free the raw SDP char* buffer

 free((*stored_offer)->raw_sdp);

 (*stored_offer)->raw_sdp = NULL;

 // Free any media descriptions. free_media_descriptions is defined in section 0

 free_media_descriptions(&((*stored_offer)->media_descriptions));

 // Free the ACU_MEDIA_OFFER_ANSWER structure

 free(*stored_offer);

 *stored_offer = NULL;

}

MAN1763 PUBLIC 81

A.9 free_media_descriptions
/*--\

| |

| free_media_descriptions() |

| |

| Free all dynamically allocated memory in a media description linked list |

| |

\--*/

void free_media_descriptions(ACU_MEDIA_DESCRIPTION **media_descriptions)

{

 if(NULL == *media_descriptions)

 {

 // There is no media description to free

 return;

 }

 if(NULL != (*media_descriptions)->next)

 {

 // The next media description in the list is not NULL so needs to be freed first.

 free_media_descriptions(&((*media_descriptions)->next));

 }

 // Free the local connection address

 free((*media_descriptions)->connection_address.address);

 (*media_descriptions)->connection_address.address = NULL;

 // Free any miscellaneous attributes. free_misc_attributes is defined in section 0

 free_misc_attributes(&((*media_descriptions)->miscellaneous_attributes));

 // Free all payloads. free_payloads is defined in section 0

 free_payloads(&((*media_descriptions)->payloads), (*media_descriptions)->media_type);

 // Free the transport char* buffer

 free((*media_descriptions)->transport);

 (*media_descriptions)->transport = NULL;

 // Free the ACU_MEDIA_DESCRIPTION structure

 free(*media_descriptions);

 *media_descriptions = NULL;

}

MAN1763 PUBLIC 82

A.10 free_payloads
/*--\

| |

| free_payloads() |

| |

| Check media type and free corresponding payload structures |

| |

\--*/

void free_payloads(ACU_PAYLOAD **payloads, const ACU_MEDIA_TYPES media_type)

{

 switch(media_type)

 {

 case ACU_AUDIO:

 case ACU_VIDEO:

 // free_audio_video_payloads is defined in section 0

 free_audio_video_payloads(payloads);

 break;

 case ACU_IMAGE:

 // free image_payloads is defined in section 0

 free_image_payloads(payloads);

 break;

 case ACU_CONTROL:

 case ACU_TEXT:

 case ACU_APPLICATION:

 // No dynamically allocated memory here.

 // Only need to free the pointer to the payload.

 free(*payloads);

 *payloads = NULL;

 break;

 default:

 break;

 }

}

MAN1763 PUBLIC 83

A.11 free_audio_video_payloads
/*--\

| |

| free_audio_video_payloads() |

| |

| Free payloads for media types ACU_AUDIO and ACU_VIDEO |

| |

\--*/

void free_audio_video_payloads(ACU_PAYLOAD **payloads)

{

 if(NULL == *payloads)

 {

 // There are no payloads to free

 return;

 }

 if(NULL != (*payloads)->next)

 {

 // The next payload in the list is not NULL so needs to be freed first.

 free_audio_video_payloads(&((*payloads)->next));

 }

 // Free any dynamically allocated elements of the ACU_PAYLOAD.audio_video structure

 free((*payloads)->payload.audio_video.rtp_payload_name);

 (*payloads)->payload.audio_video.rtp_payload_name = NULL;

 free((*payloads)->payload.audio_video.payload_specific_options);

 (*payloads)->payload.audio_video.payload_specific_options = NULL;

 free(*payloads);

 *payloads = NULL;

}

MAN1763 PUBLIC 84

A.12 free_image_payloads
/*--\

| |

| free_image_payloads() |

| |

| Free payloads for media type ACU_IMAGE |

| |

\--*/

void free_image_payloads(ACU_PAYLOAD **payloads)

{

 if(NULL == *payloads)

 {

 // There are no payloads to free

 return;

 }

 if(NULL != (*payloads)->next)

 {

 // The next payload in the list is not NULL so needs to be freed first.

 free_image_payloads(&((*payloads)->next));

 }

 // Free any dynamically allocated elements of the ACU_PAYLOAD.image structure

 free((*payloads)->payload.image.image_payload_name);

 (*payloads)->payload.image.image_payload_name = NULL;

 free(*payloads);

 *payloads = NULL;

