

MANXXXX

Aculab extended SIP
API guide

 Revision 6.8.2

Revision
6.8.1Revision 6.8.1

MAN1762

MAN1762 PUBLIC 2

PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab plc and may be the
subject of patents pending or granted, and must not be copied or disclosed without prior
written permission. It should not be used for commercial purposes without prior agreement in
writing.

All trademarks recognised and acknowledged.

Aculab plc endeavours to ensure that the information in this document is correct and fairly
stated but does not accept liability for any error or omission.

The development of Aculab’s products and services is continuous and published information
may not be up to date. It is important to check the current position with Aculab plc.

Copyright © Aculab plc. 2018 all rights reserved.

Document Revision

Rev Date By Detail

1.0.0 23.06.05 DJL Initial controlled release

1.0.1 31.11.05 DJL Updates following reviews/feedback

1.0.2 18.01.06 DJL Additional small changes

1.0.3 21.02.06 DJL sip_openout cnf changed for CNF_TSVIRTUAL

1.0.4 15.05.06 DJL Updates to sections 2.17 and 2.18

1.0.5 18.05.06 DJL Additional clarification added to section 1.2

1.1.0 06.07.06 SP Call redirect features added

1.2.0 05.10.06 MG TLS, Out of dialog, session timer features added,
T.38 attributes removed from ACU_PAYLOAD: now in
ACU_MISCELLANEOUS_MEDIA_ATTRIBUTES

1.2.1 09.01.07 MG Configuration of distributed operation information added

6.4.0 17.01.07 DJL Updated revision status to reflect current telephony
software

6.4.10
0

05.09.08 SP Updated with new sipserv.cfg options
sip_send_response added

6.4.12
6

07.04.09 SP Added sip_load_tls_configuration. Removed TLS plugin.
Added sip_send_invite_response,
new configuration options.

6.4.15
2

21.01.10 NC Added DRSS section

6.4.15
3

11/03/10 EBJ Updated to corporate fonts

6.4.15
4

01/04/10 NC Added extra features to sip_disconnect, fixed errors in
sip_incoming_ringing and sip_send_out_of_dialog_request

6.4.16
1.8

12/08/10 NC Updated DRSS information

MAN1762 PUBLIC 3

6.4.16
1.13

20.10.10 DF Changed name of document

6.4.16
1.14

17.12.10 NC Extra features to sip_disconnect(), fixes and updates

to configuration section, aligned with current cl_lib.h

6.4.16
3

08.03.11 NC Extended the sip_send_request() and

sip_send_response() structures to include

ACU_MEDIA_OFFER_ANSWER for supporting UPDATE with

SDP body. Updated SIP specific events for
EV_MEDIA_PROPOSE

6.4.16
6

15.07.11 NC Update – no MHP compatibility with DRSS.

Update – DRSS for ringing calls

Clarify procedure when EV_MEDIA_PROPOSE is
received

6.4.16
7

23.07.12 NMC Added ACU_DO_NOT_USE_PROXY_IF_SET to

ACU_SIP_CALL_OPTIONS in sip_openout()

6.5.0 26.09.12 NC APIs for SUBSCRIBE & NOTIFY, IPv6 clarifications

6.5.1 15.02.13 NC How to use session level attributes in SDP

6.5.2 16.01.14 NC Removed reference to unsupported early media option.

Expanded description of configuration options to include
MHP

New event for SUBSCRIBE refresh failure, clarified what
happens if subscriptions refresh was not successful

6.5.3 04.07.14 NC Config options, sip_openout() options and updates for
async calls

Updated IPv6 listening addresses

Clarified send_early_media flag in sip_incoming_ringing

6.5.4 06.10.15 NMC Additional config options

Added custom_headers to sip_media_propose and
sip_media_request_proposal

6.5.5 19.11.15 NMC Added EV_SIP_RSS_IPTAKEOVER_SUCCESSFUL
event to indicate when the floating address has been
successfully acquired

6.5.6 21.03.16 NMC DelayTrying is an option added to the sipserv.cfg

When set it disables the automatic sending of ‘100 trying’
response

6.5.7 19.10.16 NMC Callid added to SIP_OUT_PARMS in sip_openout()

6.5.8 26.10.16 NMC SSL sip options to remove support for various SSL and
TLS types configurable by sipserv.cfg

6.5.9 03.01.17 NMC ACU_RAISE_MEDIA_EVENT_FOR_HOLD introduced to
sip_openout() and sip_openin() in call_options

6.5.10 08.02.17 NMC New function sip_set_global_tos()

MAN1762 PUBLIC 4

6.7.0

10.03.17

NMC

ACU_RAISE_FORKED_EVENT introduced to sip_openout
in call_options and new event EV_FORKED

6.7.1 13.02.18 NMC User added to sip_out_parms

6.7.2 06.06.18 NMC Correction – DisableTrying when set disables the
automatic sending of ‘100 trying’ response

6.7.3 02.07.18 NMC PayloadParams option added to sipserv.cfg

6.7.4 20.05.22 KGB sip_free_message add cause to
SIP_READ_MESSAGE_PARMS

Clarifications to TLS certificate use

Correct notes for
ACU_SIP_MESSAGE_NOTIFICATION_MASKS

Add note to sip_send_response to mention
sip_send_invite_response

6.7.5 15.05.22 ACP LegacySetSipProxy & LegacyQuerySipProxy

6.7.6 02.12.22 ACP Additional notes on use of sip_details

6.7.7 16.02.23 ACP Additional examples of contact_address

6.7.8 14.03.23 ACP OutboundThreads functionality changed

6.8.0 07.08.23 ACP CipherList, CipherSuites & DHGroups

6.8.1 04.10.23 ACP Corrected notes on use of sip_details re. events

6.8.2 13.03.24 ACP Format only

MAN1762 PUBLIC 5

CONTENTS

1 Introduction .. 8
1.1 Scope .. 10
1.2 Overlap of the extended SIP API and generic call control API 10

1.2.1 Extended versions of existing generic API functions 10
1.2.2 SIP/SDP specific routines targeted towards third party call control and re-

INVITE handling ... 10
1.2.3 Routines supporting the extended architecture 11
1.2.4 Miscellaneous ... 11
1.2.5 Out of dialog messages .. 12
1.2.6 Subscription API ... 12
1.2.7 Transports .. 13
1.2.8 IPv6 .. 13
1.2.9 Asynchronous calls ... 13

2 Configuring the SIP service ... 16
2.1 SIP service logging configuration .. 16
2.2 Session timer configuration ... 17
2.3 SIP header configuration ... 18
2.4 TLS configuration .. 19
2.5 Distributed SIP settings .. 21
2.6 IPv6 .. 22
2.7 Listen Parameters ... 23

2.7.1 IPv6 Listen Addresses .. 23
2.8 Overload Monitor ... 24
2.9 Miscellaneous global settings ... 25
2.10 Media Handler Plugin Settings .. 28

3 Interface definition (APIs) ... 30
3.1 sip_open_port() – open a SIP call control port ... 33
3.2 sip_openout() - open for outgoing call ... 34
3.3 sip_openin() - open for incoming call ... 43
3.4 sip_accept() - accept incoming call ... 47
3.5 sip_details() - get call details .. 49
3.6 sip_free_details() - return memory allocated by sip_details() 53
3.7 sip_incoming_ringing() – send incoming ringing ... 54
3.8 sip_progress() - send progress information .. 56
3.9 sip_send_invite_response() - Send response to initial INVITE 58
3.10 sip_feature_send() - sending feature information ... 60
3.11 sip_media_propose() – send a media proposal ... 63
3.12 sip_media_accept() – accept a media proposal ... 65
3.13 sip_media_request_proposal() – request a media proposal 66
3.14 sip_media_reject_proposal() – reject a media proposal 67
3.15 sip_send_request() - send a mid call SIP request ... 68
3.16 sip_send_response() - send a mid call SIP response ... 70
3.17 sip_set_reason_phrase() – modify a SIP response reason phrase 72
3.18 sip_add_answer_challenge_credentials() – provide authentication credentials

 ... 73
3.19 sip_remove_answer_challenge_credentials() – remove authentication

credentials .. 75
3.20 sip_disconnect() – send a 3xx response, CANCEL or BYE or response to BYE

 ... 77

MAN1762 PUBLIC 6

3.21 sip_recall() – call an alternative address ... 79
3.22 sip_set_tls_private_key_password() – pass a password for a TLS private key

 ... 80
3.23 sip_load_tls_configuration() – load a new set of TLS certificates 81
3.24 sip_set_message_notification() - declare an interest in out of dialog messages

 ... 83
3.25 sip_send_out_of_dialog_request() - send an out of dialog request 85
3.26 sip_send_out_of_dialog_response() - send an out of dialog response 87
3.27 sip_read_request() - collect an out of dialog request ... 88
3.28 sip_read_response() - collect an out of dialog response 89
3.29 sip_read_out_of_dialog_failure () – collect out of dialog failure notification90
3.30 sip_free_message()- free memory associated with out of dialog notification 92
3.31 sip_sub_subscriber() – SUBSCRIBE to an event package 93
3.32 sip_sub_notifier() – wait for SUBSCRIBE requests to a specific event package

 ... 96
3.33 sip_sub_accept() – accept or acknowledge a SUBSCRIBE request 98
3.34 sip_sub_notify() – NOTIFY a subscriber of a state change in an event package

 ... 100
3.35 sip_sub_cancel() – cancel an existing subscription .. 102
3.36 sip_sub_release() – release the internal resources associated with a

subscription ... 104
3.37 sip_sub_fetch() – request an immediate fetch of subscription state 105
3.38 sip_set_global_tos() – Change the ToS (Type of Service) 107

4 SIP specific structures ... 108
4.1 ACU_RAW_MESSAGE_BODY .. 108
4.2 ACU_IP_ADDRESS .. 110
4.3 ACU_PAYLOAD .. 111
4.4 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE .. 115
4.5 ACU_MEDIA_DESCRIPTION ... 116
4.6 ACU_MEDIA_OFFER_ANSWER .. 120
4.7 ACU_MEDIA_SESSION .. 122
4.8 ACU_SIP_MESSAGE .. 124
4.9 ACU_STRING_LIST ... 124
4.10 ACU_REDIRECT_INFO .. 124
4.11 ACU_SUBSCRIPTION_INFO .. 125

5 Dual redundant SIP service (DRSS) ... 127
5.1 Description ... 127
5.2 Terms used during this section ... 127
5.3 Pre-requisites, restrictions and usage information .. 128
5.4 How it works... 129

5.4.1 Example ... 130
5.5 Configuration ... 131

5.5.1 Application configuration ... 131
5.5.2 SIP server configuration ... 131

5.5.2.1 IPC configuration .. 131
5.5.2.2 Fault tolerance configuration options .. 131

5.6 API for resilient SIP service ... 133
5.6.1 sip_rss_get_server_details() – get resilient server status 133
5.6.2 sip_rss_maintenance() – initiate a takeover from an application 135
5.6.3 sip_target_refresh() – update the route set for a call 136

5.7 Events for resilient SIP service .. 137
5.7.1 Global events.. 137
5.7.2 Call events .. 138

MAN1762 PUBLIC 7

Appendix A: SIP specific events .. 139

Appendix B: Raw SDP usage ... 142

Appendix C: Receipt of raw SIP messages .. 143

Appendix D: Using TLS to provide security .. 145

Appendix E: Using the Tel URI scheme ... 148

Appendix F: Quality Of Service for Windows(DSCP) ... 149

MAN1762 PUBLIC 8

1 Introduction
This guide describes API functions comprising an extended SIP API coexistent with
the Aculab generic call control API. The objective of the extended SIP API is to
provide a set of SIP features that cannot be represented in a protocol independent
manner.

The SIP service has been written to support basic call control and the following extra
features:

• Third party call control using re-INVITE. Enabling the re-direction of RTP streams
between endpoints

• Fine control of SDP content in media negotiation; this can be used to facilitate
third party call control, non-audio payload type, and multiple RTP streams

• Presentation of raw SIP messages to applications; selected types of SIP
messages may be passed to the application for bespoke parsing

• Custom headers and message bodies in the call setup INVITE, adding greater
flexibility to call setup and providing transparency for signalling links with IP legs

• Mid-call signalling with custom headers and message bodies; providing for
additional features to be implemented in applications such as forwarding PSTN
information and MWI (message waiting indication)

• Unlimited sizes of data can be passed, and received as details, by the API; char*
types and linked lists are used to represent types which can be repeated within
messages

• Authentication and security. HTTP style message digest authentication permitting
controlled access to secure domains and TLS encryption, providing secrecy for
signalling messages

• SIP session timer; a mechanism, which detects lost signalling endpoints
throughout call duration, facilitating preservation of signalling resource

• Out of dialog message control. Permitting the fine control of messages not

associated with calls, such as REGISTER and OPTIONS, to be handled by the SIP
application

• Support for SIP Specific Event Notification (RFC 3265)

MAN1762 PUBLIC 9

CAUTION

This document is intended for use in conjunction with the SIP Specification RFC
3261.

Further guidance may also be found in the following SIP IETF documents:
RFC 2246 – The TLS protocol
RFC 2976 – INFO method
RFC 3204 – MIME media types for QSIG/ISUP
RFC 3262 – Reliability of Provisional Responses in SIP
RFC 3264 – Offer/Answer model with SDP
RFC 3265 – SIP Specific Event Notification
RFC 3311 – UPDATE method
RFC 3326 – The Reason Header Field for SIP
RFC 3428 – SIP Message Extension
RFC 3515 – The REFER method
RFC 3581 – rport parameter
RFC 3665 – Basic call flow examples
RFC 3666 – SIP/PSTN call flows
RFC 3725 – Third party call control best practices
RFC 3891 – Replaces header
RFC 3966 – Tel URI for telephone numbers
RFC 4028 – SIP session timer
RFC 4566 – Session Description Protocol (SDP)
RFC 5589 – Hold and attended transfer.
RFC 5589 – Blind transfer
RFC 6157 – IPv6 Transition

Other RFCs may be implemented using the functionality provided in this document.

Before using these features, the user should be familiar with the Call Control API
Guide. For a more detailed description of the scenarios where this API may be used,
please refer to the SIP Programmers Guide, both available at www.aculab.com.
Some functionality which affects the SIP service is provided by the IP Telephony API
Guide such as configuring listening ports and managing registrations.

This guide does not presume any particular environment, and is intended for use
under various operating systems. As such, the functions are defined as library calls
where isolation from the operating system is desired.

file://venus/Eng/docs/Prosody/API_Guides/Extended_SIP/Archive/www.aculab.com

MAN1762 PUBLIC 10

1.1 Scope
This guide is intended to be of use in the development of applications that make use
of the various function calls.

This specification describes the initiation and control of an outgoing call, the reception
and control of an incoming call, and support of various SIP features.

1.2 Overlap of the extended SIP API and generic call control API
In order to minimise the duplication of effort, there is some overlap in the use of APIs.

For example, to hold a call opened using sip_openout(), it is necessary to use

call_hold() as sip_hold() has not been implemented. Similarly, disconnect and
release functionality is that provided by the generic API, there is no requirement to
provide a SIP API specific function to achieve this task.

For functionality where there are both call_ and sip_ instances of the same function,

for example, with call/sip_feature_send(), it is necessary to choose the routine

consistent with the method of opening. So, if a call is created using call_openout()

then use call_feature_send(), else if the call is created using sip_openout() then

use sip_feature_send().

Where an extended API call has no equivalent in the generic API, some extended
API calls may be used with both APIs and others may not. These cases are dealt with
individually in the following sections.

The extended SIP API functions may be categorised as follows:

1.2.1 Extended versions of existing generic API functions
sip_openout()

sip_openin()

sip_accept()

sip_details()

sip_incoming_ringing()

sip_progress()

sip_feature_send()

These routines play similar roles to those matching functions in the generic API,
however they accept SIP specific parameters in particular structures used in the
detailed configuration of SIP messages, SDP bodies, and other message body types.

 These routines require that the net on which the call was opened be obtained from
sip_open_port().

1.2.2 SIP/SDP specific routines targeted towards third party call control and
re-INVITE handling

sip_media_propose()

sip_media_accept()

sip_media_request_proposal()

sip_media_reject_proposal()

These routines have no analogues in the generic API and were added to assist
applications implementing third party call control and therefore require that the call
handle be opened using sip_openout()/sip_openin().

MAN1762 PUBLIC 11

1.2.3 Routines supporting the extended architecture
sip_open_port()

sip_free_details()

The routines in section 1.2.1 and 1.2.2 act on calls not directly associated with a
media resource at the protocol stack level. A different port_id is required to facilitate

this, not to be confused with those port_ids discovered using Aculab’s standard
hardware-centric port discovery mechanism (as used by the generic API).

sip_open_port() provides this port_id.

As the size of the details information of a SIP call cannot be, generally, known in

advance of a details call, a fully expressive sip_details() function is only possible if
the implementation dynamically allocates the structures required after the query to

the protocol stack. A function, sip_free_details() is therefore used to return the
memory to the OS once the details have been processed.

1.2.4 Miscellaneous
sip_send_request()

sip_send_response()

sip_set_reason_phrase()

sip_add_answer_challenge_credentials()

sip_remove_answer_challenge_credentials()

sip_recall()

sip_disconnect()

sip_set_tls_private_key_password()

sip_send_invite_response()

sip_send_request(), sip_send_response() and sip_send_invite_response() may
only be called on a call handle opened with the extended SIP API.

sip_set_reason_phrase(),

sip_add_answer_challenge_credentials(),sip_remove_answer_challenge_credential

s(), sip_load_tls_configuration() and sip_set_tls_private_key_password() are
not related to call handles and may be called by either an extended or generic API
based application.

sip_recall() and sip_disconnect() implement redirection in SIP. These may only

be called on a call created by sip_openout() (in the case of sip_recall()) and

sip_openin() (in the case of sip_disconnect()).

MAN1762 PUBLIC 12

1.2.5 Out of dialog messages
sip_set_message_notification()

sip_send_out_of_dialog_request()

sip_send_out_of_dialog_response()

sip_read_request()

sip_read_response()

sip_read_timeout()

sip_free_message()

The above routines provide the application writer with facilities to control the
transmission and reception of ‘out of dialog’ messages. ‘Out of dialog’ messages are
not associated with telephony calls, nor are they distinguished by an Aculab call
handle, instead a number representing the underlying SIP transaction identifies the
relevant messages.

The transaction identifier field used in the extended SIP API is of type ACU_POINTER. For
compatibility with 64-bit architectures, this field is a 64-bit integer. Application writers
are warned to pay attention to formatting requirements when printing this type of field,

for instance the Microsoft C/C++ compiler uses %I64, whereas the GCC uses %ll.

1.2.6 Subscription API
sip_sub_subscriber()

sip_sub_notifier()

sip_sub_accept()

sip_sub_notify()

sip_sub_cancel()

sip_sub_release()

sip_sub_fetch()

The above routines provided the application writer with the means to implement any
SUBSCRIBE/NOTIFY event package based on RFC 3265, either as a subscriber or a
notifier. Although subscriptions are very different to calls in protocol terms, except
perhaps that they both create dialogs, they are analogous in many ways with regards

to the API. A subscription is created with a call to either sip_sub_subscriber() or

sip_sub_notifier() both of which return an ACU_CALL_HANDLE which is to be used in

subsequent API calls relating to that particular subscription. sip_details() is called
after events are raised and many of the existing API structures are re-used. In
particular, ACU_RAW_MESSAGE_BODY is likely to get considerably more use through these
APIs.

RFC 3265 is does not define any concrete event package, only the underlying
subscription mechanism. As such it is not possible for the SIP service to collect
meaningful information relating to a specific event package. For this reason, raw SIP

messages are presented to the API through sip_details() so that the application
may interpret the relevant headers and message bodies themselves. The
maintenance of subscriptions is handled by the SIP service.

MAN1762 PUBLIC 13

1.2.7 Transports

TCP, UDP, and TLS transports are all available using the Aculab SIP service.

1.2.8 IPv6

Beginning with SIP version 6.6.0 IPv6 is supported.

1.2.9 Asynchronous calls

Beginning with SIP 6.5.14 it is possible to use sip_openout(),

sip_send_out_of_dialog_request() and sip_sub_subscriber() in an asynchronous
mode. When these calls are invoked normally (synchronously) delays in resolving the
target URI can result in the call being held up for a number of seconds. If serious

DNS issues occur then this delay may result in an unrecoverable -507 error.

A new option called ACU_USE_ASYNC_MODE may be used with sip_openout() which
returns control to the application immediately. The SIP service will continue to resolve
the target URI without holding up the call. If the target cannot be resolved an EV_IDLE

is raised instead of EV_WAIT_FOR_OUTGOING, and the call will fail. There will be no cause
value available if the call fails in this way. If successful the event
EV_WAIT_FOR_OUTGOING will be raised and the call will proceed as before.

Two new flags AsyncOOD and AsyncSubscribe can be used in sipserv.cfg.

If AsyncOOD is set to 1 then the call to sip_send_out_of_dialog_request() will return
control to the application immediately. The SIP service will continue to resolve the
target URI without holding up the call. If the target cannot be resolved the event

ACU_SIP_EV_REQUEST_FAILED is raised instead.

If AsyncSubscribe is set to 1 then the call to sip_sub_subscriber() will return control
to the application immediately. The SIP service will continue to resolve the target URI
without holding up the call. If the target cannot be resolved the event

EV_SIP_SUBSCRIPTION_CANCELLED is raised instead.

MAN1762 PUBLIC 14

MAN1762 PUBLIC 15

MAN1762 PUBLIC 16

2 Configuring the SIP service
The SIP service may be configured to exhibit certain global behaviours by use of a

configuration file. This file must be called sipserv.cfg and must be placed in the

$ACULAB_ROOT/cfg directory. It is not provided with the distribution, but a default

configuration file may be generated by running sipserv -g from the command line.
This file will contain all of the possible parameters that may be passed to the SIP
service. What follows is a description of each of these parameters:

2.1 SIP service logging configuration
Loglevel = n

This parameter sets the amount of diagnostic logging that the SIP service produces.
It may take on a value from 0 (no logging) to 5 (maximum logging).

Logfile = <N>

This parameter determines whether the logging is to be written to a buffered file

($ACULAB_ROOT/log/SIP_[TIME]_[DATE].log) or to be collected by the v6trace utility. It

may take either the value 0 (v6trace) or some positive N (log file). If it is non-zero,

v6trace will not produce any logging and the service will create N log files before it
overwrites the first one.

OutgoingTrace = <0 or 1>

IncomingTrace = <0 or 1>

These parameters determine whether incoming and/or outgoing SIP protocol
messages are logged in either sipserv.log or v6trace. They may both take either the

value 0 (no logging) or 1 (logging).

StackTrace = <0 or 1>

This parameter determines whether diagnostic logging from the protocol stack is
enabled or disabled. It may take either the value 0 (disabled) or 1 (enabled). This

trace is also logged either in sipserv.log or v6trace.

MaxLogfileSize = <NUM BYTES>

This parameter sets the maximum size of the log file. It is a buffered log file and when
the maximum size is reached, the service will overwrite previous logging from the
beginning.
OverwriteLogfile = <0 or 1>

The log file used to be written to $ACULAB_ROOT/log/sipserv.log and this file would
be overwritten each time the service was started. This is not always desirable so the
behaviour was changed to the above. Set this parameter to 1 to restore the original
behaviour.

All of the preceding parameters should, in general, be disabled at all times. Their use
is to be limited to development environments and/or under the direction of Aculab
Support. It should be noted that the SIP service would run more slowly when logging
is enabled.

The remaining parameters may be enabled or disabled at the user’s discretion. This
list will grow as more functionality is implemented within the SIP service.

MAN1762 PUBLIC 17

2.2 Session timer configuration
The following parameters configure the session timer’s use.

EnableSessionTimer = <0 or 1>

Set this parameter to 1 to enable the session timer.

MinimumSessionInterval = n

Set this parameter to a value in seconds that represents the minimum session
interval that the application is willing to accept. This parameter corresponds to the
SIP header, ‘Min-SE’ and defaults to 90 seconds as the smallest value possible
mandated by RFC 4028. Other user agents or proxies may raise this minimum during
session set up.

PreferredSessionInterval = n

Set this parameter to a value in seconds that represents the interval the application
would like to use between session refresh requests. This parameter corresponds to

the SIP header, ‘Session-Expires’ and defaults to 1800 as recommended by RFC
4028. Other user agents or proxies may lower this value during session set up.

UseInviteForSessionRefresh = <0 or 1>

If the remote party supports the UPDATE method, the SIP service will use UPDATE for the
session refresh requests. Set this value to 1 if the application requires the use of
INVITE instead.

PreferredRefresher = uac / uas

When an INVITE is received from a UAC containing a ‘Session-Expires’ header and

no ‘refresher’ parameter, it is up to the UAS to decide which party is to perform the

refreshes. Set this value to either uac or uas to make this decision. uac is used by
default.

Note: The session timer may be enabled in the config file but if the remote end does
not support timers it will not be utilised. This is to prevent the case where
PreferredRefresher = uac and the server end expects a refresh and does not receive
one in the allotted time and thus hangs up the call. The server end does not assume
the role of refresher in this instance.

MAN1762 PUBLIC 18

2.3 SIP header configuration
By default, the following SIP headers are added to relevant SIP messages:

Allow headers: INVITE, ACK, BYE, CANCEL, OPTIONS, NOTIFY, REFER, PRACK, INFO,

UPDATE and REGISTER

Accept headers: application/sdp, application/isup, application/qsig and
multipart/mixed

Supported headers: replaces and 100rel. (Supported: timer is also added if the
session timer is enabled.)

These defaults may be overridden using the following parameters.

AllowUseSupplied = <0 or 1>

If this is set to 1, none of the default Allow headers will be used and the user must
configure them with the following parameter:

Allow = <sip method>

This parameter may (and almost certainly will) be used multiple times.

Allow = INVITE

Allow = ACK

Allow = CANCEL

AcceptUseSupplied = <0 or 1>

If this is set to 1, none of the default Accept headers will be used and the user must
configure them with the following parameter:

Accept = <body-type[/sub-type]>

This parameter may be used multiple times.

Accept = application/sdp

Accept = application/qsig

SupportedUseSupplied = <0 or 1>

If this is set to 1, none of the default Supported headers will be used and the user
must configure them with the following parameter:

Supported = <option-tag>

This parameter may be used multiple times.

Supported = 100rel

Supported = replaces

OneLineHeaders = <0 or 1>

Certain headers occur multiple times, for example, the Allow header. By default these
headers appear on one line in the SIP message for each instance of the header. Set
this parameter to 1 if these headers should appear as a single header with comma
separated values.

For Example

Allow: INVITE

Allow: CANCEL

becomes

Allow: INVITE, CANCEL

MAN1762 PUBLIC 19

2.4 TLS configuration
By default, TLS support is disabled in the Aculab SIP service. TLS requires the AIT
component SIP_TLS ; if this is not present please contact support@aculab.com for
further information. Use of TLS by the application writer is not a trivial matter; the
developer is advised to refer to Appendix D: and to the wealth of information on the
public domain about TLS and IP security.

Briefly, the settings in the configuration file relevant to TLS are as follows:

UseTLS = <0 or 1>

Set the above flag to 1 to enable TLS support in the Aculab SIP service.

TLS_ServerCertificate = <absolute path to file>

This value should be an absolute path to a file containing the ‘server certificate’,
which this application wishes to use. ‘Server certificate’ is a slight misnomer in that
the contents of the file may be used by the client entity in a transaction; it is named as
such since it is mandatory in a server application.

For loopback testing purposes this can be a key-cert.pem file. This is a combination
of a key and certificate, generated by merging a key and a .pem certificate file, with
the private key at the top of the file, using tools available on the Internet.

TLS_TrustedCertificates = <absolute path to file>

The value should be an absolute path to a file containing the certificates, which this
application trusts. Typically, these certificates will be the public certificates of the
‘Certification Authority’ (CA) for the application to use, obtained from the server the
application is going to interact with. However, for test purposes, it is possible to
generate these certificates using tools available on the Internet where a cacert.pem
file could be used. There may be one or many of these certificates in the file,
depending on the number of trust relationships held by the application. If not
applicable, the RHS may be blank.

TLS_VerifyPeer = <0 or 1>

Setting the ‘Verify peer’ flag to 1 results in the SIP service enforcing a greater level of
verification during the initial TLS handshake.

TLS_VerifyDepth = <n>

This value must be set using a non-negative integer. It specifies the maximum depth
of ‘chaining’ permitted when verifying a public certificate against a candidate-trusted
entity.

TLS_PostConnectionCheck = <0 or 1>

This value should be set if additional post connection verification routines should be
performed. Please refer to Appendix D for details.

NoSSLv3 = <0 or 1>

NoTLSv1 = <0 or 1>

NoTLSv1_1 = <0 or 1>

NoTLSv1_2 = <0 or 1>

These values should be set if support for the SSL or TLS type is NOT required. If not
defined then support is assumed. For example if ‘NoSSLv3 = 1’ and the others are
not defined then support for SSLv3 will be removed and all other types are supported
when SIPserv is started. Note that SSLv2 is NOT supported by default.

NOTE

If no certificate from the server is available TLS is not possible.

MAN1762 PUBLIC 20

CipherList = <TLS v1.2 valid list of ciphers>

The value should be a space or colon separated list of supported ciphers and
associated parameters – leave empty for default settings. For example:
@SECLEVEL=0 kEECDH+ECDSA kEECDH kEDH HIGH MEDIUM +3DES +SHA
!RC4 !aNULL !eNULL !LOW !MD5 !EXP

CipherSuites = <TLS v1.3 valid list of cipher suite collections>

The value should be a space or colon separated list of supported collections of cipher
suites – leave empty for default settings. For example;
TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_12
8_GCM_SHA256.

DHGroups = <valid list of Diffie-Hellman groups>

The value should be a list of Diffie-Hellman groups supported for shared secret
exchange – leave empty for default settings. Not recommended in normal use – it
should be possible to achieve the desired settings via the CipherList or CipherSuites
options.

TLS_DH512File = <absolute path to file>

The value should be an absolute path to a 512-bit Diffie-Hellmann file. Not
recommended for use with OpenSSL 3. Please refer to Appendix D for details.

TLS_DH1024File = <absolute path to file>

The value should be an absolute path to a 1024-bit Diffie-Hellmann file. Not
recommended for use with OpenSSL 3. Please refer to Appendix D for details.

MAN1762 PUBLIC 21

2.5 Distributed SIP settings
Although the SIP call control application and the SIP service are usually deployed on
the same chassis, it is possible to arrange that the application and the SIP service be
distributed. Such configuration requires parameterisation of the IPC (inter process
communication) mechanism operating between the service and application. An IP
port number must be selected by the system administrator and specified in the
sipserv.cfg file.

IPCListenPort = <n>

This value must specify an IP port number. It should be greater than 0 and less than
65535, and should not be already in use by the operating system. It is also
recommended that you avoid IP ports that could already be in use by other servers,
for example, 0-1023, which are assigned by the Internet Assigned Numbers Authority
(IANA), and registered ports 1024 to 49151.

When an “IPC listen port”, above, is specified then the sipserv will use this port to
listen for IPC on all potential network interfaces. Should the system administrator
wish to restrict IPC to one particular interface, this can be achieved by supplying the
field below:

IPCListenAddress = <ip address>

This value must be an IP address resident on the host in which the sipserv is
deployed. Configuration of this field is optional for distribution.

In addition to the sipserv settings above, it is also necessary to configure the
application to connect to the machine hosting the service. This is achieved by settings
in a file (which will need to be created if it does not already exist) called
sipplugin.cfg which should reside in $ACULAB_ROOT/cfg directory. For distributed
operation both the settings below are mandatory:

RemoteIPCAddress = <ip address or FQDN>:<port>

This value specifies the host or an ip address on that host where the distributed SIP
service resides. The port number for IPC should be same as that specified for the
service in IPCListenPort.

IPv4 Example:

RemoteIPCAddress = 192.168.0.35:45234

IPv6 Example:

RemoteIPCAddress = [2001:db8::1]:45234

Certain considerations must be taken when deploying the distributed Aculab SIP
service. Firstly, if a firewall exists between the SIP service and the application then
the IPC port selected must be opened up. Secondly, the hardware specification of the
machines hosting the service and application chassis must be of similar “endian-

ness”, that is, either both big-endian or both little endian.

CommandTimeout = <N>

Modify this parameter to set the round-trip in seconds before the application receives

a -507 error in response to an API call. The default is 16 seconds.

MAN1762 PUBLIC 22

2.6 IPv6
IPv4 addresses are used by default. To allow the SIP service to use IPv6 addresses
the following option should be set:

UseIPv6 - set to 1 to enable IPv6, this is not enabled by default.

Note: if you install the SIP IPv6 package that UseIPv6=1 would be a default setting in
the sipserv.cfg, otherwise if the SIP IPv4 is installed this setting ‘UseIPv6’ will not be
present and all IPv6 related data such as the default IPv6 Listen Addresses being set
to [::] would be absent.

If IPv6 is chosen an additional file is generated in the cfg area called
sip_enable_ipv6.cfg which contains a single entry

enable = 1

if not present it’s a simple case to generate such a file in text format.

Likewise, if you wish to disable IPv6 functions having installed the IPv6 package
simply setting UseIPv6=0 and removing the sip_enable_ipv6.cfg should have the
desired effect.

MAN1762 PUBLIC 23

2.7 Listen Parameters
The listen parameters are fully configurable from the configuration file as follows:

SIPListenPort- 5060 by default. This value applies to UDP and TCP unless the

UDPListenPort or TCPListenPort fields override this value.

EnableUDP - set to 1 to enable UDP, this is enabled by default.

UDPListenPort - 5060 by default. Only one of these may be present, all configured
interfaces must listen on the same port.

UDPListenAddress - by default the SIP service listens on 0.0.0.0, i.e. all network
interfaces. This parameter may be set multiple times to set specific interfaces for the
service to listen for UDP.

EnableTCP - set to 1 to enable TCP, this is enabled by default

TCPListenPort - 5060 by default. Only one of these may be present, all configured
interfaces must listen on the same port.

TCPListenAddress - by default the SIP service listens on 0.0.0.0, i.e. all network
interfaces. This parameter may be set multiple times to set specific interfaces for the
service to listen for TCP.

TLSListenPort - 5061 by default. Only one of these may be present, all configured
interfaces must listen on the same port.

TLSListenAddress - by default the SIP service listens on 0.0.0.0, i.e. all network
interfaces. This parameter may be set multiple times to set specific interfaces for the
service to listen for TLS.

2.7.1 IPv6 Listen Addresses

To listen on all IPv6 interfaces configure the listen addresses for each transport as
follows:

UDPListenAddress = [::]

TCPListenAddress = [::]

TLSListenAddress = [::]

To listen on a specific IPv6 interface (e.g. 2001:db8::1) configure the listen addresses
as follows:

UDPListenAddress = 2001:db8::1

TCPListenAddress = 2001:db8::1

TLSListenAddress = 2001:db8::1

If the SIP service is listening on an IPv6 address it must also listen on a separate
IPv4 address to receive IPv4 traffic.

UDPListenAddress = 0.0.0.0

UDPListenAddress = [::]

MAN1762 PUBLIC 24

2.8 Overload Monitor
SIP is highly dynamic in its memory usage, the more that is going on, the higher the
memory usage. Without the overload monitor configured, this usage is essentially
only bounded by hardware. The following parameters aim to restrict memory usage
when under extreme load and allow existing calls to continue. There is no guide as to
what these values should be, it is necessary to do some testing in order to determine
what values are suitable for the system. It may be wise to configure these parameters
if the system is unprotected from potentially massive amounts of SIP traffic, however,
it is preferable to actually limit the traffic on the network itself.

OLMMaxMemoryUsage - The maximum number of bytes that the system is happy to
allow for the SIP service. When in an overload situation, the memory will actually
fluctuate around this value so it will reach a bit higher but not much. When this is
reached for the first time, the service takes a snapshot of the number of current

transactions and uses this value in future. An EV_SIP_MEMORY_LIMIT_EXCEEDED is
raised when this limit is reached. Once this point is reached, all calls are rejected

(with a 486 Busy Here) and no transaction is created for that INVITE. It is the
persistence of the transaction timers that keep the memory usage high and if none
are created, the memory usage does not increase.

OLMMaxSafeMemoryUsage - This is a lower memory limit that indicates that the system

may be hitting excessive traffic. An EV_SIP_MEMORY_LIMIT_WARNING is raised when this

limit is reached. An EV_SIP_MEMORY_OK is raised when the memory usage falls below
this level. A transaction count is also taken the first time this limit is reached and used
from then on to monitor the memory.

OLMMemoryInterval - the duration in milliseconds that the service waits between
taking snapshots of the memory usage/transaction count.

OLMRetryAfter - If this is set (value in seconds) a Retry-After header containing this
value will be added to all the failure responses.

OLMCheckedAttribute – Linux systems only. The SIP service will check the VmSize
value for the current instance of the sipserv. Set this parameter to the desired field
name if a change is required, e.g. VmRSS.

MAN1762 PUBLIC 25

2.9 Miscellaneous global settings
BracketiseReferTo = n

There have been two headers in a REFER message that have been shown to have
interoperability issues with the occasional 3rd party SIP User Agent (UA). These
headers are 'Refer-To' and 'Referred-By'. By default, the SIP service will place angle
brackets around the values of these headers and, although this is perfectly valid,
some UAs do not understand the brackets. Setting this value to 0 will remove these
brackets. Otherwise it should be commented out, equal to 1 or simply not present in
the configuration file.

DefaultResponse = xxx

By default the SIP service will respond to an INVITE with a 486 Busy Here code when
there are no incoming calls waiting. Set this parameter to a valid SIP response code
to change this default response.

AssumeNonUniqueBranchId – Matching requests to responses in RFC 3261 is
performed by matching the Via header branch parameter in the response to that in
the request. In RFC 2543, the process was more complex. The presence of the
‘magic cookie’ (whose value is ‘z9hG4bK’) in the branch parameter indicates that the
UA supports RFC 3261 and the appropriate transaction matching is performed. Some
UAs have been shown to break this rule.

If AssumeNonUniqueBranchId is set, transaction matching will always be performed
according to RFC 2543. It is strongly recommended that this is only set under
direction from Aculab support.

DefaultRegExpiryTime - The default registration duration is 3600 seconds. Set this
parameter to another value, in seconds, to change this default.

IgnoreSessionVersion - An unchanged session version in the SDP body during a re-

INVITE indicates that there is no change in the media session parameters. In this
case the SIP service will not raise an EV_MEDIA so that it does not need to parse the
rest of the SDP. Set this parameter if you want EV_MEDIAs to be raised regardless
of the session version.

ExtractUsernameParameters - Some endpoints have been seen to put parameters in
the user part of a URI. If this parameter is set, these parameters will not appear in
sip_detail_parms. This was a workaround for a very specific installation and is highly
unlikely to be required.

TimerT1 - Most of the timers in the SIP service scale with timer T1 which by default is
500ms. It is best to look at RFC 3261 (section 17.1.1.2) for reasons why it might be
necessary to change this.

RaiseOutgoingProceeding - If this is set an EV_OUTGOING_PROCEEDING will be
raised on receipt of 100 Trying.

RaiseEvDetailsForChallenge - If an outgoing request is presented with an
authentication challenge by the server (either a 401 or a 407) and notification of the
SIP response in question has been requested by the application an EV_DETAILS will
be raised. This represents a change in behaviour to previous versions of the SIP
service. Set this parameter to 0 to restore the original behaviour.

LocalContactForConnectedAddr – The service places the remote Contact URI into
sip_detail_parms.connected_addr. This represents a change in behaviour to previous
versions of the SIP service. Set this parameter to 1 to restore the original behaviour
which used the local contact as the connected_addr.

NoSdpValidation – Set this parameter to 1 if it is necessary for the application to

MAN1762 PUBLIC 26

validate its own SDP. It is recommended that this value only be set under direction
from Aculab support.

AddDateHeader – If set to 1 a Date header will be added to all SIP messages.

UserAgentHeader – If required, set to the string that is needed in a User-Agent
header.

SuppressPortInRURI – Set to 1 if it is required that no port parameters appear in the
request-URI of any SIP request.

MatchAuthUserToAorURI – By default the SIP service will attempt to match any

authentication credentials to the user part of the address of record (for REGISTER
requests) or the user part of the From header (for all other requests) where multiple
credentials have been set for a given realm. Set this parameter to 1 if it is required
that this match is performed using the name-address of the relevant header (i.e.
user@domain) rather than just the user.

RaiseAcceptForProgress – By default, EV_WAIT_FOR_ACCEPT is not raised after

sip_progress() has been called unless a reliable provisional response has been

sent. Set this parameter to 1 if EV_WAIT_FOR_ACCEPT should always be raised.

NoDisplayNameForURL – By default the SIP service will create a display name for the
To and From URLs. To disable this behaviour set this parameter to 1.

SIPLicenceListenPort = <N>

The SIP service licence manager will listen on this port for new licences to be
installed. The default value is 13579. Currently the only licensed feature that the SIP
service supports is the Dual Redundant SIP Service.

ErrorOnInvalidCSeq = <N>

If a SIP request is received with an invalid CSeq number the sipserv will by default

respond with a 400 or 500 error code. To disable this behaviour set this parameter to
0.

RawCauseOnTimeout = <N>

For an outgoing SIP call, if the INVITE does not receive a 200 OK response the call will

timeout. When xcall_getcause() is called no raw cause value (i.e. SIP response
code) is returned. To force a raw cause value to be returned in this situation set this
parameter to the required value which should be a SIP response code.

DelayStart = <N>

If required networking resources are not available the SIP service will not start. In

these situations the acuresmgr will automatically restart the SIP service. In certain
circumstances it is possible that the automatic restart will fail. To work around this
situation delaying the start up of the SIP service by 3 (or more) seconds will fix this
situation. To do this set this parameter to the required number of seconds.

KeepToHeaderParms = <N>

KeepFromHeaderParms = <N>

The SIP service will remove some parameters from the To and From headers. To
disable this behavious set these parameters to 1.

RaiseCollisionEvent = <N>

In the event of a re-INVITE collision, an EV_MEDIA_REJECT_PROPOSAL or

EV_MEDIA_REJECT_REQUEST_PROPOSAL will be raised. These events are also raised when
the remote end rejects an earlier proposal. To distinguish between a collision and

rejection by the remote end a new event EV_MEDIA_REJECT_COLLISION can be raised
instead. To enable this behaviour set the parameter to 1.

OutboundThreads = <N>

The service uses separate threads to resolve remote addresses asynchronously. This
results in less blocking in the associated API calls in the application. This parameter

mailto:user@domain

MAN1762 PUBLIC 27

determines the number of threads. If zero is specified here, the number of threads will
be one.

AsyncOOD – By default the SIP service will not use the asynchronous mode for Out Of
Dialog requests. To enable this behaviour set this parameter to 1.

AsyncSubscribe – By default the SIP service will not use the asynchronous mode for

SUBSCRIBE requests. To enable this behaviour set this parameter to 1.

AsyncRegister – By default the SIP service will not use the asynchronous mode for

REGISTER requests. To enable this behaviour set this parameter to 1. This enables
ipt_add_alias() in asynchronous mode. See ipt_add_alias() in IPT telephony API
guide for more details.

TryDelayStart = <N>

This parameter has a function similar to DelayStart. In Linux builds part of the

initialisation process involves a call to getaddrinfo()at which point if the returned

value is in error a call to res_init()may need to be performed and another call to

getaddrinfo()performed. The value entered into TryDelayStart represents a

time in seconds in which to perform this action. If it has not performed this action
successfully sipserv will fail and exit. This action is necessary in order to establish a
Socket Monitor which indicates if proper socket connection is possible. A value of 10

seconds is recommended. If TryDelayStart is not included only one call to

getaddrinfo() is attempted.

DebugSocketMon – By default the SIP service will not use this. By including the setting

DebugSocketMon = 1 in the sipserv.cfg enables the logging of the amount of

attempts at acquiring the Socket Monitor should a loss of socket communication
occur. The results are passed to a file called sockmon.log.

RemovePendingTransactions – By default the SIP service will not use this. If an

application should die (or is removed), if RemovePendingTransactions = 1 is

included in the sipserv.cfg, any pending out-of-dialog transactions that are waiting for
a response from the user/application will be removed. May be useful for resolving
possible memory leaks. Caution is advised when sipserv is in a multi-application
environment.

TimerC – TimerC is responsible for the time between an initial INVITE being sent and
the sending of a CANCEL request should a response, other than a provisional
response, not be received. The default value is set to 3 minutes. TimerC is a value in
milliseconds thus by including it you can change this duration, for example, a time of
5 minutes is TimerC=300000.