}

MAN1763 PUBLIC 85

A.13 free_misc_attributes
/*--\

| |

| free_misc_attributes() |

| |

| Free any ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE structures |

| |

\--*/

void free_misc_attributes(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE **misc_attributes)

{

 if(NULL == *misc_attributes)

 {

 // There are no attributes to free

 return;

 }

 if(NULL != (*misc_attributes)->next)

 {

 // The next attribute in the list is not NULL so needs to be freed first.

 free_misc_attributes(&((*misc_attributes)->next));

 }

 // Free other elements of the ACU_MISCELLANEOUS_ATTRIBUTE structure

 free((*misc_attributes)->attribute);

 (*misc_attributes)->attribute = NULL;

 free(*misc_attributes);

 *misc_attributes = NULL;

}

A.14 free_string_list
This function is only used in Redirector.exe but will be useful for any application that
needs to handle 3xx responses.

void free_string_list(ACU_STRING_LIST** list)

{

 if(NULL == *list)

 {

 return;

 }

 if(NULL != (*list)->next)

 {

 free_string_list(&((*list)->next));

 }

 // Free the current ACU_STRING_LIST structure

 free((*list)->string);

 (*list)->string = NULL;

 free(*list);

 *list = NULL;

}

MAN1763 PUBLIC 86

Appendix B: Miscellaneous helper functions
These functions are used in the example code provided with this guide. They are
intended as illustrative and will not be suitable for all applications.

B.1 populate_media_offer
/*--\

| |

| populate_media_offer() |

| |

| For the purposes of these examples any media offer made by the application |

| will contain just the one codec and a telpehone-event. The codec used will |

| be G.711 as support for this is mandatory for all SIP User Agents. |

| |

\--*/

ACU_MEDIA_OFFER_ANSWER *populate_media_offer(void)

{

 ACU_MEDIA_OFFER_ANSWER *offer = (ACU_MEDIA_OFFER_ANSWER*)malloc(sizeof(ACU_MEDIA_OFFER_ANSWER));

 ACU_PAYLOAD *codec, *telephone_event;

 // Set the global connection address details. This may be superceded by the local

 // connection address(es) given in each media description. Here we use the global address.

 memset(offer, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

 offer->connection_address.address = (char*)malloc(strlen(LOCAL_CONNECTION_ADDRESS) + 1);

 strcpy(offer->connection_address.address, LOCAL_CONNECTION_ADDRESS);

 offer->connection_address.address_type = ACU_IPv4;

 // Set just one media description. Again, there may be more.

 offer->media_descriptions = (ACU_MEDIA_DESCRIPTION*)malloc(sizeof(ACU_MEDIA_DESCRIPTION));

 memset(offer->media_descriptions, 0, sizeof(ACU_MEDIA_DESCRIPTION));

 offer->media_descriptions->media_direction = ACU_SEND_RECV;

 offer->media_descriptions->media_type = ACU_AUDIO;

 offer->media_descriptions->port = LOCAL_RTP_PORT; // Usually provided by the media server

 // Usually an application will present a choice of codecs to the far end.

 // Here we use G.711 as support for it is mandatory.

 codec = (ACU_PAYLOAD*)malloc(sizeof(ACU_PAYLOAD));

 memset(codec, 0, sizeof(ACU_PAYLOAD));

 codec->payload.audio_video.clock_rate = ACU_EIGHT_K;

 codec->payload.audio_video.rtp_payload_number = ACU_PCMA_PAYLOAD_NUMBER;

 codec->payload.audio_video.rtp_payload_name = (ACU_CHAR*)malloc(strlen(ACU_PCMA) + 1);

 strcpy(codec->payload.audio_video.rtp_payload_name, ACU_PCMA);

 // Add a telephone event.

 telephone_event = (ACU_PAYLOAD*)malloc(sizeof(ACU_PAYLOAD));

 memset(telephone_event, 0, sizeof(ACU_PAYLOAD));

 telephone_event->payload.audio_video.clock_rate = ACU_EIGHT_K;

 telephone_event->payload.audio_video.rtp_payload_number = 101;

 telephone_event->payload.audio_video.payload_specific_options = (ACU_CHAR*)malloc(strlen("0-15") + 1);

 strcpy(telephone_event->payload.audio_video.payload_specific_options, "0-15");

 telephone_event->payload.audio_video.rtp_payload_name = (ACU_CHAR*)malloc(strlen(ACU_TELEPHONE_EVENT));

 strcpy(telephone_event->payload.audio_video.rtp_payload_name, ACU_TELEPHONE_EVENT);

 codec->next = telephone_event;

MAN1763 PUBLIC 87

 offer->media_descriptions->payloads = codec;

 return offer;

}

B.2 populate_media_answer
This function will populate the media answer to be used in sip_accept or

sip_incoming_ringing. It will iterate through all of the media descriptions (each one
corresponding to a single media stream) and accept or reject each stream based on
an arbitrary list of payload types corresponding to the media type of the particular
stream.

In a real application, the constant LOCAL_CONNECTION_ADDRESS would be
supplied by the media server, as would the local connection port.

/*--\

| |

| populate_media_answer() |

| |

| Whether or not a particular media stream is accepted by the application is |

| down to local policy and/or whether a particular codec (or modem etc.) is |

| supported by the media server being used. Here, each media stream will be |

| tested against an arbitrary set of media and accepted or declined on that |

| basis alone. Previous versions of this guide assumed one audio stream only. |

| |

\--*/

ACU_MEDIA_OFFER_ANSWER *populate_media_answer(ACU_MEDIA_OFFER_ANSWER* stored_offer)

{

 // Copy the original offer. This will be modified to indicate which media

 // settings to use and the connection information relating to this end point

 ACU_MEDIA_OFFER_ANSWER *answer = clone_media_offer(stored_offer);

 ACU_INT found_valid_answer = 0;

 answer->connection_address.address_type = ACU_IPv4;

 if(answer->connection_address.address)

 {

 // We do not want to use the remote connection details.

 free(answer->connection_address.address);

 }

 // These examples will use only the session level connection address. If there are multiple

 // media streams to be accepted and these streams are to be processed at differing IP addresses

 // the application would need to populate the connection_address structures in each element of

 // the ACU_MEDIA_DESCRIPTION linked list.

 answer->connection_address.address = (char*)malloc(strlen(LOCAL_CONNECTION_ADDRESS) + 1);

 strcpy(answer->connection_address.address, LOCAL_CONNECTION_ADDRESS);

 // We do not want to use raw SDP here.

 if(answer->raw_sdp)

 {

 free(answer->raw_sdp);

 answer->raw_sdp = 0;

 }

 // Iterate through each media description and return true if a valid answer has been found

 found_valid_answer = modify_media_descriptions(answer->media_descriptions);

MAN1763 PUBLIC 88

 if(!found_valid_answer)

 {

 // No valid answer has been found. Free any remaining dynamically allocated memory.

 free_media_offer(&answer);

 answer = 0;

 }

 return answer;

}

MAN1763 PUBLIC 89

B.3 modify_media_descriptions
To illustrate the use of the ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE structure,
this application focuses on the ‘a=crypto’ attribute used with secure RTP. This, and
the following SRTP helper functions, uses the following structure to store SRTP
information:

typedef struct _SRTP_ATTRIBUTE

{

 // a=crypto:<tag> <crypto suite> inline:<key param>

 ACU_UINT tag;

 ACU_UINT tag_length; // defined by the crypto suite

 ACU_CHAR crypto_suite[32];

 ACU_CHAR remote_key_param[41];

 ACU_CHAR local_key_param[41];

} SRTP_ATTRIBUTE;

There are other optional parameters in the ‘a=crypto’ attribute. These examples do
not cover their use.

/*--\

| |

| modify_media_descriptions() |

| |

| This function takes an ACU_MEDIA_DESCRIPTION provided in an offer and |

| modifies it for use as an answer. The various media types offered will be |

| checked against an arbitrary list and accepted or declined accordingly. |

| The function recurses through all the media_descriptions in the linked list.|

| Returns true if a single valid stream is found |

| |

\--*/

ACU_INT modify_media_descriptions(ACU_MEDIA_DESCRIPTION *media_description)

{

 static ACU_UINT local_port = 2000;

 ACU_PAYLOAD *acceptable_payload = 0;

 ACU_PAYLOAD *telephone_event = 0;

 ACU_INT found_valid_answer = 0;

 SRTP_ATTRIBUTE srtp_attributes;

 if(NULL == media_description)

 {

 return 0;

 }

 // Recurse through all offered media streams

 found_valid_answer = modify_media_descriptions(media_description->next);