DisableTrying - when set to 1 prevents sipserv from automatically sending the ‘100
Trying’ response; the application will be responsible for sending this response using
sip_send_invite_response() with sip_code = 100 (all other parameters are set to 0).
When set to 0 (the default setting) sipserv sends ‘100 Trying’ response automatically
upon reception of an INVITE.

OutgoingOptions = 1024 – has a similar effect to setting ACU_NO_HOLD_EVENTS
in call_options of sip_openout(). This is to prevent any HOLD events from being
raised to conform with IETF RFC 6337. Default is to allow SIP service to raise HOLD
events when appropriate based on the simplistic recognition of the ‘a=sendonly’ and
‘a=recvonly’ within the SDP bodies of the offer and answer respectively.

IncomingOptions = 1024 – has a similar effect to setting ACU_NO_HOLD_EVENTS
in call_options of sip_openin().This is to prevent any HOLD events from being raised
to conform with IETF RFC 6337. Default is to allow SIP service to raise HOLD events
when appropriate based on the simplistic recognition of the ‘a=sendonly’ and

MAN1762 PUBLIC 28

‘a=recvonly’ within the SDP bodies of the offer and answer respectively.

PayloadParams - when set to 1 allows the entire payload name string to be returned if
it contains more than one '/'. For example:

a=rtpmap:100 opus/8000/2

then ACU_PAYLOAD.rtp_payload_name='opus/8000/2'

Note: for traditional codec types the payload name is returned in the normal fashion:

a=rtpmap:8 PCMA/8000

then ACU_PAYLOAD.rtp_payload_name='PCMA'

When set to 0 (the default setting) has a behaviour exhibited as before whereby only
the name which occurs before the first '/' is returned in rtp_payload_name:

a=rtpmap:100 opus/8000/2

then ACU_PAYLOAD.rtp_payload_name='opus'

 a=rtpmap:8 PCMA/8000

then ACU_PAYLOAD.rtp_payload_name='PCMA'

LegacySetSipProxy – when set to 1 this enables legacy behaviour for the

ipt_set_sip_proxy() method of the Aculab IP Telephony API: if the proxy port is set

to zero then 5060 will be used and if the proxy transport_type is set to zero then

ACU_SIP_TRANSPORT_UDP will be used. When set to 0 (the default setting) if the proxy

port is set to zero then no port will be specified in the SIP URL representing the

outbound proxy and if the proxy transport_type is set to zero then

ACU_SIP_TRANSPORT_ANY will be used – enabling a search for NAPTR and/or SRV
records during DNS lookup of the proxy address.

LegacyQuerySipProxy – when set to 1 this enables legacy behaviour for the

ipt_query_sip_proxy() method of the Aculab IP Telephony API: the proxy address
returned may be a numeric IP address even if the current outbound proxy address

had previously been specified as a FQDN in a call to ipt_set_sip_proxy(): an
attempt will be made to resolve the FQDN to an IP address. When set to 0 (the

default setting) the outbound proxy address will be returned without modification.

2.10 Media Handler Plugin Settings
The media handler plugin is the component which allows the Generic Call Control API
to use the SIP service. To modify any of the settings edit the file (which will need to
be created if it does not already exist) called mhp.cfg which should reside in

$ACULAB_ROOT/cfg directory.

There following settings can be applied if necessary:

TiNGTrace = <N> - If this is set to a non-zero value a log file called

ACU_MHP_TiNGTrace.log will be created in the $ACULAB_ROOT/log directory. The TiNG
documentation describes suitable values for <N>.

LocalRtpSymmetric - If this is set to 1 then the TX RTP port will be set to the same port being used for

receiving RTP data. This enables allows symmetric which helps when traversing NATs.

NoRFC4040 – If this flag is set to 1 then no support is offered for RFC 4040.

MAN1762 PUBLIC 29

PayloadTelephoneEvent, PayloadG726_16, PayloadG726_24, PayloadG726_32,

PayloadG726_40, PayloadGSM_EFR, PayloadILBC, PayloadRFC4040, PayloadAMR_NB,

PayloadAMR_WB, PayloadEVRC, PayloadEVRC0 – If any of these are set to a number between 96 and

127 then that value will be used instead of the default dynamic codec number. This may be necessary where some
vendor equipment requires specific payload numbers dynamic codecs.

MAN1762 PUBLIC 30

3 Interface definition (APIs)
The following section describes the interface of the library functions and the SIP
service. Each function is described in terms of its calling parameters and the values
that the function will return. No particular operating system is assumed.

Enhancements to the Aculab API often require extension of the structures used as
parameters to Aculab API calls. To eliminate problems associated with this, the
following steps must be performed:

memset(&structure, 0, sizeof(structure));

structure.size = sizeof(structure);

In C and C++ programs, these steps can be replaced with the following macro,

defined in acu_type.h:

INIT_ACU_STRUCT(&structure);

SIP feature support uses a set of library function calls provided in addition to the
generic call control library.

The SIP function library enables the application to send and receive
instructions/information required to support the features specified at the start of this
document.

With the exception of those explicitly stated as being mandatory, all the field
elements of the structures used in the API functions documented below are optional.

The additional library function calls are shown below:

API Description
sip_open_port() Open a port for use

sip_openout() Open for an outgoing call

sip_openin() Open for an incoming call

sip_accept() Accept the call after an incoming call has
been indicated

sip_details() Gather the details of the current call

sip_free_details() Free any memory that may have been
dynamically allocated

sip_incoming_ringing() Send the ringing message to the network
causing the caller to hear the ring tone

sip_progress() Send call progress information to the
network

sip_send_invite_response() Send generic response to an initial INVITE
with a high degree of control over the
content of the response.

sip_feature_send() Acknowledge or reject hold, reconnect or
transfer requests

sip_media_propose() Send a new media proposal (a new offer
in an offer-answer exchange), to the
remote party in a SIP call

sip_media_accept() Accept a media proposal received from
the remote party in a SIP call

MAN1762 PUBLIC 31

API Description
sip_media_request_proposal() Request the remote party to send a new

media offer

sip_media_reject_proposal() Reject a media proposal received from the
remote party

sip_send_request() Send a mid call SIP request message to
the remote party

sip_send_response() Send a mid call SIP response message to
the remote party

sip_set_reason_phrase() Set the human readable string in a
response message

sip_add_answer_challenge_credentials() Used by the application to pass
authentication credentials to the protocol
stack

sip_remove_answer_challenge_credentials() Used in order that an application can
remove credentials previously added by
sip_add_answer_challenge_credentials().

sip_disconnect() Disconnect with 3xx response.

sip_recall() Call an alternative address.

sip_set_tls_private_key_password() Pass a password for a TLS private key.

sip_load_tls_configuration() Load a new set of TLS certificates.

sip_set_message_notification() Declare an interest in out of dialog
messages.

sip_send_out_of_dialog_request() Send an out of dialog request.

sip_send_out_of_dialog_response() Send an out of dialog response.

sip_read_request() Collect an out of dialog request.

sip_read_response() Collect an out of dialog response.

sip_read_timeout() Collect out of dialog timeout notification.

sip_free_message() Free memory associated with out of dialog
notification.

sip_sub_subscriber() SUBSCRIBE to a specific event package.

sip_sub_notifier() Wait for SUBCRIBE requests for a specific
event package.

sip_sub_accept() Accept a SUBSCRIBE request for a
specific event package.

sip_sub_notify() NOTIFY a subscriber of a state change in
a specific event package.

sip_sub_cancel() Cancel an existing subscription or reject a
SUBSCRIBE request.

sip_sub_release() Release the internal resources associated
with a particular subscription.

MAN1762 PUBLIC 32

API Description
sip_sub_fetch() Request an immediate fetch of

subscription state.

MAN1762 PUBLIC 33

3.1 sip_open_port() – open a SIP call control port
This routine enables the application to open the SIP call control port in a hardware
independent manner. It is not necessary to have previously opened a card for call
control with SIP when calling this function. This provides a framework for applications
that control media resource acquisition independently of the call control library to be
developed. The port obtained by this call can then be used in subsequent functions to
open calls, that is, sip_openout() and sip_openin().

A port obtained previously using sip_open_port() may be closed using
call_close_port().

Synopsis
ACU_ERR sip_open_port(ACU_PORT_ID* sip_port); /* OUT */

Input parameters

The sip_open_port() function takes a pointer, sip_port, to an ACU_PORT_ID variable.

On successful execution, this variable is populated with a port_id referring to a SIP
call control port.

Return values
sip_port

The sip_port field will contain the port id to be used when making calls with this port.

On successful completion, a value of zero is returned. Otherwise, a negative value
will be returned indicating the type of error.

Example usage
ACU_PORT_ID sipPort;

ACU_ERR rc = sip_open_port(&sipPort);

if(ERR_NO_ERROR==rc)

{

 SIP_OUT_PARMS outx;

 INIT_ACU_STRUCT(&outx);

 outx.net = sipPort;

 // setup SIP_OUT_PARMS

 rc = sip_openout(&outx);

}

MAN1762 PUBLIC 34

3.2 sip_openout() - open for outgoing call

This function allows an application to initiate an outgoing call by sending an INVITE

message to a remote party. The function registers the outgoing call requirement with
the SIP service, which if satisfied with the calling parameters, will return a unique call
identifier, the handle. The net field supplied to this function must be allocated using

sip_open_port().

In the generic call control API the implementation of call_openout() for SIP makes

many assumptions on behalf of the application in the setup of the outbound INVITE

message. In the extended API, the application is able to affect the format of the

INVITE to a greater extent:

• Custom SIP headers can be added to the message

• Custom message bodies can be added to the message

• SDP configuration is now wholly the application’s responsibility

• No size restrictions are placed on the amount of the data passed

Additionally the call can now be selected to collect certain types of SIP messages for
later presentation to the application.

Outgoing calls may be made over the TCP transport. To effect this the string
“;transport=tcp” must be appended to the destination URI. For further details, please
refer to the URI example below.

Outgoing calls may be made over the TLS transport. To effect this a full SIPS URI
must be used for the destination address. For further details, please refer to the URI
example below. A brief discussion of the usage of TLS in the Aculab SIP service is
given in Appendix D:.

This call handle may be used in any appropriate extended SIP API functions and in
those generic API functions to which there is not an extended API equivalent. For
example, a handle acquired by sip_openout() may be supplied to

sip_feature_send() but not call_feature_send(), and additionally to call_hold(),

call_disconnect() and call_release() (as the latter functions have no extended API
equivalent).

Synopsis
ACU_ERR sip_openout(SIP_OUT_PARMS* out_parms);

typedef struct sip_out_parms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* OUT */

 ACU_PORT_ID net; /* IN */

 ACU_INT cnf; /* IN */

 char* destination_addr; /* IN */

 char* originating_addr; /* IN */

 char* contact_address; /* IN */

 char* destination_display_name; /* IN */

 char* originating_display_name; /* IN */

 ACU_ACT app_context_token; /* IN */

 ACU_EVENT_QUEUE queue_id; /* IN */

 ACU_UINT request_notification_mask; /* IN */

 ACU_UINT response_notification_mask; /* IN */

 ACU_UINT enable_midcall_response_mask; /* IN */

 char* request_uri; /* IN */

 char* custom_headers; /* IN */

MAN1762 PUBLIC 35

 ACU_RAW_MESSAGE_BODY* message_bodies; /* IN */

 ACU_MEDIA_OFFER_ANSWER* media_offer_answer; /* IN */

 ACU_UINT call_options; /* IN */

 char transport_type; /* IN */

 char* callid; /* IN */

 char* user; /* IN */

} SIP_OUT_PARMS;

} SIP_OUT_PARMS;

Input parameters

The sip_openout() function takes a pointer, out_parms, to a structure SIP_OUT_PARMS.

SIP_OUT_PARMS has similar format as the OUT_XPARMS structure described in the
Generic Call Control specifications, but with some additional parameters.

net

Specifies the port_id referring to the protocol stack on which the call is to be made,

as returned from sip_open_port(). This is a mandatory field.

cnf

The CNF_TSVIRTUAL option for the cnf flag is supported. When this option is set a
virtual outgoing call is returned by the function. The URI supplied, as the

destination_addr should refer to the target of a transfer operation. The call can be
subsequently used as handlec in call_transfer. A call created with this option emits

no signalling and raises only the EV_IDLE event, after which the call may be released.

destination_addr

This is a pointer to an ASCII null terminated string. This field should be a URI style of
address.

A URI contains the name of the scheme being used (<scheme>) followed by a colon

and then a string (the <scheme-specific-part>) whose interpretation depends on the
scheme.

It must be noted that if the address supplied does not conform exactly to the URI
format, for example if the <scheme>: section missing, the SIP service will prepend
the sip: scheme specifier to the supplied address and attempt to place the call using
that. The exception is when an IPv6 address forms part of the address In this case if
the supplied address does not form a valid URI an error (ERR_PARM) will be
returned.

The destination address will be used to construct the SIP or TEL To: header and the

Request-URI for the initial INVITE message.

Any valid URI parameters may be supplied in the destination_addr field. For
example, here are some valid SIP URIs:

sip:alice@atlanta.com

sip:alice@atlanta.com:5061

sip:alice:secretword@atlanta.com;transport=tcp

sip:+1-212-555-1212:1234@gateway.com;user=phone

sip:alice@192.0.2.4

sip:alice@[2001:db8::1]

sip:alice@[2001:db8::1]:5070

sip:atlanta.com;method=REGISTER?to=alice%40atlanta.com

sip:alice;day=tuesday@atlanta.com

e.g.

outx.destination_addr = “sip:alice@atlanta.com”;

outx.destination_addr = “<sip:alice@atlanta.com;transport=tcp>”;

SIPS URIs:

MAN1762 PUBLIC 36

sips:alice@wonderland.com

sips:alice@wonderland.com:5062

sips:alice@192.0.2.4

e.g.

outx.destination_addr = “sips:alice@wonderland.com”;

TEL URIs:

tel:+1-201-555-0123

tel:7042;phone-context=example.com

tel:863-1234;phone-context=+1-914-555

e.g.

outx.destination_addr = “tel:7042;phone-context=example.com”;

NOTE

<>s are required to encapsulate the URI along with any URI parameters. Specific
To header parameters do not go inside the <>.

<user@1.2.3.4;uri-parm=inside>;header-parm=outside

NOTE

The SIP service relaxes the URI-style restriction for certain destination_addr
settings; when a purely numeric string is supplied e.g. 1234, the service converts
this to sip:1234@proxy, where proxy is the address of the pre-configured SIP
proxy. This is supplied as an optimisation for gateway applications. If no proxy is
configured the SIP service will use the default SIP server address sip.mcast.net
(224.0.1.75 IPv4).

NOTE

Currently SIP URIs and Tel URIs are supported by the SIP service. (See section
Appendix E for additional information on Tel URI usage.)

The usage of this field is mandatory.

originating_addr

This is a pointer to an ASCII null terminated string. This provides for

originating_addr to be specified on a per call basis.

The URI addressing style should be used. A URI contains the name of the scheme
being used (<scheme>) followed by a colon and then a string (the <scheme-specific-

part>) whose interpretation depends on the scheme. This string will be used to
construct the SIP or TEL From: header.

If the address supplied does not conform exactly to the URI format, for example the
<scheme>: section missing, the SIP service will try to construct a valid URI.

The specification of the originating_addr is optional, a NULL pointer may be passed,

in this case the service will use “sip:<host address>” for this field.

For example:

MAN1762 PUBLIC 37

outx.originating_addr = “sip:bob@biloxi.com”;

outx.originating_addr = 0;

TEL URIs:

tel:+1-201-555-0123

tel:+1-212-555-3141;ext=456

e.g.

outx.originating_addr = “tel:+1-212-555-3141;ext=456”;

contact_address

Used to build a non-default contact header, this is useful if the application is running
on a multi-homed machine and wishes a particular IP address be used in the contact.
For a chassis containing only one NIC card, this field may be left blank. It will be a
null terminated ASCII string in Contact header format.

For example:

outx.contact_address = “sip:user@192.168.0.9”;

outx.contact_address = "<sip:user@192.169.0.9>"

outx.contact_address = "<sip:user@192.169.0.9;transport=tcp>"

outx.contact_address = "<sip:user@192.169.0.9;transport=tcp>;expires=5600

outx.contact_address = 0;

destination_display_name

Used to create the optional display name which when combined with the URI forms
the To header. This must be supplied in null terminated ASCII text format.

For example:

outx.destination_display_name = “Alice”;

outx.destination_display_name = 0;

originating_display_name

Used to create the optional display name which when combined with the URI forms
the From header. This must be supplied in null terminated ASCII text format.

For example:

outx.originating_display_name = “Bob”;

outx.originating_display_name = 0;

app_context_token

This is a user defined value that will be associated with the handle.

queue_id

The unique event queue identity as returned by acu_allocate_event_queue() when
creating a queue.

request_notification_mask

This field permits an application to specify, for a given call, which SIP messages
(requests) it wishes to be notified on the receipt of. On receipt of a relevant SIP

message, a call that has specified this setting, experiences an EV_DETAILS event and

a subsequent sip_details() will collect the entire message. By default, no additional
notification is given for inbound SIP messages, other than that inherent with the API’s
generic call control event raising model. Below is an enumeration listing the SIP
requests in which it is possible to receive notification on the receipt thereof.

typedef enum acu_sip_message_notification_masks

{

ACU_SIP_INITIAL_INVITE_NOTIFICATION = 0x00000001, (see note 1)

ACU_SIP_REINVITE_NOTIFICATION = 0x00000002, (see note 1)

ACU_SIP_TRANSFER_INVITE_NOTIFICATION = 0x00000004, (see note 1)

ACU_SIP_INFO_NOTIFICATION = 0x00000008,

ACU_SIP_NOTIFY_NOTIFICATION = 0x00000010,

mailto:user@192.169.0.9
mailto:user@192.169.0.9
mailto:user@192.169.0.9

MAN1762 PUBLIC 38

ACU_SIP_REGISTER_NOTIFICATION = 0x00000020, (see note 2)

ACU_SIP_SUBSCRIBE_NOTIFICATION = 0x00000040, (see note 2)

ACU_SIP_OPTIONS_NOTIFICATION = 0x00000080,

ACU_SIP_BYE_NOTIFICATION = 0x00000100,

ACU_SIP_MESSAGE_NOTIFICATION = 0x00000200,

ACU_SIP_UPDATE_NOTIFICATION = 0x00000400,

ACU_SIP_PRACK_NOTIFICATION = 0x00000800, (see note 1)

ACU_SIP_REFER_NOTIFICATION = 0x00001000, (see note 1)

ACU_SIP_INITIAL_ACK_NOTIFICATION = 0x00002000, (see note 1)

ACU_SIP_REINVITE_ACK_NOTIFICATION = 0x00004000, (see note 1)

ACU_SIP_TRANSFER_ACK_NOTIFICATION = 0x00008000, (see note 1)

} ACU_SIP_MESSAGE_NOTIFICATION_MASKS;

note 1. These message types are not valid for use with enable_midcall_response_mask.
note 2. These message types are only valid for use with out of dialog API functions.

In order to receive notification for a particular message, an application needs to set
this field to the value of one of the bits in the above enumeration. Notification of more

than one message class may be accomplished by bitwise OR-ing the required bits.

For example:

outx.request_notification_mask = ACU_SIP_INFO_NOTIFICATION;

response_notification_mask

This field is the same as the above except that it effects whether or not a call receives
notification of particular SIP response being received. Rules for assigning this field

are the same as for request_notification_mask.

enable_midcall_response_mask;

This field permits an application to specify, for a given call, which SIP messages it
wishes to formulate its own responses. See notes above for which masks are valid for
use with this field. If set for a given message type, the SIP service will only respond

after the application calls sip_send_response(). The exception to this is

ACU_SIP_BYE_NOTIFICATION which is a special case as it affects the termination of the

call. If a BYE message is received and the enable_midcall_response_mask has the

ACU_SIP_BYE_NOTIFICATION bit set then EV_REMOTE_DISCONNECT will be raised. The

correct way to respond to this is by using sip_disconnect(). An EV_IDLE will be raised
when the response is sent. If no response is sent the call will remain in this state,
however the remote end will time out.

request_uri

This optional field allows the user to specify a Request-URI that is distinct from the To
header.

custom_headers

The application may supply additional SIP headers to be added to the outgoing
message. Note if multiple headers are being appended then \r\n should be used to
delimit each header.

For example:

outx.custom_headers = “Subject: The meeting”;

outx.custom_headers = “Subject: 10acb7899\r\nServer: VoIP server”;

This field must be null terminated.

message_bodies

Message bodies to be added to the outgoing message can be specified here. See
section 4 for further details of the setup of this structure ACU_RAW_MESSAGE_BODY.

For example:

file://venus/Eng/docs/Prosody/API_Guides/Extended_SIP/Archive/1762_Extended_SIP_API_guide.doc

MAN1762 PUBLIC 39

ACU_RAW_MESSAGE_BODY arm;

memset(&arm, 0, sizeof(ACU_RAW_MESSAGE_BODY));

// setup the message body structure – see sip_send_request() for further

details

outx.message_bodies = &arm;

media_offer_answer

This field is a pointer to an ACU_MEDIA_OFFER_ANSWER specifying the settings relevant to

starting a media session with the caller. If the field is set to zero then an INVITE with
no SDP is sent out, this may be useful for certain modes of third party call control.
Please refer to the documentation on the ACU_MEDIA_OFFER_ANSWER structure for more
information on this structure.

For example:

ACU_MEDIA_OFFER_ANSWER mo;

memset(&mo, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

// setup the offer answer structure – see sip_media_propose for further

details

outx.media_offer_answer = &mo;

call_options

This is a field of bits, each of which specify a particular call option. The following
enumeration lists the available call options and the bits used to set those options:

typedef enum acu_sip_call_options

{

 ACU_RAISE_MEDIA_EVENT_FOR_HOLD =0x00000001,

 ACU_RAISE_HOLD_EVENT_FOR_C_EQUAL_ZERO =0x00000002,

 ACU_USE_C_EQUAL_ZERO_FOR_HOLD =0x00000004,

 ACU_DISABLE_EARLY_MEDIA =0x00000008,

 ACU_RAISE_HOLD_EVENT_FOR_INACTIVE =0x00000010,

 ACU_USE_INACTIVE_FOR_HOLD =0x00000020,

 ACU_DISABLE_TRANSFER_ON_REFER =0x00000040,

 ACU_USE_MEDIA_DESCRIPTION_FOR_SESSION =0x00000080,

 ACU_DO_NOT_USE_PROXY_IF_SET =0x00000100,

 ACU_USE_ASYNC_MODE =0x00000200,

 ACU_NO_HOLD_EVENTS =0x00000400,

 ACU_RAISE_FORKED_EVENT =0x00000800

 } ACU_SIP_CALL_OPTIONS;

If a given bit is not set then the default behaviour is adopted for this option.