 // Remove any connection information. In this example, all media streams

 // use the same IP address. This is set at the session level. There is no

 // need for a connection address at the media description level. This may

 // not be the case in general.

 if(media_description->connection_address.address)

 {

 free(media_description->connection_address.address);

 media_description->connection_address.address = 0;

 }

 media_description->connection_address.address_type = 0;

MAN1763 PUBLIC 90

 // Set the media direction

 switch(media_description->media_direction)

 {

 case ACU_SEND_RECV:

 media_description->media_direction = ACU_SEND_RECV;

 break;

 case ACU_SEND_ONLY:

 media_description->media_direction = ACU_RECV_ONLY;

 break;

 case ACU_RECV_ONLY:

 media_description->media_direction = ACU_SEND_ONLY;

 break;

 case ACU_INACTIVE:

 media_description->media_direction = ACU_INACTIVE;

 break;

 default:

 break;

 }

 // Look for an 'a=crypto:...' line in the SDP. This attribute is used to defined

 // any secure RTP parameters.

 check_for_srtp(media_description->miscellaneous_attributes, &srtp_attributes);

 // These examples are not interested in any other miscellaneous attributes.

 free_misc_attributes(&media_description->miscellaneous_attributes);

 if(strcmp("", srtp_attributes.local_key_param))

 {

 // There was a valid 'a=crypto:...' line in the offer. Add to answer.

 media_description->miscellaneous_attributes =

(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE*)malloc(sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 memset(media_description->miscellaneous_attributes, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 media_description->miscellaneous_attributes->attribute = (char*)malloc(strlen("crypto:") +

 (srtp_attributes.tag / 10) +

 strlen(srtp_attributes.crypto_suite) +

 strlen("inline:") +

 strlen(srtp_attributes.local_key_param) +

 4);

 sprintf(media_description->miscellaneous_attributes->attribute, "crypto:%d %s inline:%s",

 srtp_attributes.tag,

 srtp_attributes.crypto_suite,

 srtp_attributes.local_key_param);

 // Transport type for SRTP is RTP/SAVP

 if(media_description->transport)

 {

 free(media_description->transport);

 }

 media_description->transport = (char*)malloc(strlen("RTP/SAVP") + 1);

 strcpy(media_description->transport, "RTP/SAVP");

 }

 else

 {

MAN1763 PUBLIC 91

 // Either:

 // 1. no SRTP attribute has been found or, if one was,

 // 2. it was in some way mal-formed.

 // If 1 is the case, the application is free to do as it chooses - local

 // policy may require SRTP which would result in the call being rejected.

 // Otherwise it would continue as usual.

 // If 2 is the case the call should be rejected if SRTP is required.

 // Endpoints that are unaware of SRTP would ignore these attributes and

 // continue as normal. In this case, the UAC would disconnect the call

 // if SRTP is required.

 // For the purposes of these examples, the call will continue as normal.

 }

 // Attempt to find a compatible payload for this media type

 get_acceptable_payload(media_description, &acceptable_payload, &telephone_event);

 if(acceptable_payload)

 {

 // In these examples, an arbitrary port number is used. In general,

 // this would be provided by the media server being used.

 local_port -= 2;

 media_description->port = local_port;

 free_payloads(&media_description->payloads, media_description->media_type);

 media_description->payloads = acceptable_payload;

 if(telephone_event)

 {

 media_description->payloads->next = telephone_event;

 }

 found_valid_answer = 1;

 }

 else

 {

 // No matching payload found in this media stream.

 // Streams are rejected in SDP by setting the port to zero.

 media_description->port = 0;

 }

 return found_valid_answer;

}

MAN1763 PUBLIC 92

B.4 get_acceptable_payload
/*--\

| |

| get_acceptable_payload() |

| |

| This function returns the first supported payload (as defined by an |

| arbitrary list and a telephone event if one is present. These examples |

| illustrate the use of the media types, audio, video and image. Other types |

| are not covered. |

| |

\--*/

void get_acceptable_payload(ACU_MEDIA_DESCRIPTION *media_description,

 ACU_PAYLOAD **acceptable_payload,

 ACU_PAYLOAD **telephone_event)

{

 ACU_PAYLOAD *temp_payload;

 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE* maxBitRate;

 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE* maxBuffer;

 switch(media_description->media_type)