Below is a description of the options currently available in the SIP service:

• ACU_RAISE_MEDIA_EVENT_FOR_HOLD
This option controls the SIP service’s response to a hold or reconnect request
made by the ‘far end’. By default an extended hold or reconnect event is raised
as appropriate and no media description information is presented to the
application. This may be suitable for some applications, however others may
desire to inspect the SDP body relating this request. By setting this option the

application will receive an EV_MEDIA_PROPOSE event on receipt of such a request

and the media will be available to the sip_details() function call.

• ACU_RAISE_HOLD_EVENT_FOR_C_EQUAL_ZERO

This options controls the SIP service’s response to the receipt of a re-INVITE with
new SDP, whose connection address is 0.0.0.0. Previously such a string signified
a hold request, however this means of request is now deprecated and has subtly
different semantics in third party call control scenarios. By default, receipt of such
a re-INVITE raises an EV_MEDIA_PROPOSE event. However, as some handsets

still implement hold in this way, setting this option causes the re-INVITE to
generate an extended hold request event.

MAN1762 PUBLIC 40

• ACU_USE_C_EQUAL_ZERO_FOR_HOLD
This option affects whether or not the SIP service uses a deprecated mechanism,
c=0.0.0.0, to implement call hold. By default hold is implemented by using the
a=sendonly SDP attribute. When this flag is set for a call’s options, the SIP service
uses c=0.0.0.0 to implement any call_hold() requests made for this call.

• ACU_DISABLE_EARLY_MEDIA
This flag is not supported.

• ACU_RAISE_HOLD_EVENT_FOR_INACTIVE

This option controls the SIP service’s response to the receipt of a re-INVITE with
SDP containing a=inactive. The application should set this option if it is required
that an EV_HOLD should be raised in such circumstances.

• ACU_USE_INACTIVE_FOR_HOLD

By default hold is implemented by using the a=sendonly SDP attribute. When this

option is set the SIP service uses a=inactive to implement call_hold() requests
made for this call.

• ACU_DISABLE_TRANSFER_ON_REFER

This feature allows the application to micromanage a call transfer. By default

when a REFER is received the SIP service will raise an

EV_EXT_TRANSFER_INFORMATION event and handle the transfer when

call_feature_send() is called. With this option turned on the SIP service will (if

the application has enabled ACU_SIP_REFER_NOTIFICATION) provide the raw REFER
message to the application. The application must handle the transfer as they see
fit using alternative api calls. See RFC 3515 for a description of the REFER
method.

• ACU_USE_MEDIA_DESCRIPTION_FOR_SESSION

By default it is not possible to for the application to send or receive session level
attributes as ACU_MISCELLANEOUS_MEDIA_ATTRIBUTES. By setting this option an extra
media description is inserted at the beginning of the list of received media
descriptions with a ‘special’ type of ACU_SESSION. This media description will
contain a session level connection address (if present), miscellaneous attributes
(if present) and the next pointer will point to the first ‘real’ media description.

• ACU_DO_NOT_USE_PROXY_IF_SET

This option affects calls when ipt_set_sip_proxy() has been used to configure
all outbound calls to be routed to a proxy. When this flag is not enabled (which is
the default) the initial INVITE will be sent to the configured outbound proxy. When

this flag is enabled, the initial INVITE for an outbound call will be sent to the
address provided in the destination address instead of the configured outbound

proxy (other factors that affect this is the request_uri or if a Route header is

supplied in custom_headers). This allows the application to override the global
proxy setting for individual calls.

• ACU_USE_ASYNC_MODE

This option affects outgoing calls. In some cases issues with DNS may lead to

significant delays while processing the sip_openout() call. This can result in the
application being blocked for long periods. When this option is set, the
sip_openout() call will immediately return successfully, allowing the application to
continue. The SIP service will resolve addresses and raise either
EV_WAIT_FOR_OUTGOING if successful in sending an INVITE. If an error occurs an

EV_IDLE will be raised instead.

MAN1762 PUBLIC 41

• ACU_NO_HOLD_EVENTS
This option prevents the SIP service from raising HOLD events in response to a
hold or reconnect request made by the local end. By default an extended hold or
reconnect event is raised as appropriate and no media description information is
presented to the application. A HOLD state is determined solely by the inclusion
of the attribute ‘a=sendonly’ within the SDP body offer. Based on IETF RFC 6337
the conditions for a HOLD state may be more complicated and it is left up to the
application running the SIP service to recognize these conditions based on the
contents of both the SDP offer/answer bodies. By setting this option the
application will receive an EV_MEDIA_PROPOSE event on receipt of such an INVITE

request or EV_MEDIA upon receiving a response having first issued an INVITE

request. The media, in both cases, will be available when sip_details() function

is called. The application can then determine the condition of the HOLD state if
any.

• ACU_RAISE_FORKED_EVENT

This option would allow SIP service to raise EV_FORKED event should it detect a
forked response during a successful call connection. Typically raised after
EV_CALL_CONNECTED event.

For example:

 outx.call_options = ACU_RAISE_HOLD_EVENT_FOR_C_EQUAL_ZERO;

transport_type

This field has been reserved for future use.

callid

This optional field allows the client to specify a Call-ID instead of relying on sipserv to
auto-generate one. Note it MUST be selected by the UAC as a globally unique
identifier over space and time.

user

If a set of credentials has multiple users for the same realm, this optional field allows
the client to specify the preferred username in an Authentication header when
responding to a challenge with a realm with multiple users. Otherwise if one is not
specified the user matching the one obtained from the ‘From’ header would be used
else the first user in the list matching the realm will be selected. Note if a user is
defined but is not in the set of credentials the call will just fail with ‘401 Unauthorized’
response and sipserv will not attempt to send a reINVITE with an Authentication
header.

Return values

handle

If successful, this will contain a unique (non zero) call identifier, which is used in all
successive call related operations on the driver.

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

If the ACU_USE_ASYNC_MODE option is used, zero will always be returned. Subsequently

receiving the event EV_WAIT_FOR_OUTGOING indicates success, whereas receiving the

event EV_IDLE indicates an unspecified error occurred.

MAN1762 PUBLIC 42

Example usage
SIP_OUT_PARMS outx;

INIT_ACU_STRUCT(&outx);

outx.net = sipPort;

// addressing

outx.destination_addr="sip:john@gw.com";

outx.originating_addr="sip:bob@voip-company.com";

outx.destination_display_name="john";

outx.originating_display_name="bob";

ACU_MEDIA_OFFER_ANSWER mo1;

memset(&mo1, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

// setup the offer answer – then assign to outx

outx.media_offer_answer=&mo1;

ACU_RAW_MESSAGE_BODY armb1;

memset(&armb1, 0, sizeof(ACU_RAW_MESSAGE_BODY));

// setup any custom message body – if required – then assign to outx

outx.message_bodies=&armb1;

// setup any custom header – if required

outx.custom_headers="Server: New-Company\r\nSubject: ab13-8909";

ACU_ERR rc = sip_openout(&outx);

MAN1762 PUBLIC 43

3.3 sip_openin() - open for incoming call
This function allows an application to initiate a wait for an incoming call. The function
registers the incoming call requirement with the SIP service. If the service is satisfied
with the calling parameters, it will return a unique call identifier, the call handle, for

that call. The net field supplied to this function must be allocated using

sip_open_port().

This extended openin function permits an application to specify a collection of certain
SIP message types received by this call for later presentation to the application.

Synopsis
ACU_ERR sip_openin(SIP_IN_PARMS* in_parms);

typedef struct sip_in_parms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* OUT */

 ACU_PORT_ID net; /* IN */

 ACU_INT cnf; /* IN */

 ACU_EVENT_QUEUE queue_id; /* IN */

 ACU_ACT app_context_token; /* IN */

 ACU_UINT request_notification_mask; /* IN */

 ACU_UINT response_notification_mask; /* IN */

 ACU_UINT enable_midcall_response_mask; /* IN */

 ACU_UINT call_options; /* IN */

} SIP_IN_PARMS;

Input parameters
The sip_openin() function takes a pointer, in_parms, to a structure SIP_IN_PARMS.

The structure must be initialised before invoking the function.

net

Specifies the port_id on the referring to the protocol stack on which the call is to be
made, as returned from sip_open_port(). This is a mandatory field.

cnf

Reserved for future use.

queue_id

This field must be set to a valid queue. The unique event queue identity as returned
by acu_allocate_event_queue() when creating a queue.

app_context_token

The app_context_token field is a user-defined token value to be associated with the
handle.

request_notification_mask

This field permits an application to specify, for a given call, which SIP messages
(requests) it wishes to be notified on the receipt of. On receipt of a relevant SIP

message, a call that has specified this setting, experiences an EV_DETAILS event and

a subsequent sip_details() will collect the entire message. By default, no additional
notification is given for inbound SIP messages, other than that inherent with the API’s
generic call control event raising model.

Below is an enumeration listing the SIP requests in which it is possible to receive
notification on the receipt thereof.

typedef enum acu_sip_message_notification_masks

{

ACU_SIP_INITIAL_INVITE_NOTIFICATION = 0x00000001, (see note 1)

ACU_SIP_REINVITE_NOTIFICATION = 0x00000002, (see note 1)

MAN1762 PUBLIC 44

ACU_SIP_TRANSFER_INVITE_NOTIFICATION = 0x00000004, (see note 1)

ACU_SIP_INFO_NOTIFICATION = 0x00000008,

ACU_SIP_NOTIFY_NOTIFICATION = 0x00000010,

ACU_SIP_REGISTER_NOTIFICATION = 0x00000020, (see note 2)

ACU_SIP_SUBSCRIBE_NOTIFICATION = 0x00000040, (see note 2)

ACU_SIP_OPTIONS_NOTIFICATION = 0x00000080,

ACU_SIP_BYE_NOTIFICATION = 0x00000100,

ACU_SIP_MESSAGE_NOTIFICATION = 0x00000200,

ACU_SIP_UPDATE_NOTIFICATION = 0x00000400,

ACU_SIP_PRACK_NOTIFICATION = 0x00000800, (see note 1)

ACU_SIP_REFER_NOTIFICATION = 0x00001000, (see note 1)

ACU_SIP_INITIAL_ACK_NOTIFICATION = 0x00002000, (see note 1)

ACU_SIP_REINVITE_ACK_NOTIFICATION = 0x00004000, (see note 1)

ACU_SIP_TRANSFER_ACK_NOTIFICATION = 0x00008000, (see note 1)

 } ACU_SIP_MESSAGE_NOTIFICATION_MASKS;

note 1. These message types are not valid for use with enable_midcall_response_mask.
note 2. These message types are only valid for use with out of dialog API functions.

In order to receive notification for a particular message an application needs to set
this field to the value of one of the bits in the above enumeration. Notification of more

than one message class may be accomplished by bitwise OR-ing the required bits.

response_notification_mask

This field is the same as the above except that it affects whether or not a call receives
notification of a particular SIP response being received. Rules for assigning this field

are the same as for request_notification_mask.

enable_midcall_response_mask;

This field permits an application to specify, for a given call, which SIP messages it
wishes to formulate its own responses. See notes above for which masks are valid for
use with this field. If set for a given message type, the SIP service will only respond
after the application calls sip_send_response().The exception to this is

ACU_SIP_BYE_NOTIFICATION which is a special case as it affects the termination of the

call. If a BYE message is received and the enable_midcall_response_mask has the

ACU_SIP_BYE_NOTIFICATION bit set then EV_REMOTE_DISCONNECT will be raised. The

correct way to respond to this is by using sip_disconnect(). An EV_IDLE will be raised
when the response is sent. If no response is sent the call will remain in this state,
however the remote end will time out.

call_options

This is a field of bits each of which specify a particular call option. The following
enumeration lists the available call options and the bits used to set those options:

typedef enum acu_sip_call_options

{

 ACU_RAISE_MEDIA_EVENT_FOR_HOLD =0x00000001,

 ACU_RAISE_HOLD_EVENT_FOR_C_EQUAL_ZERO =0x00000002,

 ACU_USE_C_EQUAL_ZERO_FOR_HOLD =0x00000004,

 ACU_DISABLE_EARLY_MEDIA =0x00000008,

 ACU_RAISE_HOLD_EVENT_FOR_INACTIVE =0x00000010,

 ACU_USE_INACTIVE_FOR_HOLD =0x00000020,

 ACU_DISABLE_TRANSFER_ON_REFER =0x00000040,

 ACU_DO_NOT_USE_PROXY_IF_SET =0x00000100,

 ACU_NO_HOLD_EVENTS =0x00000400

 } ACU_SIP_CALL_OPTIONS;

If a given bit is not set then the default behaviour is adopted for this option. Below is a
description of the options currently available in the SIP service:

MAN1762 PUBLIC 45

• ACU_RAISE_MEDIA_EVENT_FOR_HOLD
This option controls the SIP service’s response to a hold or reconnect request
made by the ‘far end’. By default an extended hold or reconnect event is raised
as appropriate and no media description information is presented to the
application. This may be suitable for some applications, however others may
desire to inspect the SDP body relating this request. By setting this option the

application will receive an EV_MEDIA_PROPOSE event on receipt of such a request

and the media will be available to the sip_details() function call.

• ACU_RAISE_HOLD_EVENT_FOR_C_EQUAL_ZERO

This options controls the SIP service’s response to the receipt of a re-INVITE with

new SDP, whose connection address is 0.0.0.0. Previously such a string
signified a hold request, however this means of request is now deprecated and
has subtly different semantics in third party call control scenarios. By default,
receipt of such a re-INVITE raises an EV_MEDIA_PROPOSE event. However, as some

handsets still implement hold in this way, setting this option causes the re-INVITE
to generate an extended hold request event.

• ACU_USE_C_EQUAL_ZERO_FOR_HOLD
This option affects whether or not the SIP service uses a deprecated mechanism,
c=0.0.0.0, to implement call hold. By default hold is implemented by using the

a=sendonly SDP attribute. When this flag is set for a call’s options, the SIP

service uses c=0.0.0.0 to implement any call_hold() requests made for this
call.

• ACU_DISABLE_EARLY_MEDIA
This flag is not supported.

• ACU_RAISE_HOLD_EVENT_FOR_INACTIVE

This option controls the SIP service’s response to the receipt of a re-INVITE with
SDP containing a=inactive. The application should set this option if it is required
that an EV_HOLD should be raised in such circumstances.

• ACU_USE_INACTIVE_FOR_HOLD

By default hold is implemented by using the a=sendonly SDP attribute. When this

option is set the SIP service uses a=inactive to implement call_hold() requests
made for this call.

• ACU_DISABLE_TRANSFER_ON_REFER

This feature allows the application to micromanage a call transfer. By default
when a REFER is received the SIP service will raise an

EV_EXT_TRANSFER_INFORMATION event and handle the transfer when

call_feature_send() is called. With this option turned on the SIP service will (if

the application has enabled ACU_SIP_REFER_NOTIFICATION) provide the raw REFER
message to the application. The application must handle the transfer as they see

fit using alternative api calls. See RFC 3515 for a description of the REFER
method.

• ACU_USE_MEDIA_DESCRIPTION_FOR_SESSION

By default it is not possible to for the application to send or receive session level

attributes as ACU_MISCELLANEOUS_MEDIA_ATTRIBUTES. By setting this option an extra
media description is inserted at the beginning of the list of received media

descriptions with a type of ACU_SESSION. This media descriptions will contain a
session level connection address (if present), miscellaneous attributes (if present)

and the next pointer will point to the first ‘real’ media description.

• ACU_DO_NOT_USE_PROXY_IF_SET

This flag has no effect for an incoming call.

MAN1762 PUBLIC 46

• ACU_NO_HOLD_EVENTS
This option prevents the SIP service from raising HOLD events in response to a
hold or reconnect request made by the remote end. By default an extended hold
or reconnect event is raised as appropriate and no media description information
is presented to the application. A HOLD state is determined solely by the
inclusion of the attribute ‘a=recvonly’ within the SDP body answer. Based on
IETF RFC 6337 the conditions for a HOLD state may be more complicated and it
is left up to the application running the SIP service to recognize these conditions
based on the contents of both the SDP offer/answer bodies. By setting this option
the application will receive an EV_MEDIA_PROPOSE event on receipt of such an

INVITE request or EV_MEDIA event upon receiving a response having first issued
an INVITE request. The media, in both cases, will be available when
sip_details() function is called. The application can then determine the
condition of the HOLD state if any.

For example:

 inx.call_options = ACU_RAISE_HOLD_EVENT_FOR_C_EQUAL_ZERO;

Return values
handle

If successful, the value in the handle field will contain a unique call identifier. This
value must be used for all subsequent operations relating to this call. The call handle
supplied by the driver will always be non-zero. On successful completion, a value of
zero is returned; otherwise, a negative value will be returned indicating the type of
error.

Example usage
SIP_IN_PARMS inx;

INIT_ACU_STRUCT(&inx);

inx.net = sipPort;

inx.request_notification_mask = ACU_SIP_INFO_NOTIFICATION;

ACU_ERR rc = sip_openin(&inx);

MAN1762 PUBLIC 47

3.4 sip_accept() - accept incoming call
This function may be used to accept the call after an incoming call has been
indicated. In SIP this is achieved by replying to a received INVITE with a 200OK
response.

In the generic API, the implementation of call_accept() for SIP builds the SDP body

of the 200OK. In the extended API, the application is responsible for configuring the
SDP.

This function should be used once the application has processed the remote (inviting)
party’s SDP, if any, which has been collected by calling sip_details() subsequent to

the EV_INCOMING_CALL_DET. However, the invocation of sip_accept() may be delayed

until after sip_incoming_ringing() or sip_progress() has been called.

With the exception of handle, media_offer_answer is the only mandatory field in

sip_accept(). The way in which this field is configured depends on the SDP received
from the remote party. The payloads specified should include a subset of those
offered by the remote party. This ensures that a media session can occur between
the two ends of the call. If the remote party sent no SDP in the INVITE then the
accepting call is at liberty to offer an initial set of payloads.

Synopsis
ACU_ERR sip_accept(SIP_ACCEPT_PARMS* accept_parms);

typedef struct sip_accept_parms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 char* contact_address; /* IN */

 char* custom_headers; // reserved for future

 ACU_RAW_MESSAGE_BODY* message_bodies; // reserved for future

 ACU_MEDIA_OFFER_ANSWER media_offer_answer; /* IN */

} SIP_ACCEPT_PARMS;

Input parameters

The sip_accept() function takes a pointer, accept_parms, to a structure

SIP_ACCEPT_PARMS. The structure must be initialised before invoking the function.

handle

Identifies the call to be accepted. This field is mandatory.

contact_address

Used to build a non-default contact header, this is useful if the application is running
on a multi-homed machine and wishes a particular IP address be used in the contact.
For chassis containing only one NIC card this field may be left blank. It will be in null

terminated URI address format. Refer to the sip_openout() section for more details
on the URI format.
custom_headers

This field has been reserved for future use.

message_bodies

This field has been reserved for future use.

media_offer_answer

This field is an instance of an ACU_MEDIA_OFFER_ANSWER structure specifying the local
media settings relevant to this party. These settings may specify either a media
‘answer’ or an ‘offer’ depending on the presence or absence of SDP in the received
INVITE respectively. Please refer to section 4.6 for further information on this
structure. This field is mandatory.

MAN1762 PUBLIC 48

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

Example usage
SIP_ACCEPT_PARMS accx;

INIT_ACU_STRUCT(&accx);

accx.handle = hndl;

ACU_MEDIA_OFFER_ANSWER mo1;

memset(&mo1, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

// setup the offer answer – then assign to accx

accx.media_offer_answer=&mo1;

ACU_ERR rc = sip_accept(&accx);

MAN1762 PUBLIC 49

3.5 sip_details() - get call details
This function is used to gather the details of the current call, either incoming or
outgoing, connected through the SIP service. This function should be regarded as not
re-entrant in the context of a particular call handle – ie. a call to this function in
response to an event must complete fully before a further call to this function is made
in response to a subsequent event on the same call handle. This function must be
called in response to the following events only, once per event:

• EV_INCOMING_CALL_DET

An incoming call has received a suitable INVITE message. The address fields will

hold addressing information relevant to the INVITE received, the

destination_addr and the originating_addr will hold URIs from the To: header

and From: headers respectively. If the INVITE received carried an SDP body then

the media_offer_answer will be a valid pointer to a structure holding this SDP.

• EV_DETAILS

It is possible to request notification on the receipt of particular types of SIP

message in the invocation of sip_openout() and sip_openin(). When a message

of the previously specified type arrives, EV_DETAILS is raised. Calling sip_details
at this point presents the entire message to the application in the structure

pointed to by sip_message. Please refer to Appendix C for more details on the
collection of raw SIP messages.

• EV_MEDIA (see Appendix A)

• EV_MEDIA_PROPOSE (see Appendix A)

• EV_EXTENDED/EXT_TRANSFER_INFORMATION

 The ‘being transferred’ and the ‘transferred to’ party in a transfer scenario receive
this extended event on receipt of the first message relating to the transfer. For the
‘being transferred’ party this is a REFER message, whereas for the ‘transferred to’
party this is an INVITE (with Replaces). Upon return from sip_details, the flag

transfer_refer_received will be set in the first case and media_offer_answer will

be populated in the second case. Please refer to sip_feature_send() for details
on how to further proceed in these occurrences.

• EV_EXTENDED/EXT_DIVERSION
This extended event will be raised on receipt of any 3xx response to an initial

INVITE. Upon return from sip_details redirect_info will be populated.

• EV_SIP_SUBSCRIBED (see Appendix A)

• EV_SIP_SUBSCRIPTION_PENDING(see Appendix A)

• EV_SIP_SUBSCRIPTION_CANCELLED (see Appendix A)

• EV_SIP_SUBSCRIPTION_REQUEST (see Appendix A)

• EV_SIP_SUBSCRIPTION_NOTIFICATION (see Appendix A)

• EV_SIP_SUBSCRIPTION_REFRESH (see Appendix A)

• EV_SIP_SUBSCRIPTION_REFRESH_FAILED (see Appendix A)

MAN1762 PUBLIC 50

NOTE

Once sip_details has been called and the information collected and processed, it
is essential that sip_free_details() is called using the same SIP_DETAIL_PARMS* to
free any memory dynamically allocated by sip_details. Failure to do so will result
in a memory leak.

Synopsis
ACU_ERR sip_details(SIP_DETAIL_PARMS* detail_parms);

typedef struct sip_detail_parms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 ACU_INT valid; /* OUT */

 ACU_INT calltype; /* OUT */

 char* destination_addr; /* OUT */

 char* originating_addr; /* OUT */

 char* connected_addr; /* OUT */

 char* destination_display_name; /* OUT */

 char* originating_display_name; /* OUT */

 ACU_ACT app_context_token; /* OUT*/

 char reliable_provisional_response_supported; /* OUT */

 ACU_SIP_MESSAGE* sip_message; /* OUT*/

 ACU_MEDIA_OFFER_ANSWER* media_offer_answer; /* OUT */

 ACU_MEDIA_SESSION* media_session; /* OUT */

 char transfer_refer_received; /* OUT */

 char transport_type; /* OUT */

 ACU_REDIRECT_INFO* redirect_info; /* OUT */

 ACU_SUBSCRIPTION_INFO* subscription_info; /* OUT */

} SIP_DETAIL_PARMS;

Input parameters

The sip_details() function takes a pointer, details_parms, to a structure

SIP_DETAIL_PARMS. Before invocation, the structure must be cleared using

INIT_ACU_STRUCT and the handle field assigned with the call under inspection.

handle

The handle field is used to identify the call that is to be examined. This field is
mandatory.

Return values
valid

Is a Boolean value, which indicates whether the details returned are valid or not.

0 details invalid – indicates that there is no valid information in the
structure

1 details valid – indicates that there is some valid information in the
structure

With SIP the details are valid if there is addressing information for the call, that is, an

initial INVITE has been sent/received.

calltype

Will indicate the direction of the call in progress and will have the values:

OUTGOING: for outgoing call

INCOMING: for incoming call

MAN1762 PUBLIC 51

originating_addr and destination_addr

Will contain the URIs extracted from the From: and To: headers of the call setup

INVITE received/sent.

connected_addr

Will contain the URI of the remote Contact: header used in this call.

destination_display_name

The destination display name in ASCII text format, typically the destination parties
name.

originating_display_name

The originating display name, in ASCII text format, typically the originating parties
name.

app_context_token

The app_context_token field contains the value that was associated with the handle

when the call was opened using sip_openin() or sip_openout().

reliable_provisional_response_supported

For an incoming call, if the INVITE message from the caller suggests that the caller

supports reliable provisional response, (presence of ‘Supported: 100rel’), this flag
will be set.

sip_message

This field is a pointer to an ACU_SIP_MESSAGE structure. This will be populated by the

sip_details() function if the call has queued a received SIP message as indicated

by the EV_DETAILS event. Please refer to section 4.8 for further information on this
field.

media_offer_answer

This field is a pointer to an ACU_MEDIA_OFFER_ANSWER structure. This field holds a
media offer received from a remote party. This occurrence is flagged to the

application by EV_INCOMING_CALL_DET, EV_MEDIA_PROPOSE or

EV_EXT_TRANSFER_INFORMATION. Please refer to section 4.6 for further information on
this field.

media_session

This field points to an ACU_MEDIA_SESSION structure. This is populated by

sip_details() subsequent to receipt of the EV_MEDIA event. An application should use
this information to affect how to control media streams relevant to the call. Please
refer to section 4.7 for further information on this field.

transfer_refer_received

This flag is used in order that a party in a call transfer scenario can get an indication
of which role in the transfer it is playing and how to proceed next. This flag will be set

if the party is the ‘being transferred’ party and in which case a REFER was received,
otherwise this implies that the party is the ‘transferred to’ entity: in which case SDP

may or may not be present in the media_offer_answer.

transport_type

This field has been reserved for future use.

redirect_info

This field points to an ACU_REDIRECT_INFO structure. This is populated by

sip_details() subsequent to receipt of the EV_EXTENDED_DIVERSION event. An
application should use this information to supply the input parameters for

sip_recall(). Please refer to section 4.10 for further information on this field.

subscription_info

This field points to an ACU_SUBSCRIPTION_INFO structure. This is populated by

sip_details() when subscription information is available. For more information on

MAN1762 PUBLIC 52

when subscription events can occur and when to use sip_details() see Appendix A

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1762 PUBLIC 53

3.6 sip_free_details() - return memory allocated by sip_details()
This function is used to free any memory, which may have been dynamically
allocated in a call to sip_details(). It is essential that this routine is called on any

SIP_DETAIL_PARMS* received by sip_details() once the information has been
processed.

NOTE

As the memory being freed is associated with the call handle,

sip_free_details() MUST be called before call_release.

NOTE

Any memory referred to by the SIP_DETAIL_PARMS* will be invalidated by this call.

Synopsis
ACU_ERR sip_free_details(SIP_DETAIL_PARMS* detail_parms); /* IN */

Input parameters

The sip_free_details() function takes a pointer, detail_parms, to a structure

SIP_DETAIL_PARMS. The structure has previously been populated by a successful call

to sip_details().

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

Example usage
SIP_DETAIL_PARMS detx;

INIT_ACU_STRUCT(&detx)

detx.handle = hndl;

ACU_ERR rc = sip_details(&detx);

if(ERR_NO_ERROR==rc)

{

 // process the details structure

 sip_free_details(&detx);

}

MAN1762 PUBLIC 54

3.7 sip_incoming_ringing() – send incoming ringing
This function may be used to send a 180 Ringing message to the remote party
causing the caller to hear the ring tone. This function may be used after an incoming
call has been detected but before the call has been accepted.

Synopsis
ACU_ERR sip_incoming_ringing(SIP_INCOMING_RINGING_PARMS* ringing_parms);

typedef struct sip_incoming_ringing_parms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 ACU_INT send_early_media; /* IN */

 ACU_INT use_183_response_for_early_media; /* IN */

 ACU_INT send_reliable_provisional_response; /* IN */

 char* contact_address; /* IN */

 ACU_MEDIA_OFFER_ANSWER* media_offer_answer; /* IN */

} SIP_INCOMING_RINGING_PARMS;

Input parameters

The sip_incoming_ringing() function takes a pointer, ringing_parms, to a structure
SIP_INCOMING_RINGING_PARMS.

The use of sip_incoming_ringing() with no parameters set within the

SIP_INCOMING_RINGING_PARMS structure, other than the handle, will result in a 180
message with no media offer being sent to the caller. However, this function may be

used to initiate early media in the call if the send_early_media flag is set. In this case,

the media_offer_answer field must be suitably configured with the required SDP.

handle

The handle field identifies the call that will send the incoming ringing message. This
field is mandatory.

send_early_media

This flag has no effect. SDP is sent if provided in media_offer_answer.

use_183_response_for_early_media

Setting this will make sip_incoming_ringing() send a 183 message instead of a 180.

This to all intents and purposes will make the call look like call_progress(). It is
provided to support possible interoperability issues.

send_reliable_provisional_response

By default 18* messages are sent unreliably, that is, the sender does not retransmit
the message in absence of an acknowledge from the far end. Setting this flag to 1,
forces them to be sent reliably and the sender resends until a PRACK message is
received from the remote party. ERR_PARM is returned if the caller does not support the
protocol extension (100rel) required for reliable provisional responses.

NOTE

If a reliable provisional response has been sent the application should not call
sip_accept until it has received an EV_WAIT_FOR_ACCEPT as this will not be
raised until the PRACK has been received.

contact_address

Used to build a non-default contact header, this being useful if the application is
running on a multi-homed machine and wishes a particular IP address be used in the
contact. For chassis containing only one NIC card this field may be left blank, (URI
address format).

media_offer_answer

MAN1762 PUBLIC 55

This field is a pointer to an ACU_MEDIA_OFFER_ANSWER specifying the settings relevant to
starting an early media session with the caller. Please refer to section 4.6 for further
information on this structure.

Return values
On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

NOTE

use of the function will result in the EV_WAIT_FOR_ACCEPT state, whereupon

sip_accept() will connect the call. The application can therefore control the

number of ring cadences by delaying the sip_accept() function.

Example usage
SIP_INCOMING_RINGING_PARMS ringx;

INIT_ACU_STRUCT(&ringx);

ringx.handle = hndl;

ringx.send_early_media = 1;

ACU_MEDIA_OFFER_ANSWER mo1;

memset(&mo1, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

// setup the offer answer – then assign to ringx

ringx.media_offer_answer = &mo1;

ACU_ERR rc = sip_incoming_ringing(&ringx);

MAN1762 PUBLIC 56

3.8 sip_progress() - send progress information
This function may be used to send call progress information to the remote party. A
183 Session progress message with an SDP body is sent to the other party.

NOTE

For the SIP protocol use of this routine enables early media announcements.

Synopsis
ACU_ERR sip_progress(SIP_PROGRESS_PARMS* progress_parms);

typedef struct sip_progress_parms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 ACU_INT send_reliable_provisional_response; /* IN */

 char* contact_address; /* IN */

 ACU_MEDIA_OFFER_ANSWER* media_offer_answer; /* IN */

} SIP_PROGRESS_PARMS;

Input parameters

The sip_progress() function takes a pointer, progress_parms, to a structure

SIP_PROGRESS_PARMS. This function should be invoked in the following way:

handle

The handle field identifies the call that will send the progress message. This field is
mandatory.

send_reliable_provisional_response

By default 18* messages are sent unreliably, that is, the sender does not retransmit
the message in the absence of an acknowledge from the far end. Setting this flag to
1, forces them to be sent reliably and the sender resends until a PRACK message is

received. ERR_PARM is returned if the caller does not support the protocol extension
required for reliable provisional responses.

NOTE

If a reliable provisional response has been sent the application should not call
sip_accept until it has received an EV_WAIT_FOR_ACCEPT as this will not be
raised until the PRACK has been received.

contact_address

Used to build a non-default contact header, this is useful if the application is running
on a multi-homed machine and wishes a particular IP address be used in the contact.
For chassis containing only one NIC card, this field may be left blank, (URI address
format).

media_offer_answer

This field is a pointer to an ACU_MEDIA_OFFER_ANSWER specifying the settings relevant to
starting an early media session with the caller. Please refer to section 4.6 for further
information on this structure.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

Example usage
SIP_PROGRESS_PARMS progx;

MAN1762 PUBLIC 57

INIT_ACU_STRUCT(&progx);

progx.handle = hndl;

progx.send_reliable_provisional_response = 1;

ACU_MEDIA_OFFER_ANSWER mo1;

memset(&mo1, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

// setup the offer answer – then assign to progx

progx.media_offer_answer = &mo1;

ACU_ERR rc = sip_progress(&progx);

MAN1762 PUBLIC 58

3.9 sip_send_invite_response() - Send response to initial INVITE

This function may be used to send any response to an initial INVITE and may be used
in place of the following API calls: sip_incoming_ringing, sip_progress, sip_accept,
sip_disconnect and call_disconnect (if the call is in a valid state). It gives the
application considerably more control over the content of the message allowing the
inclusion of any message body and any additional SIP headers.

Synopsis
ACU_ERR sip_send_invite_response(SIP_SEND_INVITE_RESPONSE_PARMS* response_parms);

typedef struct tSIP_SEND_INVITE_RESPONSE_PARMS

{

 ACU_ULONG size; /* IN */

 ACU_CALL_HANDLE handle; /* IN */

 ACU_INT sip_code; /* IN */

 ACU_INT send_reliably; /* IN */

 ACU_STRING_LIST* contact_list; /* IN */

 char* custom_headers; /* IN */

 ACU_MEDIA_OFFER_ANSWER* media_offer_answer; /* IN */

 ACU_RAW_MESSAGE_BODY* message_bodies; /* IN */

} SIP_SEND_INVITE_RESPONSE_PARMS;

Input parameters

The sip_send_invite_response() function takes a pointer, response_parms, to a

structure SIP_SEND_INVITE_RESPONSE. This function should be invoked in the following
way:

handle

The handle field identifies the call that will send the response. This field is
mandatory.

sip_code

This field indicates the response code that will be used in the status line of the

message. As this represents standardised response codes ERR_PARM will be

returned for any value outside of the range 100 < sip_code < 700. This field is

mandatory.

send_reliably

By default 1** messages are sent unreliably, that is, the sender does not retransmit
the message in the absence of an acknowledge from the far end. Setting this flag to
1, forces them to be sent reliably and the sender resends until a PRACK message is
received. ERR_PARM is returned if the caller does not support the protocol extension
required for reliable provisional responses. This field is ignored for sip_code > 199.

NOTE

If a reliable provisional response has been sent the application should not call
sip_accept until it has received an EV_WAIT_FOR_ACCEPT as this will not be
raised until the PRACK has been received.

contact_list

For 1xx and 2xx responses, this field is used to build a non-default contact header.
This is useful if the application is running on a multi-homed machine and wishes a
particular IP address be used in the contact. For chassis containing only one NIC
card, this field may be left blank, (URI address format). For these responses, only a

single contact is valid and ERR_PARM will be returned if there are more than one.

For 3xx responses, which redirect the incoming call to an alternative target, any
number of contact addresses may be supplied for the remote user to try.
This field is ignored for sip_code > 399.

MAN1762 PUBLIC 59

custom_headers

The application may supply additional SIP headers to be added to the outgoing
message. Note if multiple headers are being appended then \r\n should be used to
delimit each header. For example:

“Subject: The meeting”

“Subject: 10acb7899\r\nServer: VoIP server”

This string must be null terminated.

media_offer_answer

This field is a pointer to an ACU_MEDIA_OFFER_ANSWER specifying the settings relevant to
starting a media session with the caller. Please refer to section 4.6 for further
information on this structure. This field is mandatory for 2xx responses where no
reliable. This field is ignored for response codes greater than 299.

message_bodies

Message bodies to be added to the outgoing response can be specified here. See
the section 4.1 for further details in the setup of this structure.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

Example usage
SIP_SEND_INVITE_RESPONSE_PARMS responsex;

INIT_ACU_STRUCT(&responsex);

responsex.handle = hndl;

responsex.sip_code = 182;

responsex.send_reliably = 1;

responsex.custom_headers = “Server: Aculab”

ACU_MEDIA_OFFER_ANSWER mo1;

memset(&mo1, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

// setup the offer answer – then assign to responsex

responsex.media_offer_answer = &mo1;

ACU_ERR rc = sip_send_invite_response(&responsex);

MAN1762 PUBLIC 60

3.10 sip_feature_send() - sending feature information
Currently this function is used to acknowledge or reject a supplementary service
request received from the remote party and indicated to the local party by the receipt
of the following extended events:

• EV_EXT_HOLD_REQUEST – The local party has received a re-INVITE message with

the following criteria: the a=sendonly attribute and an increment in the SDP
session version number (the third field in the SDP o= line).

• EV_EXT_RECONNECT_REQUEST – The local party has received an INVITE message

with the following criteria: an increment in the SDP session version number (the
third field in the SDP o= line) and an implicit or otherwise indication of the
sendrecv attribute. In addition the call must have previously received a hold
request.

• EV_EXT_TRANSFER_INFORMATION - The local party has either received a (transfer)

REFER message or an INVITE (with Replaces). Refer to sip_details() to find out
how either of these cases is determined.

Synopsis
ACU_ERR sip_feature_send(SIP_FEATURE_DETAIL_PARMS* feature_parms);

typedef struct sip_feature_detail_parms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 ACU_ULONG feature_type; /* IN */

 union

 {

 struct

 {

 ACU_INT command; /* IN */

 } hold;

 struct

 {

 ACU_INT failure_code; /* IN */

 ACU_MEDIA_OFFER_ANSWER* media_offer_answer; /* IN */

 } transfer;

 } feature;

} SIP_FEATURE_DETAIL_PARMS;

Input parameters

The sip_feature_send() function takes a pointer, feature_parms, to a structure

SIP_FEATURE_DETAIL_PARMS. The structure must be initialised in the following way
before invoking the function.

handle

The handle field is used to identify the call that will send feature information. This field
is mandatory.

feature_type

The feature_type field should be used to indicate the type of feature. The values this
field can take are:

FEATURE_HOLD_RECONNECT

FEATURE_TRANSFER

This field is mandatory.

MAN1762 PUBLIC 61

command

This field is relevant for feature_type == FEATURE_HOLD_RECONNECT and must contain
one of the following values to transmit an appropriate response to the hold or
reconnect request.

HOLD_ACKNOWLEDGE_CMD

HOLD_REJECT_CMD

RECONNECT_ACKNOWLEDGE_CMD

RECONNECT_REJECT_CMD

The SIP protocol stack will reply with either 200OK for acknowledgement of the
request or ‘403 Forbidden’ for rejection.

failure_code

This field is relevant for feature_type==FEATURE_TRANSFER. If the application wishes to
grant this transfer, it should leave this code as zero. Otherwise to decline the transfer

it set this code to be valid SIP error code e.g. 403 – forbidden.

media_offer_answer

This field is relevant for feature_type==FEATURE_TRANSFER. The application should

populate this with a pointer to an ACU_MEDIA_OFFER_ANSWER where the settings for the
media session between the transferred and the transferred-to are specified.

This field is mandatory for the ‘transferred to’ party and strongly recommended for
the ‘being transferred’ party.

Return values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Example usage: Acknowledging/Rejecting a hold request
SIP_FEATURE_DETAIL_PARMS fdx;

INIT_ACU_STRUCT(&fdx);

fdx.handle = hndl;

fdx.feature_type = FEATURE_HOLD_RECONNECT;

if(accept_hold)

{

fdx.feature.hold.command = HOLD_ACKNOWLEDGE_CMD;

}

else

{

fdx.feature.hold.command = HOLD_REJECT_CMD;

}

ACU_ERR rc = sip_feature_send(&fdx);

Example usage: Accepting/Rejecting a transfer (either ‘being transferred’
or ‘transferred party’)

SIP_FEATURE_DETAIL_PARMS fdx;

INIT_ACU_STRUCT(&fdx);

ACU_MEDIA_OFFER_ANSWER* mo = 0;

fdx.handle = hndl;

fdx.feature_type = FEATURE_TRANSFER;

if(accept_transfer)

{

mo = malloc(sizeof(ACU_MEDIA_OFFER_ANSWER));

// configure the media offer answer structure

 fdx.feature.transfer.media_offer_answer = mo;

}

else

MAN1762 PUBLIC 62

{

 fdx.feature.transfer.failure_code = 486;

}

ACU_ERR rc = sip_feature_send(&fdx);

free(mo);

MAN1762 PUBLIC 63

3.11 sip_media_propose() – send a media proposal
Send a new media proposal (a new offer in an offer-answer exchange), to the remote
party in a SIP call. This proposal usually takes the form of an SDP body in a re-

INVITE, although in certain situations the proposal may be in a 200OK message. The
intended outcome of the proposal is a re-negotiation of a call’s media settings.
Various call control features in SIP can be implemented by re-negotiating the media
session:

• Redirect of media streams to alternative addresses/ports.

• Holding the media stream.

• Adding a new media stream.

• Deleting a media stream.

• Changing a payload setting in an existing stream.

NOTE

The use case to which the first bullet relates is particularly useful in the
implementation of third party call control; the controller sends the RTP settings of
party A to party B, and vice-versa.

If the proposal is successful, that is, the remote party replied with a suitable 200OK
(or ACK), EV_MEDIA is raised. If the proposal is declined EV_MEDIA_REJECT_PROPOSAL is
raised, and it is possible to make a new, altered, proposal.

Refer to RFC 3725 and Aculab’s SIP Programming Guide to find more information on
this functionality.

Synopsis
ACU_ERR sip_media_propose(SIP_MEDIA_PROPOSE_PARMS*

 media_propose_parms);

typedef struct tSIP_MEDIA_PROPOSE_PARMS

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 ACU_MEDIA_OFFER_ANSWER media_offer_answer; /* IN */

 char* custom_headers; /* IN */

} SIP_MEDIA_PROPOSE_PARMS;

Input parameters

The sip_media_propose() function takes a pointer media_propose_parms to a

SIP_MEDIA_PROPOSE_PARMS structure. The structure must be initialised in the following
way before invoking the function.

handle

The handle field identifies the call that is to send the proposal. This field is
mandatory.

media_offer_answer

The media_offer_answer field specifies the media settings applying to this proposal.

MAN1762 PUBLIC 64

This field is mandatory. See section 4.6 for further details.

Return values

On successful completion, a value of zero is returned. Otherwise, a negative value
will be returned indicating the type of error.

Example Usage
SIP_MEDIA_PROPOSE_PARMS propose_parms;

INIT_ACU_STRUCT(&propose_parms);

propose_parms.handle = hndl;

propose_parms.media_offer_answer.connection_address.address =

“10.202.123.2”;

ACU_MEDIA_DESCRIPTION media_desc;

memset(&media_desc, 0, sizeof(media_desc));

// setup the ACU_MEDIA_DESCRIPTION

propose_parms.media_offer_answer.media_descriptions = &media_desc;

ACU_ERR rc = sip_media_propose(&propose_parms);

custom_headers

The application may supply additional SIP headers to be added to the outgoing
message. Note if multiple headers are being appended then \r\n should be used to
delimit each header.

For example:

outx.custom_headers = “P-Asserted-Identity: \"Cullen Jennings\"”;

outx.custom_headers = “Subject: 10acb7899\r\nServer: VoIP server”;

This field must be null terminated.

MAN1762 PUBLIC 65

3.12 sip_media_accept() – accept a media proposal
Accept a media proposal received from the remote party in a SIP call. This involves
sending an SDP answer body, typically in a 200OK, but sometimes in an ACK. This

function must be called in response to an EV_MEDIA_PROPOSE event occurring for this
call.

This function may be used in combination with sip_media_propose() to implement
third party call control.

Synopsis
ACU_ERR sip_media_accept(SIP_MEDIA_ACCEPT_PARMS* media_accept_parms);

typedef struct tSIP_MEDIA_ACCEPT_PARMS

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 ACU_MEDIA_OFFER_ANSWER media_offer_answer; /* IN */

} SIP_MEDIA_ACCEPT_PARMS;

Input parameters

The sip_media_accept() function takes a pointer media_accept_parms to a

SIP_MEDIA_ACCEPT_PARMS structure. The structure must be initialised in the following
way before invoking the function.

handle

The handle field identifies the call that is to accept the proposal. This field is
mandatory.

media_offer_answer

The media_offer_answer field specifies the media settings applying to this proposal
accept, see section 4.6 for further details. This field is mandatory.

Return values

On successful completion, a value of zero is returned. Otherwise, a negative value
will be returned indicating the type of error.

Example Usage

Refer to the example usage in the section describing sip_media_propose().