 {

 case ACU_IMAGE:

 acceptable_payload = (ACU_PAYLOAD)malloc(sizeof(ACU_PAYLOAD));

 memset(*acceptable_payload, 0, sizeof(ACU_PAYLOAD));

 (*acceptable_payload)->payload.image.image_payload_name = (char*)malloc(strlen("t38") + 1);

 strcpy((*acceptable_payload)->payload.image.image_payload_name, "t38");

 // There now follow an arbitrary set of attributes defining T.38 behaviour

 // This list is far from exhaustive.

 maxBitRate = (ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE*)malloc(sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 maxBuffer = (ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE*)malloc(sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 memset(maxBitRate, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 memset(maxBuffer, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 maxBitRate->attribute = (char*)malloc(strlen("T38MaxBitRate:9600") + 1);

 maxBuffer->attribute = (char*)malloc(strlen("T38FaxMaxBuffer:1024") + 1);

 strcpy(maxBitRate->attribute, "T38MaxBitRate:9600");

 strcpy(maxBuffer->attribute, "T38FaxMaxBuffer:1024");

 maxBitRate->next = maxBuffer;

 maxBuffer->next = 0;

 media_description->miscellaneous_attributes = maxBitRate;

 return;

 case ACU_AUDIO:

 case ACU_VIDEO:

 for(temp_payload = media_description->payloads; NULL != temp_payload; temp_payload = temp_payload->next)

 {

 if(audio_video_payload_is_supported(temp_payload))

 {

 if(!(*telephone_event) &&

!strcmp(temp_payload->payload.audio_video.rtp_payload_name, "telephone-event"))

MAN1763 PUBLIC 93

 {

 telephone_event = (ACU_PAYLOAD)malloc(sizeof(ACU_PAYLOAD));

 memset(*telephone_event, 0, sizeof(ACU_PAYLOAD));

 (*telephone_event)->payload.audio_video.rtp_payload_name =

(char*)malloc(strlen("telephone-event") + 1);

 strcpy((*telephone_event)->payload.audio_video.rtp_payload_name, "telephone-event");

 // telephone-event uses a dynamic payload number. It must be the same in both directions.

 (*telephone_event)->payload.audio_video.rtp_payload_number =

temp_payload->payload.audio_video.rtp_payload_number;

 (*telephone_event)->payload.audio_video.packet_length =

temp_payload->payload.audio_video.packet_length;

 (*telephone_event)->payload.audio_video.clock_rate = temp_payload->payload.audio_video.clock_rate;

 // In this example, only DTMF digits (0-15) are shown as supported. This will often be the

 // case but may vary. For example (amongst many others) the FAX tones CNG & CED may also be defined.

 (*telephone_event)->payload.audio_video.payload_specific_options =

(char*)malloc(strlen("0-15") + 1);

 strcpy((*telephone_event)->payload.audio_video.payload_specific_options, "0-15");

 }

 else if(!(*acceptable_payload))

 {

 // Found supported codec in this stream.

 acceptable_payload = (ACU_PAYLOAD)malloc(sizeof(ACU_PAYLOAD));

 memset(*acceptable_payload, 0, sizeof(ACU_PAYLOAD));

 if(temp_payload->payload.audio_video.rtp_payload_name)

 {

 (*acceptable_payload)->payload.audio_video.rtp_payload_name =

(char*)malloc(strlen(temp_payload->payload.audio_video.rtp_payload_name) + 1);

 strcpy((*acceptable_payload)->payload.audio_video.rtp_payload_name,

temp_payload->payload.audio_video.rtp_payload_name);

 }

 (*acceptable_payload)->payload.audio_video.rtp_payload_number =

temp_payload->payload.audio_video.rtp_payload_number;

 (*acceptable_payload)->payload.audio_video.packet_length =

temp_payload->payload.audio_video.packet_length;

 (*acceptable_payload)->payload.audio_video.clock_rate =

temp_payload->payload.audio_video.clock_rate;

 if(temp_payload->payload.audio_video.payload_specific_options)

 {

 (*acceptable_payload)->payload.audio_video.payload_specific_options =

 (char*)malloc(strlen(temp_payload->payload.audio_video.payload_specific_options) + 1);

 strcpy((*acceptable_payload)->payload.audio_video.payload_specific_options,

temp_payload->payload.audio_video.payload_specific_options);

 }

 }

 }

 if(*acceptable_payload && *telephone_event)

 {

 break;

 }

 }

MAN1763 PUBLIC 94

 break;

 default:

 break;

 }

}

MAN1763 PUBLIC 95

B.5 audio_video_payload_is_supported
/*--\

| |

| audio_video_payload_is_supported() |

| |

| Return TRUE if the supplied payload is supported by this application. |

| Return FALSE otherwise. |

| For the purposes of these examples, an arbitrary set of payloads are |

| defined as being supported. This will differ from application to |

| application according to the media server's capabilities and the |

| application's requirements. |

| |

\--*/

ACU_INT audio_video_payload_is_supported(ACU_PAYLOAD *payload)

{

 ACU_INT result = 0;

 // Arbitrary list of supported codecs with static payload numbers:

 // PCMU, G723, PCMA, G729, H263 (video)

 static const ACU_INT supported_static_payloads[5] = {0, 4, 8, 18, 34};

 // Arbitrary list of supported codecs with dynamic payload numbers:

 static const char *supported_dynamic_payloads[2] = {

 "telephone-event",

 "AMR"};

 ACU_UINT i;

 if(payload->payload.audio_video.rtp_payload_number < 96)

 {

 // Static payload number - just need to compare the numbers

 for(i = 0; i < 5; i++)

 {

 if(supported_static_payloads[i] == payload->payload.audio_video.rtp_payload_number)

 {

 return 1;

 }

 }

 }

 else

 {

 // Dynamic payload number - need to compare payload names

 for(i = 0; i < 2; i++)

 {

 if(!strcmp(supported_dynamic_payloads[i], payload->payload.audio_video.rtp_payload_name))

 {

 return 1;

 }

 }

 }

 return 0;

}

MAN1763 PUBLIC 96

B.6 check_for_srtp
/*--\

| |

| check_for_srtp() |

| This function stores the details of the first 'a=crypto:...' attribute (if |

| present). In general, there may be an arbitrary amount of 'a=crypto:...' |

| lines contained in an SDP body and an application is free to choose |

| whichever one it likes although, according to RFC 4568, it should accept |

| the most preferred (topmost in the list) that it is capable of accepting. |

| The 3 crypto suites defined in RFC 4568 (also supported by Prosody X and |

| Prosody S) are: |

| AES_CM_128_HMAC_SHA1_80 |

| AES_CM_128_HMAC_SHA1_32 |

| F8_128_HMAC_SHA1_80 |

| It is assumed that there is only one SRTP key for each 'a=crypto:...' line |

| in the SDP. This may not be the case although often there will only be one |

| such 'a=' line. |

| |

| These examples are intended primarily to demonstrate the use of the |

| ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE structure. The error checking is not |

| exhaustive and the reader is encouraged to refer to RFC 4568 for more |

| detail on SRTP with respect to SDP. |

| |

\--*/

void check_for_srtp(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE *miscellaneous_attributes, SRTP_ATTRIBUTE *srtp_attributes)

{

 memset(srtp_attributes, 0, sizeof(SRTP_ATTRIBUTE));

 if(miscellaneous_attributes)

 {

 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE *ma = miscellaneous_attributes;

 while(ma)

 {

 if(strstr(ma->attribute, "crypto"))

 {

 // Found an 'a=crypto:...' line. Check that it contains a valid crypto suite

 // and create an answer.

 if(srtp_extract_crypto_suite(ma->attribute,

 srtp_attributes->crypto_suite,

&srtp_attributes->tag_length))

 {

 // These examples will extract the mandatory parts of an 'a=crypto:...' line

 // There are other optional parameters. For more information see RFC 4568. The

 // mandatory parameters are: tag, crypto suite and key params. It is the key

 // params that contain the optional information.

 if(!srtp_extract_tag(ma->attribute, &srtp_attributes->tag))

 {

 // The tag parameter in the crypto attribute is mal-formed. For the

 // purposes of these examples, the call will go ahead as normal. In general,

 // an SRTP aware endpoint should reject the call here as secure RTP has been

 // requested and cannot be supplied. The UAC should disconnect the call

 // anyway as the response will not contain an 'a=crypto:...' line.

 return;

 }

MAN1763 PUBLIC 97

 if(!srtp_extract_key_param(ma->attribute, srtp_attributes->remote_key_param))

 {

 // The key parameter is mal-formed. See comment for srtp_extract_tag.

 return;

 }

 // All mandatory parameters have been found and are valid.