MAN1762 PUBLIC 66

3.13 sip_media_request_proposal() – request a media proposal
Request the remote party to send a new media offer. This is implemented by sending
an INVITE with no SDP to the party. A positive response from the remote end would

be a 200OK with SDP resulting in an EV_MEDIA_PROPOSE being raised. Otherwise,

EV_MEDIA_REJECT_REQUEST_PROPOSAL is raised if the request was declined.

Synopsis
ACU_ERR sip_media_request_proposal

(SIP_MEDIA_REQUEST_PROPOSAL_PARMS* media_request_proposal_parms);

typedef struct tSIP_MEDIA_REQUEST_PROPOSAL_PARMS

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 char* custom_headers; /* IN */

} SIP_MEDIA_REQUEST_PROPOSAL_PARMS;

Input parameters

The sip_media_request_proposal() function takes a pointer

media_request_proposal_parms to a SIP_MEDIA_REQUEST_PROPOSAL_PARMS structure.
The structure must be initialised in the following way before invoking the function.

handle

The handle field identifies the call that is to request the proposal. This field is
mandatory.

custom_headers

The application may supply additional SIP headers to be added to the outgoing

message. Note if multiple headers are being appended then \r\n should be used to
delimit each header.

For example:

outx.custom_headers = “P-Asserted-Identity: \"Cullen Jennings\"”;

outx.custom_headers = “Subject: 10acb7899\r\nServer: VoIP server”;

This field must be null terminated.

Return values

On successful completion, a value of zero is returned. Otherwise, a negative value
will be returned indicating the type of error.

Example Usage
SIP_MEDIA_REQUEST_PROPOSAL_PARMS req_propx;

INIT_ACU_STRUCT(&req_propx);

req_propx.handle = hndl;

ACU_ERR rc = sip_media_request_proposal(&req_propx);

MAN1762 PUBLIC 67

3.14 sip_media_reject_proposal() – reject a media proposal
Reject a media proposal received from the remote party. This may be called in
response to an EV_MEDIA_PROPOSE or EV_MEDIA_REQUEST_PROPOSAL event. If the

proposal received was an INVITE with SDP, then this reject will be implemented, as

4xx class of response and the original media session will persist. However, if the

proposal, which is being rejected, is in the form of a 200OK then, due to SIP protocol
rules, the rejection will result in the clearing of the existing call.

Synopsis
ACU_ERR sip_media_reject_proposal(SIP_MEDIA_REJECT_PROPOSAL_PARMS*

 media_reject_proposal_parms);

typedef struct tSIP_MEDIA_REJECT_PROPOSAL_PARMS

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 union

 {

 ACU_INT sip_code; /* IN */

 } protocol_specific;

} SIP_MEDIA_REJECT_PROPOSAL_PARMS;

Input parameters

The sip_media_reject_proposal() function takes a pointer

media_reject_proposal_parms to a SIP_MEDIA_REJECT_PROPOSAL_PARMS structure. The
structure must be initialised in the following way before invoking the function.

handle

The handle field identifies the call that is to reject the proposal. This field is
mandatory.

sip_code

The optional sip_code field enables the application to specify the SIP response code
set to the proposer. By default ‘488 Not acceptable here’ will be sent. Note that this

field has no meaning when the proposal being rejected was in a 200OK; the call will be

cleared by a subsequent BYE/200OK transaction.

Return values

On successful completion, a value of zero is returned. Otherwise, a negative value
will be returned indicating the type of error.

Example Usage
SIP_MEDIA_REJECT_PROPOSAL_PARMS reject_parms;

INIT_ACU_STRUCT(&reject_parms);

reject_parms.handle = hndl;

reject_parms.protocol_specific.sip_code = 403; // “Forbidden”

ACU_ERR err = sip_media_reject_proposal(&reject_parms);

MAN1762 PUBLIC 68

3.15 sip_send_request() - send a mid call SIP request
Used to send a mid call SIP request message to the remote party. This routine
enables the application to specify the message type, additional SIP headers and
message bodies to compose a mid call message to be sent using the signalling path
previously setup in a call. Note: under certain circumstances in the case of the UPDATE

method the sip_send_request() can be sent during call set-up before the INVITE has
received a final response in a pending SIP session (RFC 3311).

Synopsis
ACU_ERR sip_send_request(SIP_SEND_REQUEST_PARMS* send_request_parms);

typedef struct tSIP_SEND_REQUEST_PARMS

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 unsigned char message_type; /* mandatory */

 char* custom_headers; /* IN */

 ACU_RAW_MESSAGE_BODY* message_bodies; /* IN */

 ACU_MEDIA_OFFER_ANSWER* media_offer_answer; /* IN */

} SIP_SEND_REQUEST_PARMS;

Input parameters

The sip_send_request() function takes a pointer send_request_parms to a

SIP_SEND_REQUEST_PARMS structure. The structure must be initialised in the following
way before invoking the function.

handle

The handle field identifies the call that is to send the SIP message. This field is
mandatory.

message_type

The SIP message to be sent should be configured. The following enumeration has
been supplied to assist the application in setting this field.

typedef enum acu_sip_message_type

{

 ACU_SIP_MESSAGE_NULL =0,

 ACU_SIP_MESSAGE_INFO =1,

 ACU_SIP_MESSAGE_NOTIFY =2,

 ACU_SIP_MESSAGE_REGISTER =3,

 ACU_SIP_MESSAGE_SUBSCRIBE =4,

 ACU_SIP_MESSAGE_OPTIONS =5,

 ACU_SIP_MESSAGE_UPDATE =6,

 ACU_SIP_MESSAGE_MESSAGE =7

 ACU_SIP_MESSAGE_REFER =8

 } ACU_SIP_MESSAGE_TYPE;

NOTE

ACU_SIP_MESSAGE_REGISTER and ACU_SIP_MESSAGE_SUBSCRIBE are not

applicable to this API call. The same enum is used for out of dialog API functions.

custom_headers

The application may supply additional SIP headers to be added to the outgoing
message. Note if multiple headers are being appended then \r\n should be used to
delimit each header. For example:

“Subject: The meeting”

“Subject: 10acb7899\r\nServer: VoIP server”

MAN1762 PUBLIC 69

This string must be null terminated.

message_bodies

Message bodies to be added to the outgoing message can be specified here. See the
section 4.1 for further details in the setup of this structure.

media_offer_answer

This field is a pointer to an ACU_MEDIA_OFFER_ANSWER specifying the settings relevant to

starting a media session with the caller. This field should only be used with UPDATE

requests. Please refer to the documentation on the ACU_MEDIA_OFFER_ANSWER structure
for more information on this structure.

Return values

On successful completion, a value of zero is returned. Otherwise, a negative value
will be returned indicating the type of error.

Example Usage
SIP_SEND_REQUEST_PARMS sip_message_parms;

INIT_ACU_STRUCT(sip_message_parms);

sip_message_parms.handle = hndl;

sip_message_parms.message_type = ACU_SIP_MESSAGE_INFO;

sip_message_parms.custom_headers = “Subject: 1024-abcd”;

ACU_RAW_MESSAGE_BODY message_body;

memset(&message_body, 0, sizeof(message_body));

unsigned char BIN_BODY[] = {

0x81, 0x82, 0x1c, 0x05, 0xe4, 0x87, 0xe7, 0x86,

0xc8, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0a, 0x00,

0x02, 0x07, 0x05, 0x04, 0x00, 0x21, 0x43, 0x65,

0x0a, 0x04, 0x84, 0x00, 0x32, 0x04 , 0x00};

message_body.body_type = "application/isup";

message_body.body = (unsigned char*)BIN_BODY;

message_body.body_length = sizeof(BIN_BODY);

sip_message_parms.message_bodies = &message_body;

ACU_ERR err = sip_send_request(&sip_message_parms);

The above snippet will send an INFO message with an attached ISUP message
body.

MAN1762 PUBLIC 70

3.16 sip_send_response() - send a mid call SIP response
Used to send a mid call SIP response message to the remote party. This routine
enables the application to specify additional SIP headers and message bodies to
compose a mid call message to be sent in response to a previously received mid call
SIP request. Note: under certain circumstances in the case of the UPDATE method the

sip_send_response() can be called during call set-up before the INVITE has received
a final response in a pending SIP session (RFC 3311).

Synopsis
ACU_ERR sip_send_response(SIP_SEND_RESPONSE_PARMS* send_response_parms);

typedef struct tSIP_SEND_RESPONSE_PARMS

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* mandatory */

 ACU_UINT message_handle; /* IN */

 ACU_INT sip_code; /* IN */

 char* custom_headers; /* IN */

 ACU_RAW_MESSAGE_BODY* message_bodies; /* IN */

 ACU_MEDIA_OFFER_ANSWER* media_offer_answer; /* IN */

} SIP_SEND_RESPONSE_PARMS;

NOTE

To send a SIP response to an initial INVITE see sip_send_invite_response()

Input parameters

The sip_send_response() function takes a pointer send_response_parms to a

SIP_SEND_REQUEST_PARMS structure. The structure must be initialised in the following
way before invoking the function.

handle

The handle field identifies the call that is to send the SIP message. This field is
mandatory.

message_handle

The message_handle field identifies the request that this response corresponds to.

This may be retrieved by a call to sip_details() after the initial request has been
received.

sip_code

The sip_code field allows the application to specify which SIP response code is to

be used for the message.

custom_headers

The application may supply additional SIP headers to be added to the outgoing
message. Note if multiple headers are being appended then \r\n should be used to
delimit each header. For example:

“Subject: The meeting”

“Subject: 10acb7899\r\nServer: VoIP server”

This string must be null terminated.

message_bodies

Message bodies to be added to the outgoing message can be specified here. See the
section 4.1 for further details in the setup of this structure.

MAN1762 PUBLIC 71

media_offer_answer

This field is a pointer to an ACU_MEDIA_OFFER_ANSWER specifying the settings relevant to
starting a media session with the caller. This field should only be used in response to

UPDATE requests that contained an SDP offer. Please refer to the documentation on

the ACU_MEDIA_OFFER_ANSWER structure for more information on this structure.

Return values

On successful completion, a value of zero is returned. Otherwise, a negative value
will be returned indicating the type of error.

Example Usage
SIP_SEND_RESPONSE_PARMS sip_message_parms;

INIT_ACU_STRUCT(sip_message_parms);

sip_message_parms.handle = hndl;

sip_message_parms.message_handle = message_hndl;

sip_message_parms.sip_code = 200;

sip_message_parms.custom_headers = “Subject: 1024-abcd”;

ACU_RAW_MESSAGE_BODY message_body;

memset(&message_body, 0, sizeof(message_body));

unsigned char BIN_BODY[] = {

0x81, 0x82, 0x1c, 0x05, 0xe4, 0x87, 0xe7, 0x86,

0xc8, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0a, 0x00,

0x02, 0x07, 0x05, 0x04, 0x00, 0x21, 0x43, 0x65,

0x0a, 0x04, 0x84, 0x00, 0x32, 0x04 , 0x00};

message_body.body_type = "application/isup";

message_body.body = (unsigned char*)BIN_BODY;

message_body.body_length = sizeof(BIN_BODY);

sip_message_parms.message_bodies = &message_body;

ACU_ERR err = sip_send_response(&sip_message_parms);

The above snippet will send an 200 OK response to a previous request with an
attached ISUP message body.

MAN1762 PUBLIC 72

3.17 sip_set_reason_phrase() – modify a SIP response reason phrase
In the SIP protocol a human readable string is sent along with a numeric code in a
response message. The string’s content is not mandated by the protocol, as it is for
informational use only. The SIP stack encapsulated below the Aculab API uses
default settings for this string, so for example, the string Ringing is sent with the 180
response. A different string value may be associated with this numeric code by using
this routine. This function call may be used with an application that is based on either
the extended or generic API.

NOTE

To provide an optimal implementation, a very small memory leak will occur if this
routine is called repeatedly for the same response code. The design assumes
that the reason phrase associated with a particular response code will only need
to be set once by an application.

Synopsis
ACU_ERR sip_set_reason_phrase(SIP_SET_REASON_PHRASE_PARMS*

set_reason_phrase_parms);

typedef struct tSIP_SET_REASON_PHRASE_PARMS

{

 ACU_ULONG size;

 ACU_INT sip_code; /* IN */

 const char* reason_phrase; /* IN */

} SIP_SET_REASON_PHRASE_PARMS;

Input parameters

The sip_set_reason_phrase() function takes a pointer set_reason_phrase_parms to a

SIP_SET_REASON_PHRASE_PARMS structure. The structure must be initialised in the
following way before invoking the function.

sip_code

The sip_code field identifies the SIP response to which this reason phrase relates.

reason_phrase

A NULL-terminated ASCII string, specifying the standard reason phrase to transmit
with the SIP response of the above code.

Return values

On successful completion, a value of zero is returned. Otherwise, a negative value
will be returned indicating the type of error.

Example Usage
SIP_SET_REASON_PHRASE sip_reason_parms;

INIT_ACU_STRUCT(&sip_reason_parms);

sip_reason_parms.sip_code = 180;

sip_reason_parms.reason_phrase = “Alerting”;

MAN1762 PUBLIC 73

3.18 sip_add_answer_challenge_credentials() – provide authentication
credentials
The function is used by the application to pass authentication credentials to the
protocol stack. The stack will use the appropriate credentials when challenged by an
Authenticating proxy or User Agent. SIP Digest Authentication works in the following
way:

• The calling party sends an un-authenticated request to a proxy

• The remote party ‘challenges’ with an appropriate response (401 from a user
agent or registrar, 407 from a proxy) containing the realm and cryptographically
opaque nonce

• The stack looks up a username and password pair matching the realm. If there
are multiple users associated with that realm the stack will attempt to match the
user with the username part of the relevant URI. If no such match exists the
password associated with the first user in the realm is used.

• Using the username, password and nonce, the calling party generates a
cryptographically opaque response and embeds this in a new request to be
resent to the proxy.

sip_add_answer_challenge_credentials() should be called by the application prior to
making calls which are likely to be challenged. This function call may be used with an
application that is based on either the extended or generic API.

NOTE

A ‘realm’ represents an administrative zone which an entity, for example, a server
controls.

Synopsis
ACU_ERR sip_add_answer_challenge_credentials

(SIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS* answer_challenge_credentials_parms);

typedef struct tSIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS

{

 ACU_ULONG size; /* IN */

 char* realm; /* IN */

 char* user; /* IN */

 char* password; /* IN */

 ACU_INT retries; /* IN */

} SIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS;

Input parameters

The sip_add_answer_challenge_credentials() function takes a pointer

answer_challenge_credentials_parms to a SIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS

structure. The structure must be initialised in the following way before invoking the
function.

realm

A NULL terminated string containing the name of the administrative zone to which
these credentials apply. This field is mandatory.

user

A NULL terminated string containing the name of a user authorised to access the
above realm. This field is mandatory.

password

A NULL terminated string containing the password of the above user. This field is
mandatory.

MAN1762 PUBLIC 74

retries

Reserved for future use.

Return values

On successful completion a value of zero is returned; Otherwise, a negative value will
be returned indicating the type of error.

Example usage
SIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS cred;

INIT_ACU_STRUCT(&cred);

cred.realm = "proxies.com";

cred.user = "john";

cred.password = "password";

ACU_ERR err=sip_add_answer_challenge_credentials(&cred);

MAN1762 PUBLIC 75

3.19 sip_remove_answer_challenge_credentials() – remove authentication
credentials
This function may be used by an application to remove credentials previously added
by sip_add_answer_challenge_credentials(). The credentials may then be added

again using sip_add_answer_challenge_credentials(), for example, in the case of a
password change. This function call may be used with an application that is based on
either the extended or generic API.

Synopsis
ACU_ERR sip_remove_answer_challenge_credentials

(SIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS* answer_challenge_credentials_parms);

typedef struct tSIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS

{

 ACU_ULONG size;

 char* realm; /* IN */

 char* user; /* IN */

 char* password; /* UNUSED */

 ACU_INT retries; /* UNUSED */

} ACU_PACK_DIRECTIVE SIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS;

Input parameters

The sip_remove_answer_challenge_credentials() function takes a pointer

answer_challenge_credentials_parms to a SIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS

structure. The structure must be initialised in the following way before invoking the
function.

realm

A NULL terminated string containing the name of the administrative zone to which
these credentials apply. This field is mandatory.

user

This field is optional. If this field is not supplied all users in the specified realm will be
removed. If it is, only that user will be removed.

password

This field is not required.

retries

This field is not required.

MAN1762 PUBLIC 76

Return values

On successful completion a value of zero is returned. Otherwise a negative value will
be returned indicating the type of error.

Example usage

To remove all the users from one realm:
SIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS cred;

INIT_ACU_STRUCT(&cred);

cred.realm = "proxies.com";

ACU_ERR err=sip_remove_answer_challenge_credentials(&cred);

To remove one user from a realm:
SIP_ANSWER_CHALLENGE_CREDENTIALS_PARMS cred;

INIT_ACU_STRUCT(&cred);

cred.realm = "proxies.com";

cred.user = "john";

ACU_ERR err=sip_remove_answer_challenge_credentials(&cred);

MAN1762 PUBLIC 77

3.20 sip_disconnect() – send a 3xx response, CANCEL or BYE or response to
BYE
This function is used to disconnect a call, specifically an incoming call with a 3xx
response and to specify alternative contact details, or to provide custom headers in a

CANCEL or BYE or response to BYE message..

Synopsis
ACU_ERR sip_disconnect(SIP_DISCONNECT_PARMS* sip_disconnect_parms);

typedef struct tSIP_DISCONNECT_PARMS

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 ACU_INT sip_code; /* IN */

 ACU_STRING_LIST* redirect_contact_list; /* IN */

 ACU_INT generic_cause; /* IN */

 char* custom_headers; /* IN */

 ACU_RAW_MESSAGE_BODY* message_bodies; /* IN */

} SIP_DISCONNECT_PARMS;

Input parameters

The sip_disconnect() function takes a pointer sip_disconnect_parms to a

SIP_DISCONNECT_PARMS structure. The structure must be initialised in the following way
before invoking the function.

handle

The handle field identifies the call that is to send the SIP message. This field is
mandatory.

sip_code

The sip_code field specifies which 3xx response to use. This field is mandatory.

redirect_contact_list

A linked list of NULL terminated strings containing at least one alternative contact
address. This field is mandatory.

generic_cause

For backwards compatability with call_disconnect(). This field is optional.

custom_headers

A CRLF delimited list of additional SIP headers to be included in the request or
response. This field is optional.

message_bodies

Message bodies to be added to the outgoing message can be specified here. See the
section 4.1 for further details in the setup of this structure. This field is optional.

Return values

On successful completion a value of zero is returned. Otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_DISCONNECT_PARMS disconnect_parms;

INIT_ACU_STRUCT(&disconnect_parms);

disconnect_parms.handle = hndl;

disconnect_parms.sip_code = 302;

disconnect_parms.redirect_contact_list =

(ACU_STRING_LIST*)malloc(sizeof(ACU_STRING_LIST));

MAN1762 PUBLIC 78

disconnect_parms. redirect_contact_info->string =

 (char*)malloc(strlen(ANOTHER_ADDRESS_STR) + 1);

strpcy(disconnect_parms.redirect_contact_info->string, ANOTHER_ADDRESS_STR);

disconnect_parms.redirect_contact_info->next = NULL;

disconnect_parms.custom_headers = “Date: Mon, 10 Jul 2000 03:55:07 GMT\r\n”;

ACU_ERR err=sip_disconnect(&disconnect_parms);

free(disconnect_parms.redirect_contact_info->string);

free(disconnect_parms.redirect_contact_info);

A 302 response will now be sent to the UAC containing a single alternative contact
address as specified by ANOTHER_ADDRESS_STR. An EV_IDLE will then be raised to the
application.

MAN1762 PUBLIC 79

3.21 sip_recall() – call an alternative address
This function is used to try calling alternative addresses as supplied in a 3xx
response. The application will be notified of such responses with an

EV_EXT_DIVERSION.

ACU_ERR sip_recall(SIP_RECALL_PARMS* recall_parms);

typedef struct tSIP_RECALL_PARMS

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 char* destination_addr; /* IN */

} SIP_RECALL_PARMS;

Input parameters

The sip_recall() function takes a pointer recall_parms to a SIP_RECALL_PARMS
structure. The structure must be initialised in the following way before invoking the
function.

handle

The handle field identifies the call that is to send the SIP message. This field is
mandatory.

destination_addr

The destination address of the alternative contact to be called. This field is
mandatory.

Return values

On successful completion a value of zero is returned. Otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_RECALL_PARMS recall_parms;

INIT_ACU_STRUCT(&recall_parms);

recall_parms.handle = hndl;

recall_parms.destination_addr = (char*)malloc(strlen(ALTERNATE_ADDRESS) + 1);

strncpy(recall_parms.destination_addr, ALTERNATE_ADDRESS,

strlen(ALTERNATE_ADDRESS) + 1);

ACU_ERR err=sip_recall(&recall_parms);

free(recall_parms.destination_addr);

An identical INVITE to that sent in the original sip_openout() (apart from the Cseq and
To headers which will have been updated) will now be sent to the alternative address
supplied. The call will then proceed in the normal manner.

MAN1762 PUBLIC 80

3.22 sip_set_tls_private_key_password() – pass a password for a TLS private
key
A TLS enabled SIP, or rather ‘SIPS’, application may wish to either act as a ‘server’ in
the TLS handshake and/or possess its certificate for authentication purposes. The
TLS implementation looks for a private key this certificate. The private key may be
password protected; in this case it is necessary that the password be supplied to the
TLS implementation at the time of initialisation. This routine enables the application to
pass the password down to the TLS implementation. A brief discussion of the usage
of TLS in the Aculab SIP service is given in Appendix D:.

ACU_ERR

sip_set_tls_private_key_password(SIP_SET_TLS_PRIVATE_KEY_PASSWD_PARMS*

sip_set_tls_private_key_password_parms);

typedef struct tSIP_SET_TLS_PRIVATE_KEY_PASSWD_PARMS

{

 ACU_ULONG size;

 char* password; /* IN */

 char* reserved; /* reserved */

 ACU_UINT options;

} ACU_PACK_DIRECTIVE SIP_SET_TLS_PRIVATE_KEY_PASSWD_PARMS;

Input parameters

The set_tls_private_key_password() function takes a pointer to a SIP_

SET_TLS_PRIVATE_KEY_PASSWD PARMS structure. The structure must be initialised in the
following way before invoking the function.

password

A NULL terminated string containing the required password.

reserved

Reserved for future use.

options

Reserved for future use.

Return values

On successful completion a value of zero is returned. ERR_PARM is returned if a
password of zero length is passed by the application.