 // For the purposes of these examples, a hard coded, base 64 encoded key is used.

 // A realistic application would need to use a suitable algorithm to generate

 // the combined key and salt and subsequently encode into base 64 notation.

 strcpy(srtp_attributes->local_key_param, "mdws+SMU52xuhMEb14yOOHFIS5XZg/X9RxdyO/J+");

 break;

 }

 else

 {

 // A valid crypto suite has not been found. See comment for srtp_extract_tag.

 }

 }

 ma = ma->next;

 }

 }

}

MAN1763 PUBLIC 98

B.7 srtp_extract_tag
/*--\

| |

| srtp_extract_tag() |

| This function finds the tag which identifies one offered crypto suite from |

| another within a single media description. This tag will be used by the |

| answerer to identify which offered crypto suite is to be used. It is |

| assumed that the string 'crypto_attribute' starts 'crypto:..." and that |

| the rest is in a valid form - there is no error checking. |

| |

\--*/

ACU_INT srtp_extract_tag(const char *crypto_attribute, ACU_UINT *tag)

{

 ACU_INT rc = 1;

 char *p;

 char *temp = (char*)malloc(strlen(crypto_attribute) + 1);

 strcpy(temp, crypto_attribute);

 // The tag parameter lies between the first ':' and the next whitespace.

 // Set p to point to the first character after the first ':'.

 p = strstr(temp, ":") + 1;

 // NULL terminate at the first white space. p will now point to a string

 // containing the tag parameter.

 *strstr(p, " ") = '\0';

 // Convert to int

 *tag = atoi(p);

 // Check validity

 if(!tag && ('0' != *p))

 {

 // Invalid tag parameter. Must be an integer.

 rc = 0;

 }

 free(temp);

 return rc;

}

MAN1763 PUBLIC 99

B.8 srtp_extract_crypto_suite
/*--\

| |

| srtp_extract_crypto_suite() |

| This function finds the crypto suite which is to be used in the SRTP |

| session. It returns 1 if a valid crypto suite (as defined in RFC 4568) has |

| been found and 0 otherwise. It also populates the SRTP authentication tag |

| length. |

| |

\--*/

ACU_INT srtp_extract_crypto_suite(const char *crypto_attribute, char *crypto_suite, ACU_UINT *tag_length)

{

 ACU_INT rc = 0;

 char *p;

 char *temp = (char*)malloc(strlen(crypto_attribute) + 1);

 strcpy(temp, crypto_attribute);

 // The crypto suite parameter is located between the first two white spaces.

 // Set p to point to the first character after the first white space.

 p = strstr(temp, " ") + 1;

 // NULL terminate at the next white space. p will now point to a string

 // containing the crypto suite parameter.

 *strstr(p, " ") = '\0';

 // Check that the crypto suite is valid. These 3 crypto suites are defined

 // in RFC 4568. Others may be defined in additional documents.

 if((!strcmp("AES_CM_128_HMAC_SHA1_80", p)) ||

 (!strcmp("AES_CM_128_HMAC_SHA1_32", p)) ||

 (!strcmp("F8_128_HMAC_SHA1_80", p)))

 {

 // Found valid crypto suite

 strcpy(crypto_suite, p);

 *tag_length = atoi(p + strlen(p) - 2);

 rc = 1;

 }

 free(temp);

 return rc;

}

MAN1763 PUBLIC 100

B.9 srtp_extract_key_param
/*--\

| |

| srtp_extract_key_param() |

| This function will extract the 40 byte, base 64 encoded key from a char* |

| obtained from an ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE structure. It will |

| ignore any optional parameters that may be present and return 0 if the key |

| is not 40 bytes in length. |

| |

\--*/

ACU_INT srtp_extract_key_param(const char *crypto_attribute, char *key_param)

{

 ACU_INT rc = 1;

 char *p, *q;

 char *temp = (char*)malloc(strlen(crypto_attribute) + 1);

 strcpy(temp, crypto_attribute);

 // The key parameter is located after 'inline:' and continues either

 // to the end of the string or to the first instance of a '|'.