Example usage
SIP_SET_TLS_PRIVATE_KEY_PASSWD_PARMS parms;

INIT_ACU_STRUCT(&parms);

// read password from a file or data-base

char buffer[512];

parms.password = buffer;

sip_set_tls_private_key_password(&parms);

MAN1762 PUBLIC 81

3.23 sip_load_tls_configuration() – load a new set of TLS certificates
The SIP service must be configured to listen for TLS via the configuration file
sipserv.cfg, however, it may be necessary to change the current set of certificates at
runtime.

The application calls this routine to load a new set of TLS certificates into the stack.
Ongoing calls using existing TLS connections will not be affected until the connection
expires. At that point, any further messaging will use the new certificates.

Synopsis:
ACU_ERR sip_load_tls_configuration(SIP_TLS_CONFIG_PARMS* sip_tls_config)

typedef struct tSIP_TLS_CONFIG_PARMS

{

ACU_ULONG size;

 char* trusted_certificates_file; /* IN */

 char* server_certificates_file; /* IN */

 char* dh512_file; /* IN */

 char* dh1024_file; /* IN */

 char* password; /* IN */

 ACU_INT reserved;

}

SIP_TLS_CONFIG_PARMS;

Input Parameters:
trusted_certificates_file

Mandatory. The value should be an absolute path to a file containing the certificates,
which this application trusts. Typically, these certificates will be the public certificates
of the ‘Certification Authority’ (CA) for the application.

server_certificates_file

Optional. This value should be an absolute path to a file containing the ‘server
certificate’, which this application wishes to use. ‘Server certificate’ is a slight
misnomer in that the contents of the file may be used by the client entity in a
transaction; it is named as such since it is mandatory in a server application.

dh512_file

Optional. The value should be an absolute path to a 512-bit Diffie-Hellmann file.
Please refer to Appendix D for details.

dh1024_file

Optional. The value should be an absolute path to a 1024-bit Diffie-Hellmann file.
Please refer to Appendix D for details.

password

Optional. If the private key contained within the server certificate is password
protected, the password must be supplied here as a NULL terminated string.

reserved

Reserved for future use.

Return values

On successful completion, a value of zero is returned; otherwise a negative value will
be returned indicating the type of error.

MAN1762 PUBLIC 82

Example usage
SIP_TLS_CONFIG_PARMS parms;

INIT_ACU_STRUCT(&parms);

parms.trusted_certificates_file = “\my_certificates_path\new_trusted.pem”;

parms.server_certificates_file = “\my_certificates_path\new_client.pem”;

parms.password = my_password_buffer;

sip_load_tls_configuration(&parms);

The above example will load certificates files new_trusted.pem and new_client.pem
into the SIP service for use with new TLS connections. Ongoing calls on existing TLS
connections will not be affected until those connections expire.

MAN1762 PUBLIC 83

3.24 sip_set_message_notification() - declare an interest in out of dialog
messages
The application calls this routine to configure the SIP service in order that it may be
notified on receipt of particular out of dialog SIP messages. The application may
specify whether or not to be notified on receipt of requests and/or on receipt of
responses. After a request is sent the service may be instructed to either
automatically send a 200 response or to delegate response sending to the
application. The application is notified of the receipt of message or a timeout by a port
event.

Synopsis:
ACU_ERR sip_set_message_notification(SIP_MESSAGE_NOTIFICATION_PARMS*)

typedef struct tSIP_MESSAGE_NOTIFICATION_PARMS

{

 ACU_LONG size;

 ACU_PORT_ID port_id; /* IN */

 ACU_UINT request_notification_mask; /* IN */

 ACU_UINT response_notification_mask; /* IN */

 ACU_UINT enable_response_mask; /* IN */

} SIP_MESSAGE_NOTIFICATION_PARMS;

Input parameters:
port_id

Mandatory. Specifies which Aculab call control port the notification should be sent to.

request_notification_mask

Holds a bitmask of the types of request in which the application would like to receive
notification. The available options are presented in the enum
ACU_SIP_MESSAGE_NOTIFICATION_MASKS.

response_notification_mask

Holds a bitmask of the types of response in which the application would like to
receive notification. The available options are presented in the enum
ACU_SIP_MESSAGE_NOTIFICATION_MASKS.

enable_response_mask

Holds a bitmask of the types of request in which the application would like to send a
response to, as opposed to the service responding automatically. The available

options are presented in the enum ACU_SIP_MESSAGE_NOTIFICATION_MASKS.

MAN1762 PUBLIC 84

Return values

On successful completion, a value of zero is returned; otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_MESSAGE_NOTIFICATION_PARMS parms;

INIT_ACU_STRUCT(&parms);

parms.port_id = g_sip_port;

parms.request_notification_mask =

ACU_SIP_REGISTER_NOTIFICATION | ACU_SIP_OPTIONS NOTIFICATION;

parms.enable_response_mask =

ACU_SIP_REGISTER_NOTIFICATION | ACU_SIP_OPTIONS NOTIFICATION;

sip_set_message_notification(&parms);

The above example results in the application being notified by a port event on the
specified port on receipt of a REGISTER or OPTIONS request. Additionally the
application wishes to make the responses to such requests itself.

MAN1762 PUBLIC 85

3.25 sip_send_out_of_dialog_request() - send an out of dialog request
The application sends an out of dialog request using this function. Such a request has
no associated telephony call and therefore is not identified by an Aculab call handle.
The application is required to supply a message type field and the relevant SIP ‘To’
and ‘From’ headers. After a successful call to this routine, the transaction_id field is
populated with a value, which can be used to identify the subsequent response or
timeout relevant to this transmission.

For some out of dialog messages it may be necessary to configure the request_uri

for correct routing. Other message type will require custom_headers and

message_bodies to be used.

Synopsis:
ACU_ERR sip_send_out_of_dialog_request(SIP_SEND_OUT_OF_DIALOG_REQUEST_PARMS*

parms)

typedef struct tSIP_SEND_OUT_OF_DIALOG_REQUEST_PARMS

{

 ACU_ULONG size; /*IN*/

 unsigned char message_type; /*IN*/

 char* request_uri; /*IN*/

 char* to; /*IN*/

 char* from; /*IN*/

 char* local_address; /*IN*/

 char* custom_headers; /*IN*/

 ACU_RAW_MESSAGE_BODY* message_bodies; /*IN*/

 ACU_POINTER transaction_id; /*OUT*/

} SIP_SEND_OUT_OF_DIALOG_REQUEST_PARMS;

Input parameters:

The function takes a pointer to a SIP_SEND_OUT_OF_DIALOG_REQUEST_PARMS structure.
The structure must be set up in the following way.

message_type

Mandatory. Specifies the SIP message type, e.g. REGISTER, PUBLISH. Refer to the enum

ACU_SIP_MESSAGE_TYPE for the available choices.

request_uri

Optional. Specifies the Request URI to be used for this message. The URI in the to
parameter is used if this is not set. If set, then this must be a fully qualified sip or sips

URI. Note that for certain SIP requests, e.g. REGISTER, this will be different to the to
parameter, and should therefore be specified.

to

Mandatory. Valid right hand side of a SIP To: header. e.g. sip:fred@aculab or
<sip:fred@aculab>;to-param=value

Valid right hand side of a TEL To: header.

e.g. tel:+1-201-555-0123 or <tel:7042;phone-context=example.com>;to-param=value

from

Mandatory. Valid right hand side of a SIP From: header. e.g. sip:fred@aculab or
<sip:fred@aculab>;tag=value

Valid right hand side of a TEL From: header.
e.g. tel:+1-201-555-0123 or <tel:+1-212-555-3141;ext=456>;tag=value

local_address

Reserved for future use. i.e. STUN.

MAN1762 PUBLIC 86

custom_headers

 An optional CRLF delimited list of additional SIP headers that will be included in the
request. If a TEL URI scheme is used in the formation of the To header then a Route
header must be added using custom headers or by the setting of a proxy. See
Appendix E.

message_bodies

An optional list of message bodies that will be included in the request.

Return values
transaction_id

If successful, the transaction_id field is populated by the SIP process with a number
identifying this message. This id is no longer valid once the final response is received
or the SIP transaction times out.

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

If the config option AsyncOOD is set then zero will always be returned. Following this an
attempt will be made to resolve the destination URI before sending the request.
Receiving the event ACU_SIP_EV_REQUEST_FAILED indicates that an error occurred.

Example usage
SIP_SEND_OUT_OF_DIALOG_REQUEST_PARMS parms;

INIT_ACU_STRUCT(&parms);

parms.message_type = ACU_SIP_MESSAGE_NOTIFY;

parms.to = “sip:alice@example.com”;

parms.from = “sip:alice@example.com”;

parms.custom_headers = “Date: Mon, 10 Jul 2000 03:55:07 GMT\r\n”

 “Contact: <sip:alice@vmail.example.com>\r\n”

 “Event: message-summary\r\n”

 “Subscription-State: active\r\n”

 “Content-Type: application/simple-message-summary\r\n”;

char* gIsupRequestBody = "IsupRequestBody";

char* gQsigRequestBody = "QsigRequestBody";

ACU_RAW_MESSAGE_BODY isupBody;

ACU_RAW_MESSAGE_BODY qsigBody;

memset(&isupBody, 0, sizeof(ACU_RAW_MESSAGE_BODY));

isupBody.body_type = "application/isup; version=nxv3";

isupBody.body = gIsupRequestBody;

isupBody.body_length = strlen(gIsupRequestBody);

memset(&qsigBody, 0, sizeof(ACU_RAW_MESSAGE_BODY));

qsigBody.body_type = "application/qsig";

qsigBody.body = gQsigRequestBody;

qsigBody.body_length = strlen(gQsigRequestBody);

parms.message_bodies = &isupBody;

parms.message_bodies->next = &qsigBody;

ACU_POINTER trans_id = 0;

if(ERR_NO_ERROR == sip_send_out_of_dialog_request(&parms))

{

 // cache the transaction identifier for subsequent responses

 trans_id = parms.transaction_id;

}

The above example sends an out of dialog NOTIFY message.

MAN1762 PUBLIC 87

3.26 sip_send_out_of_dialog_response() - send an out of dialog response
The application sends a response to an out of dialog request using this function. The
response must specify the relevant transaction_id received with the request in order
that the stack replies correctly.

Synopsis:
ACU_ERR sip_send_out_of_dialog_response(SIP_SEND_OUT_OF_DIALOG_RESPONSE_PARMS* parms)

typedef struct tSIP_SEND_OUT_OF_DIALOG_RESPONSE_PARMS

{

 ACU_ULONG size;

 ACU_INT sip_code; /*IN*/

 ACU_POINTER transaction_id; /*IN*/

 ACU_LONG port_id; /*IN*/

 char* custom_headers; /*IN*/

 ACU_RAW_MESSAGE_BODY* message_bodies; /*IN*/

} SIP_SEND_OUT_OF_DIALOG_RESPONSE_PARMS;

Input parameters:

The function takes a pointer to a SIP_SEND_OUT_OF_DIALOG_RESPONSE_PARMS structure. The
structure must be set up in the following way.

sip_code

Mandatory. Valid SIP response code, such as 200 for 200OK and so on.

transaction_id

Mandatory. Identifies which request this function call is a response to.

port_id

Reserved for future use.

custom_headers

Optional. A CRLF delimited list of additional SIP headers to be included in the
request. Contact header must be supplied by Registrar implementers.

message_bodies

Optional. A list of message bodies to be included in the request.

Return values

On successful completion, a value of zero is returned; otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_SEND_OUT_OF_DIALOG_RESPONSE_PARMS parms;

INIT_ACU_STRUCT(&parms);

parms.transaction_id = trans_id;

parms.sip_code = 200;

parms.custom_headers = "Contact: <sip:fred@192.168.3.4>\r\n";

sip_send_out_of_dialog_response(&parms);

MAN1762 PUBLIC 88

3.27 sip_read_request() - collect an out of dialog request
This function collects an out of dialog request. The presence of such a request is
signalled by a port event of type ACU_SIP_EV_REQUEST. If required the application

should cache the transaction_id reported by this function for use in a subsequent
response.

Synopsis:
ACU_ERR sip_read_request(SIP_READ_MESSAGE_PARMS* parms)

typedef struct tSIP_READ_MESSAGE_PARMS

{

 ACU_LONG size;

 ACU_SIP_MESSAGE message; /*OUT*/

 ACU_PORT_ID port_id; /*IN*/

 ACU_POINTER transaction_id; /*OUT*/

 ACU_UINT cause; /*OUT*/

} SIP_READ_MESSAGE_PARMS;

Input parameters:

This function takes a pointer to a SIP_READ_MESSAGE_PARMS structure. The structure
should be initialised in the following way.

port_id

Mandatory. Specifies the port_id in which the notification occurred.

Return values
message

Populated with the received request.

transaction_id

Populated with the transaction_id of the request that is to be cached for use in the
response.

cause

Not used.

On successful completion, a value of zero is returned; otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_READ_MESSAGE PARMS parms;

INIT_ACU_STRUCT(&parms);

parms.port_id = g_sip_port;

ACU_POINTER trans_id = 0;

if(ERR_NO_ERROR == sip_read_request(&parms))

{

 trans_id = parms.transaction_id;

 // parse details from message and respond

 // if desired

}

MAN1762 PUBLIC 89

3.28 sip_read_response() - collect an out of dialog response
This function collects an out of dialog response. The presence of such a response is
signalled by a port event of type ACU_SIP_EV_RESPONSE. The transaction_id reported
by this function enables the application to match the response to the earlier request.

Synopsis:
ACU_ERR sip_read_response(SIP_READ_MESSAGE_PARMS* parms)

typedef struct tSIP_READ_MESSAGE_PARMS

{

 ACU_LONG size;

 ACU_SIP_MESSAGE message; /*OUT*/

 ACU_PORT_ID port_id; /*IN*/

 ACU_POINTER transaction_id; /*OUT*/

 ACU_UINT cause; /*OUT*/

} SIP_READ_MESSAGE_PARMS;

Input parameters:

This function takes a pointer to a SIP_READ_MESSAGE_PARMS structure. The structure
should be initialised in the following way.

port_id

Mandatory. Specifies the port_id in which the notification occurred.

Return values
message

Populated with the response received.

transaction_id

Populated to enable identification of the previous request.

cause

Not used.

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

Example usage
SIP_READ_MESSAGE PARMS parms;

INIT_ACU_STRUCT(&parms);

parms.port_id = g_sip_port;

ACU_POINTER trans_id = 0;

if(ERR_NO_ERROR == sip_read_response(&parms))

{

 trans_id = parms.transaction_id;

 // lookup up original request and parse response

}

MAN1762 PUBLIC 90

3.29 sip_read_out_of_dialog_failure () – collect out of dialog failure notification
This function collects out of dialog timeout information, after a request was sent but
the response did not arrive in a timely fashion. This occurrence is signalled by a port

event of type ACU_SIP_EV_REQUEST_FAILED. The transaction_id reported by this
function enables the application to match this to the earlier request. This function

replaces sip_read_timeout(). The event ACU_SIP_EV_REQUEST_TIMEOUT is
deprecated.

Synopsis
ACU_ERR sip_read_out_of_dialog_failure(SIP_READ_MESSAGE_PARMS* parms)

typedef struct tSIP_READ_MESSAGE_PARMS

{

 ACU_LONG size;

 ACU_SIP_MESSAGE message; /*NOT USED*/

 ACU_PORT_ID port_id; /*IN*/

 ACU_POINTER transaction_id; /*OUT*/

 ACU_UINT cause; /*OUT*/

} SIP_READ_MESSAGE_PARMS;

Input parameters

This function takes a pointer to a SIP_READ_MESSAGE_PARMS structure. The structure
should be initialised before invoking the function.

port_id

Mandatory. Specifies the port_id in which the notification occurred.

Return values
message

Not used.

transaction_id

Populated with the transaction_id of the response to enable identification of the
previous request.

cause

This is populated with the reason for the failure of the out of dialog request. These
values are defined in the following enum:

typedef enum acu_sip_ood_causes

{

 ACU_OOD_NO_ERROR = 0,

 ACU_OOD_REQUEST_TIMEOUT = 1,

 ACU_OOD_TCP_CONNECT_FAILED = 2,

 ACU_OOD_SSL_ERROR = 3,

 ACU_OOD_SSL_PEER_CERT_NOT_TRUSTED = 4,

 ACU_OOD_SSL_PEER_CERT_INVALID = 5,

ACU_OOD_UNRESOLVABLE_NAME = 6,

 ACU_OOD_REQUEST_FAILED = 7

} ACU_SIP_OOD_CAUSES;

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

Example usage
SIP_READ_MESSAGE PARMS parms;

INIT_ACU_STRUCT(&parms);

parms.port_id = g_sip_port;

ACU_POINTER trans_id = 0;

MAN1762 PUBLIC 91

if(ERR_NO_ERROR == sip_read_out_of_dialog_failure(&parms))

{

trans_id = parms.transaction_id;

 // lookup up original request and parse response

}

MAN1762 PUBLIC 92

3.30 sip_free_message()- free memory associated with out of dialog notification

The routines sip_read_request() and sip_read_response() dynamically allocate
memory from the heap. Once the information provided by these functions has been
processed, it is necessary to return the resource back to the free store. This role is
achieved by sip_free_message().

Synopsis
ACU_ERR sip_free_message(SIP_READ_MESSAGE_PARMS* parms)

typedef struct tSIP_READ_MESSAGE_PARMS

{

 ACU_LONG size;

 ACU_SIP_MESSAGE message; /*NOT USED*/

 ACU_PORT_ID port_id; /*IN*/

 ACU_POINTER transaction_id; /*OUT*/

 ACU_UINT cause; /*OUT*/} SIP_READ_MESSAGE_PARMS;

Input parameters

This function takes a pointer to a SIP_READ_MESSAGE_PARMS structure, which has

previously been populated by a call to either sip_read_request() or
sip_read_response().

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

Example usage
SIP_READ_MESSAGE PARMS parms;

INIT_ACU_STRUCT(&parms);

parms.port_id = g_sip_port;

ACU_POINTER trans_id = 0;

if(ERR_NO_ERROR == sip_read_request(&parms))

{

 // process details resulting from the sip_read_request call

 sip_free_message(&parms);

}

MAN1762 PUBLIC 93

3.31 sip_sub_subscriber() – SUBSCRIBE to an event package

This routine populates the contents of a SUBSCRIBE request and sends it to a notifier.

Synopsis
ACU_ERR sip_sub_subscriber(SIP_SUB_SUBSCRIBER_PARMS* parms)

typedef struct tSIP_SUB_SUBSCRIBER_PARMS

{

 ACU_ULONG size; /*IN*/

 ACU_CALL_HANDLE handle; /*OUT*/

 ACU_PORT_ID net; /*IN*/

 ACU_EVENT_QUEUE queue_id; /*IN*/

 ACU_ACT app_context_token; /*IN*/

 ACU_INT response_notification; /*IN*/

 ACU_INT enable_response; /*IN*/

 ACU_INT expires; /*IN*/

 ACU_INT allow_multiple_dialogs /*IN*/

 char* event_package_token /*IN*/

 char* event_id_param; /*IN*/

 char* request_uri; /*IN*/

 char* to_header; /*IN*/

 char* from_header; /*IN*/

 char* contact_address; /*IN*/

 char* custom_headers; /*IN*/

 ACU_STRING_LIST* body_types; /*IN*/

 ACU_RAW_MESSAGE_BODY* message_bodies; /*IN*/

} SIP_SUB_SUBSCRIBER_PARMS;

Input parameters

This function takes a pointer to a SIP_SUB_SUBSCRIBER_PARMS structure. The structure
should be initialised before invoking the function.

net

Specifies the ACU_PORT_ID referring to the protocol stack on which the subscription is

to be created, as returned from sip_open_port(). This is a mandatory field.

queue_id

The unique event queue identity as returned by acu_allocate_event_queue() when
creating a queue.

app_context_token

This is a user-defined token value that will be associated with the supplied handle.

response_notification

This field permits an application to specify if it wishes to be notified of responses to
the SUBSCRIBE requests sent by this subscriber. On receipt of a SUBSCRIBE response,

an application that has set this value to 1 will receive an EV_DETAILS event and a

subsequent call to sip_details() will collect the entire message. There is no

equivalent for request notifications as NOTIFY requests are already presented in their
entirety to the application.

enable_response

If this field is set to 1, NOTIFY requests received by this subscriber will not be
automatically responded to by the SIP service. It is then the application’s
responsibility to send the response itself using sip_send_response().

expires

This value, given in seconds, is used to set the duration of the subscription. This is
supplied in the request and the notifier is free to reduce this value according to its

local policy. The actual duration will be contained in the response to the SUBSCRIBE.

The SIP service will re-submit the SUBSCRIBE after half this duration has expired. If this

field is set to 0, the resulting SUBSCRIBE will be sent with a 0 expiration time causing

MAN1762 PUBLIC 94

an immediate fetch of state but no persistent subscription.

allow_multiple_dialogs

Some event packages allow multiple dialogs to be established as a result of the initial

SUBSCRIBE request forking in a proxy. Set this field to 1 if multiple dialogs are allowed.
If this field is set to 0, all received NOTIFY requests that do not match the initial dialog

will be responded to with 481 Subscription does not exist.

event_package_token

This field contains the token defining the event package for which a subscription is
being requested (usually IANA registered). This field corresponds directly to the
contents of the Event header contained in the SUBSCRIBE message. This is a
mandatory field.

event_id_param

Reserved for future use.

request_uri

This optional field specifies the Request-URI to be contained within the SUBSCRIBE

request. If not present, the URI part of the to_header field will be used.

to_header

This field specifies the destination address of the notifier including, if necessary, any
display name. This is a mandatory field.

from_header

This field specifies the originating address of the subscriber including, if necessary,
any display name. If not present, the SIP service will use the local host address in the

form “sip:<host address>” for this field.

contact_address

Used to build a non-default contact header, this is useful if the application is running

on a multi-homed machine and wishes a particular IP address be used in the Contact
header. For a chassis containing only one NIC card, this field may be left blank. It
should be supplied as a null terminated ASCII string in URI address format.

custom_headers

The application may supply additional SIP headers to be added to the outgoing
SUBSCRIBE request. Note if multiple headers are being appended then \r\n should be
used to delimit each header.

For example:

subscriber.custom_headers = “Subject: The meeting”;

subscriber.custom_headers = “Subject: 10acb7899\r\nServer: VoIP server”;

This field must be null terminated.

body_types

This field corresponds directly to additional Accept headers to be placed into the

outgoing SUBSCRIBE request.