 // Set p to point to the first character after 'inline:'

 p = strstr(temp, "inline:") + 7;

 q = strstr(p, "|");

 if(q)

 {

 // For the puposes of these examples, optional paramters are being

 // ignored. These are delimeted by a '|'. In general, an application

 // would need to check these parameters for the purposes of

 // configuring the media. See RFC 4568 for more details.

 *q = '\0';

 }

 if(40 != strlen(p))

 {

 // All 3 crypto suites use a 128 bit key combined with a 112 bit salt.

 // In base 64 notation, this will always be represented by a 40 byte string.

 rc = 0;

 }

 else

 {

 strcpy(key_param, p);

 }

 free(temp);

 return rc;

}

MAN1763 PUBLIC 101

MAN1763 PUBLIC 102

• ACULAB.COM

Contact us

Phone

+44 (0) 1908 273800
(UK)

+1 (781) 352 3550
(USA)

Email

info@aculab.c

om

sales@aculab

.com

support@acul

ab.com

Socials

@
a
c
u
l
a
b

a
c
u
l
a
b

• ACULAB.COM

@
a
c
u
l
a
b

a
c
u
l
a
b

mailto:info@aculab.com
mailto:info@aculab.com
mailto:sales@aculab.com
mailto:sales@aculab.com
mailto:support@aculab.com
mailto:support@aculab.com
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab

	1 Introduction
	1.1 Scope
	1.2 Background to the Extended SIP API

	2 SIP setups and clears
	2.1 Incoming call with no early media – SDP in the INVITE.
	2.2 Outgoing call with no early media – SDP in the INVITE.
	2.3 Incoming call with early media – SDP in INVITE
	2.4 Outgoing call with early media – SDP in the INVITE.
	2.5 Incoming call with no SDP in the INVITE
	2.6 Outgoing call with no SDP in the INVITE
	2.7 Incoming call with black hole in SDP
	2.8 Outgoing call with black hole in SDP
	2.9 Incoming call with no media in SDP
	2.10 Outgoing call with no media in SDP
	2.11 Outgoing call with early media and forking – SDP in the INVITE.
	2.12 Call cleared locally
	2.13 Call cleared remotely

	3 3pcc - mid call flows
	3.1 Aculab sending re-INVITE with SDP (UAC)
	3.2 Aculab receiving re-INVITE with SDP (UAS)
	3.3 Aculab sending re-INVITE with black hole SDP (UAC)
	3.4 Aculab receiving re-INVITE with black hole SDP (UAS)
	3.5 Aculab sending re-INVITE with no SDP (UAC)
	3.6 Aculab receiving re-INVITE with no SDP (UAS)
	3.7 Aculab rejecting a new media offer (UAS)
	3.8 Handling a rejected mid call media offer (UAC)

	4 Supplementary services
	4.1 Hold – Aculab initiating hold request
	4.2 Hold – Aculab responding to hold request
	4.3 Reconnect – Aculab initiating reconnect request
	4.4 Reconnect – Aculab responding to reconnect request
	4.5 Transfer – Aculab initiating transfer
	4.6 Transfer – Aculab responding to transfer request
	4.7 Transfer – Aculab acting as transfer target

	5 SIP mid call messages
	5.1 Sending an INFO request
	5.2 Receiving an INFO request

	6 Miscellaneous call flows
	6.1 Redirect an incoming call (send a 3xx response)
	6.2 Outgoing call redirected (handle a 3xx response)

	7 SIP out of dialog messages
	7.1 Sending an OPTIONS request
	7.2 Receiving an OPTIONS request

	Appendix A: Handling dynamic memory allocation
	A.1 clone_media_offer
	A.2 clone_media_descriptions
	A.3 clone_payloads
	A.4 clone_audio_video_payloads
	A.5 clone_image_payloads
	A.6 clone_control_payloads
	A.7 clone_misc_attributes
	A.8 free_media_offer
	A.9 free_media_descriptions
	A.10 free_payloads
	A.11 free_audio_video_payloads
	A.12 free_image_payloads
	A.13 free_misc_attributes
	A.14 free_string_list

	Appendix B: Miscellaneous helper functions
	B.1 populate_media_offer
	B.2 populate_media_answer
	B.3 modify_media_descriptions
	B.4 get_acceptable_payload
	B.5 audio_video_payload_is_supported
	B.6 check_for_srtp
	B.7 srtp_extract_tag
	B.8 srtp_extract_crypto_suite
	B.9 srtp_extract_key_param