For example:

 subscriber.body_types->string = “application/simple-message-summary”;

subscriber.body_types->next = 0;

This will result in an “Accept: application/simple-message-summary” header being

placed into the SUBSCRIBE.

message_bodies

Message bodies to be added to the outgoing message can be specified here. See
section 4 for further details of the setup of this structure ACU_RAW_MESSAGE_BODY.

For example:

MAN1762 PUBLIC 95

ACU_RAW_MESSAGE_BODY arm;

memset(&arm, 0, sizeof(ACU_RAW_MESSAGE_BODY));

// setup the message body structure – see sip_send_request() for further

details

subscriber.message_bodies = &arm;

Return values
handle

If successful, this will contain a unique (non zero) call identifier, which is used in all
successive call related operations on the driver.

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

If the config option AsyncSubscribe is set then zero will always be returned. Following
this an attempt will be made to resolve the destination URI before sending the
request. Receiving the event EV_SIP_SUBSCRIPTION_CANCELLED indicates that an error
occurred.

Example usage
SIP_SUB_SUBSCRIBER_PARMS subscriber;

INIT_ACU_STRUCT(&subscriber);

subscriber.net = sipPort;

// addressing

subscriber.to_header="\”John\” <sip:john@gw.com>";

subscriber.from_header="\”Bob\” <sip:bob@voip-company.com>";

// Event package identifier must be present

subscriber.event_package_token=”DummyEventPackage”;

ACU_ERR rc = sip_sub_subscriber(&subscriber);

MAN1762 PUBLIC 96

3.32 sip_sub_notifier() – wait for SUBSCRIBE requests to a specific event
package

This routine allows the application to wait for an incoming SUBSCRIBE request for a
specific event package.

Synopsis
ACU_ERR sip_sub_notifier(SIP_SUB_NOTIFIER_PARMS* parms);

typedef struct sip_sub_notifier_parms

{

 ACU_ULONG size; /*IN*/

 ACU_CALL_HANDLE handle; /*OUT*/

 ACU_PORT_ID net; /*IN*/

 ACU_EVENT_QUEUE queue_id; /*IN*/

 ACU_ACT app_context_token; /*IN*/

 ACU_INT request_notification; /*IN*/

 ACU_INT response_notification; /*IN*/

 ACU_INT enable_response; /*IN*/

 char* event_package_token /*IN*/

} SIP_SUB_NOTIFIER_PARMS;

Input parameters

This function takes a pointer to a SIP_SUB_NOTIFIER_PARMS structure. The structure
should be initialised before invoking the function.

net

Specifies the ACU_PORT_ID referring to the protocol stack on which the subscription is

to be created, as returned from sip_open_port(). This is a mandatory field.

queue_id

The unique event queue identity as returned by acu_allocate_event_queue() when
creating a queue.

app_context_token

This is a user-defined token value which will be associated with the handle.

request_notification

By default, notifiers are only presented with the raw SUBSCRIBE request that creates
the initial subscription. If this field is set to 1 the application will be presented with all
subsequent SUBSCRIBE requests for this subscription.

response_notification

This field permits an application to specify if it wishes to be notified of responses to
the NOTIFY requests sent by this notifier. On receipt of a NOTIFY response, an

application that has set this value to 1 will receive an EV_DETAILS event and a

subsequent call to sip_details() will collect the entire message.

enable_response

If this field is set to 1, SUBSCRIBE requests received by this subscriber subsequent to

the initial SUBSCRIBE will not be automatically responded to by the SIP service. It is
then the application’s responsibility to send the response itself using
sip_send_response().

MAN1762 PUBLIC 97

event_package_token

This field contains the token defining the event package for which this notifier is
prepared to accept SUBSCRIBE requests (usually IANA registered). This is a mandatory
field.

Return values
handle

If successful, this will contain a unique (non zero) call identifier, which is used in all
successive call related operations on the driver.

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_SUB_NOTIFIER_PARMS notifier;

INIT_ACU_STRUCT(¬ifier);

notifier.net = sipPort;

// Event package identifier must be present

subscriber.event_package_token=”DummyEventPackage”;

ACU_ERR rc = sip_sub_notifier(¬ifier);

MAN1762 PUBLIC 98

3.33 sip_sub_accept() – accept or acknowledge a SUBSCRIBE request

This routine allows an application to accept or acknowledge an incoming SUBSCRIBE
request.

Synopsis
ACU_ERR sip_sub_accept(SIP_SUB_ACCEPT_PARMS* parms);

typedef struct sip_sub_accept_parms

{

 ACU_ULONG size; /*IN*/

 ACU_CALL_HANDLE handle; /*IN*/

 ACU_INT expires; /*IN*/

 char* contact_address; /*IN*/

 char* custom_headers; /*IN*/

 char* event_id_param; /*IN*/

 ACU_RAW_MESSAGE_BODY* message_bodies; /*IN*/

 char acknowledge; /*IN*/

} SIP_SUB_ACCEPT_PARMS;

Input parameters

This function takes a pointer to a SIP_SUB_ACCEPT_PARMS structure. The structure
should be initialised before invoking the function.

handle

The handle field identifies the subscription which is to be accepted. This field is
mandatory.

expires

This field specifies the duration in seconds for which the subscription is to be active.

ERR_PARM will be returned if this is greater than the expires value contained in the

initial SUBSCRIBE request which can be ascertained from sip_details() after receiving

an EV_SIP_SUBSCRIPTION_REQUEST.

contact_address

Used to build a non-default contact header, this is useful if the application is running
on a multi-homed machine and wishes a particular IP address be used in the contact.
For a chassis containing only one NIC card, this field may be left blank. It must be a
null terminated ASCII string in URI address format.

custom_headers

The application may supply additional SIP headers to be added to the outgoing
SUBSCRIBE request. Note if multiple headers are being appended then \r\n should be
used to delimit each header.

For example:

accept.custom_headers = “Subject: The meeting”;

accept.custom_headers = “Subject: 10acb7899\r\nServer: VoIP server”;

This field must be null terminated.

event_id_param

Reserved for future use.

MAN1762 PUBLIC 99

message_bodies

Message bodies to be added to the outgoing message can be specified here. See
section 4.1 for further details of the setup of this structure ACU_RAW_MESSAGE_BODY.

For example:

ACU_RAW_MESSAGE_BODY arm;

memset(&arm, 0, sizeof(ACU_RAW_MESSAGE_BODY));

// setup the message body structure – see sip_send_request() for further

details

accept.message_bodies = &arm;

acknowledge

This field specifies whether the subscription is to be immediately accepted (with a 200

OK response) or acknowledged (with a 202 response). If set, a 202 Accepted response
will be sent.

Return values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_SUB_ACCEPT_PARMS accept;

INIT_ACU_STRUCT(&accept);

accept.handle = handle;

ACU_ERR rc = sip_sub_accept&accept);

MAN1762 PUBLIC 100

3.34 sip_sub_notify() – NOTIFY a subscriber of a state change in an event
package
This routine allows an application to notify a subscriber of a state change in the event
package being implemented. There are certain times when this must be called in
order to conform to RFC 3265. These are the following:

 Immediately after the initial SUBSCRIBE has been accepted or acknowledged.
The application will be notified of this requirement through an
EV_SIP_SUBSCRIBED event.

 Immediately after all subsequent SUBSCRIBE requests have been received. The
application will be notified of this requirement through an

EV_SIP_SUBSCRIPTION_REFRESH event.

 Immediately after a final SUBSCRIBE that contains an Expires header whose

value is 0 is received. A SUBSCRIBE of this type cancels the subscription. The
application will be notified of this requirement through an

EV_SIP_SUBCRIPTION_CANCELLED event.

Synopsis
ACU_ERR sip_sub_notify(SIP_SUB_NOTIFY_PARMS* parms);

typedef struct sip_sub_notify_parms

{

 ACU_ULONG size; /*IN*/

 ACU_CALL_HANDLE handle; /*IN*/

 char* custom_headers; /*IN*/

 ACU_RAW_MESSAGE_BODY* message_bodies; /*IN*/

 char pending; /*IN*/

char* event_id_param; /*IN*/

} SIP_SUB_NOTIFY_PARMS;

Input parameters

This function takes a pointer to a SIP_SUB_NOTIFY_PARMS structure. The structure
should be initialised before invoking the function.

handle

The handle field identifies the subscription that is to send the NOTIFY message. This
field is mandatory.

custom_headers

The application may supply additional SIP headers to be added to the outgoing
NOTIFY request. Note if multiple headers are being appended then \r\n should be
used to delimit each header.

For example:

notify.custom_headers = “Subject: The meeting”;

notify.custom_headers = “Subject: 10acb7899\r\nServer: VoIP server”;

This field must be null terminated.

message_bodies

Message bodies to be added to the outgoing message can be specified here. See

MAN1762 PUBLIC 101

section 4.1 for further details of the setup of this structure ACU_RAW_MESSAGE_BODY.

For example:

ACU_RAW_MESSAGE_BODY arm;

memset(&arm, 0, sizeof(ACU_RAW_MESSAGE_BODY));

// setup the message body structure – see sip_send_request() for further

details

notify.message_bodies = &arm;

pending

This field may be used to transition a subscription from “pending” to “active” if and

only if the previous call to sip_sub_accept() had the acknowledge field set to 1.

ERR_PARM will be returned if pending is set when the subscription is already active.

event_id_param

Reserved for future use.

Return values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_SUB_NOTIFY_PARMS notify;

INIT_ACU_STRUCT(¬ify);

notify.handle = handle;

// This is not a mandatory field but it is highly likely to be required by

// the specific event package being implemented.

ACU_RAW_MESSAGE_BODY arm;

memset(&arm, 0, sizeof(ACU_RAW_MESSAGE_BODY));

// setup the message body structure – see sip_send_request() for

// further details

notify.message_bodies = &arm;

ACU_ERR rc = sip_sub_notify(¬ify);

MAN1762 PUBLIC 102

3.35 sip_sub_cancel() – cancel an existing subscription
This routine allows an application to cancel an existing subscription. This results in
different behaviour depending on whether the handle parameter references a notifier
or a subscriber:

 For a notifier, a NOTIFY request will be sent containing a Subscription-State

header whose value is “terminated”. An EV_SIP_SUBSCRIPTION_CANCELLED will
be raised on receipt of the response.

 For a subscriber, one or more SUBSCRIBE requests will be sent containing an

Expires header whose value is 0. EV_SIP_SUBSCRIPTION_CANCELLED will not be

raised until the notifier at the far end sends a final NOTIFY to terminate the
subscription.

Synopsis
ACU_ERR sip_sub_cancel(SIP_SUB_CANCEL_PARMS* parms);

typedef struct sip_sub_cancel_parms

{

 ACU_ULONG size; /*IN*/

 ACU_CALL_HANDLE handle; /*IN*/

 ACU_INT dialog_id; /*IN*/

 ACU_INT response_code; /*IN*/

 char* reason; /*IN*/

 char* custom_headers; /*IN*/

 char* event_id_param; /*IN*/

 ACU_RAW_MESSAGE_BODY* message_bodies; /*IN*/

} SIP_SUB_CANCEL_PARMS;

Input parameters

This function takes a pointer to a SIP_SUB_CANCEL_PARMS structure. The structure
should be initialised before invoking the function.

handle

The handle field identifies the subscription that is to be cancelled. This field is
mandatory.

dialog_id

SUBSCRIBE requests may result in multiple notifiers creating a dialog within the
subscription if the request is forked (e.g. by a proxy). This field identifies which dialog
is to be cancelled. If it is set to 0, all dialogs associated with this subscription will be

cancelled. See ACU_SUBSCRIPTION_INFO for more details on the usage of this field.

This field has no meaning for notifiers as they are only ever associated with a single
dialog.

response_code

This field only applies to notifiers who wish to reject an initial SUBSCRIBE request at

EV_SIP_SUBSCRIPTION_REQUEST. For example, the application may wish to authenticate
the request by sending a 401 response with the appropriate custom_headers. By

default, 487 Transaction Cancelled will be used.

reason

NOTIFY requests always contain a Subscription-State header. When cancelling a

MAN1762 PUBLIC 103

subscription, its value will be terminated and, by default, this header will contain a

reason=noresource parameter. Set this field if it is required to change the default

reason from noresource.

This field has no meaning for subscribers.

custom_headers

The application may supply additional SIP headers to be added to the outgoing
SUBSCRIBE request. Note if multiple headers are being appended then \r\n should be
used to delimit each header.

For example:

cancel.custom_headers = “Subject: The meeting”;

cancel.custom_headers = “Subject: 10acb7899\r\nServer: VoIP server”;

This field must be null terminated.

event_id_param

Reserved for future use.

message_bodies

Message bodies to be added to the outgoing message can be specified here. See

section 4.1 for further details of the setup of this structure ACU_RAW_MESSAGE_BODY.

For example:

ACU_RAW_MESSAGE_BODY arm;

memset(&arm, 0, sizeof(ACU_RAW_MESSAGE_BODY));

// setup the message body structure – see sip_send_request() for further

details

cancel.message_bodies = &arm;

Return values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_SUB_CANCEL_PARMS cancel;

INIT_ACU_STRUCT(&cancel);

cancel.handle = handle;

// This is not a mandatory field but, for notifiers, it is highly likely

// to be required by the specific event package being implemented to

// indicate the final state of the subscription.

ACU_RAW_MESSAGE_BODY arm;

memset(&arm, 0, sizeof(ACU_RAW_MESSAGE_BODY));

// setup the message body structure – see sip_send_request() for

// further details

cancel.message_bodies = &arm;

ACU_ERR rc = sip_sub_cancel(&cancel);

MAN1762 PUBLIC 104

3.36 sip_sub_release() – release the internal resources associated with a
subscription

This routine is similar to call_release() in that it is used to release the internal
resources associated with a subscription. However, its usage is distinctly different as
subscribers may have multiple dialogs associated with them. As such, this function
may not be called until all dialogs have been cancelled. See ACU_SUBSCRIPTION_INFO
for more details on when to call this function.

Synopsis
ACU_ERR sip_sub_release(SIP_SUB_RELEASE_PARMS* parms);

typedef struct sip_sub_release_parms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

} SIP_SUB_RELEASE_PARMS;

Input parameters

This function takes a pointer to a SIP_SUB_RELEASE_PARMS structure. The structure
should be initialised before invoking the function.

handle

The handle field identifies the subscription that is to be released. This field is
mandatory.

Return values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_SUB_RELEASE_PARMS release;

INIT_ACU_STRUCT(&release);

release.handle = handle;

ACU_ERR rc = sip_sub_release(&release);

MAN1762 PUBLIC 105

3.37 sip_sub_fetch() – request an immediate fetch of subscription state
This routine allows a subscriber to request an immediate fetch of subscription state
on one or all of its associated dialogs. It corresponds to a SUBSCRIBE request being

sent with an Expires header that contains the remaining subscription duration.

Synopsis
ACU_ERR sip_sub_fetch(SIP_SUB_FETCH_PARMS* sip_sub_fetch_parms);

typedef struct sip_sub_fetch_parms

{

 ACU_ULONG size; /*IN*/

 ACU_CALL_HANDLE handle; /*IN*/

 ACU_INT dialog_id; /*IN*/

 char* custom_headers; /*IN*/

 char* event_id_param; /*IN*/

 ACU_RAW_MESSAGE_BODY* message_bodies; /*IN*/

} SIP_SUB_FETCH_PARMS;

Input parameters

This function takes a pointer to a SIP_SUB_FETCH_PARMS structure. The structure should
be initialised before invoking the function.

handle

The handle field identifies the subscriber that is to request the fetch of state. This field
is mandatory.

dialog_id

This field specifies which dialog is requesting the fetch of state. A SUBSCRIBE will be
sent on all associated dialogs if this field is left blank.

custom_headers

The application may supply additional SIP headers to be added to the outgoing
SUBSCRIBE request. Note if multiple headers are being appended then \r\n should be
used to delimit each header.

For example:

fetch.custom_headers = “Subject: The meeting”;

fetch.custom_headers = “Subject: 10acb7899\r\nServer: VoIP server”;

This field must be null terminated.

event_id_param

Reserved for future use.

message_bodies

Message bodies to be added to the outgoing message can be specified here. See

section 4.1 for further details of the setup of this structure ACU_RAW_MESSAGE_BODY.

For example:

ACU_RAW_MESSAGE_BODY arm;

memset(&arm, 0, sizeof(ACU_RAW_MESSAGE_BODY));

// setup the message body structure – see sip_send_request() for further

details

MAN1762 PUBLIC 106

fetch.message_bodies = &arm;

Return values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_SUB_FETCH_PARMS fetch;

INIT_ACU_STRUCT(&fetch);

fetch.handle = handle;

fetch.dialog_id = 3;

ACU_ERR rc = sip_sub_fetch(&fetch);

MAN1762 PUBLIC 107

3.38 sip_set_global_tos() – Change the ToS (Type of Service)
This routine allows an application to alter the DSCP and ECN values.

This routine is only applicable to Linux. For Windows please refer to Appendix F.

Synopsis
ACU_ERR sip_set_global_tos(SIP_SET_GLOBAL_TOS_PARMS* parms);

typedef struct tSIP_SET_GLOBAL_TOS_PARMS

{

 ACU_ULONG size; /*IN*/

ACU_UCHAR tos_value; /*IN*/

} SIP_SET_GLOBAL_TOS_PARMS;

Input parameters

This function takes a pointer to a SIP_SET_GLOBAL_TOS_PARMS structure. The structure
should be initialised before invoking the function.

tos_value

The tos_value field is an 8-bit value used to allow the network equipment to prioritise
certain traffic at times of high load. The 6 MSB correspond to the DSCP
(Differentiated Services Codepoint) value which determines the flow path of datagram
packets. The 2 LSB correspond to the ECN (Explicit Congestion Notification) value
which is usually assigned by the routers. When choosing a DSCP value the ECN
value is usually set to “0”

An example for SIP signalling messages is a DSCP code AF31. This requires the
ToS field to be set to 0x68 (hex) or 104 (decimal).

Return values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Example usage
SIP_SET_GLOBAL_TOS_PARMS global_tos;

INIT_ACU_STRUCT(&global_tos);

global_tos.tos_value = 0x68;

ACU_ERR rc = sip_set_global_tos(&global_tos);

MAN1762 PUBLIC 108

4 SIP specific structures
The following are helper structures that are used to assist composition of the top-level
structures passed to the extended SIP API functions.

4.1 ACU_RAW_MESSAGE_BODY
This structure permits an application to specify a message body to be appended to an
outbound message. The usage is primarily targeted at the relay of isup and qsig (see
RFC 3204 for further information) data, though in theory any custom message could
be sent. The application, however, is advised not to use this structure to send an SDP
body, as this API has specialised structures (ACU_MEDIA_OFFER_ANSWER) for the transit
of SDP.

NOTE

An instance of this structure may be used as an element in a linked-list, enabling
the application to specify multiple messages in a single function call.

typedef struct acu_raw_message_body

{

 char* body_type;

 unsigned char* body;

 ACU_INT body_length;

 char* additional_body_headers;

 struct acu_raw_message_body* next;

} ACU_RAW_MESSAGE_BODY;

body_type

This is a NULL-terminated ASCII string specifying the message body type. This should

be in the format expected by a SIP ‘Content-Type’ header; ‘Content-Type’ header
parameters may also be supplied in this string.

For example:

arm.body_type = ”application/isup”;

arm.body_type = “application/QSIG; version=iso”;

This string will be incorporated into the SIP ‘Content-Type’ header, in the main SIP
message if the resultant message is single-part or in the message body if the
resultant message is multi-part.

body

This is a pointer to the message body to be sent. This is not NULL-terminated.

body_length

The length of the message pointed to by body.

additional_body_headers

A NULL-terminated string, specifying any message body additional headers. Currently
only ‘Content-Disposition’ is supported.

For example:

arm.additional_body_headers = “Content-Disposition: signal;

handling=optional”;

(Beware of line-break in the above.)

next

If more than one message body is being specified here then this should point to the

MAN1762 PUBLIC 109

next message. Otherwise set this to 0 to terminate the ‘list’.

For example:

// setup the first message body

ACU_RAW_MESSAGE_BODY message_body;

memset(&message_body, 0, sizeof(message_body));

message_body.body_type = "application/isup";

unsigned char BIN_BODY[] = {

0x81, 0x82, 0x1c, 0x05, 0xe4, 0x87, 0xe7, 0x86,

0xc8, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0a, 0x00,

0x02, 0x07, 0x05, 0x04, 0x00, 0x21, 0x43, 0x65,

0x0a, 0x04, 0x84, 0x00, 0x32, 0x04 , 0x00};

message_body.body = (unsigned char*)BIN_BODY;

message_body.body_length = sizeof(BIN_BODY);

// setup a second message body

ACU_RAW_MESSAGE_BODY message_body2;

memset(&message_body2, 0, sizeof(message_body2));

message_body2.body_type = "custom-defined/message-type";

// setup other fields necessarily

// hook up the message bodies into a simple list

message_body.next = &message_body2;

MAN1762 PUBLIC 110

4.2 ACU_IP_ADDRESS
This structure is used to offer flexibility regarding the setup of IP addresses.

typedef struct acu_ip_address

{

 unsigned char address_type;

 char* address;

} ACU_IP_ADDRESS;

address_type

This field is used to influence any IP version dependent treatment of this address by
the stack. Most of the time this is transparent and an application may leave this field
zeroed.

address_type may be chosen from the following enumeration:

typedef enum acu_ip_type

{

 ACU_IP_DEFAULT=0,

 ACU_IPv4=1,

 ACU_IPv6=2,

} ACU_IP_TYPE;

address

This is a NULL-terminated string containing the IP address either in dotted quad, Ipv6
or fully qualified domain name format.

For example:

ACU_IP_ADDRESS ia1;

memset(&ia1, 0, sizeof(ACU_IP_ADDRESS));

ia1.address = “10.202.161.89”;

And an IPv6 example:

ACU_IP_ADDRESS ia2;

memset(&ia2, 0, sizeof(ACU_IP_ADDRESS));

ia2.address_type = ACU_IPv6;

ia2.address = “2001:0DB8::1428:57ab”;

And a FQDN example:

ACU_IP_ADDRESS ia3;

memset(&ia3, 0, sizeof(ACU_IP_ADDRESS));

ia3.address = “voipcard.domain.com”;

MAN1762 PUBLIC 111

4.3 ACU_PAYLOAD
This structure is used in order to specify a payload for the transfer of information in a
media session. Examples of payload would include g.729 as an audio payload or
T.38 as a fax/image payload. It is also possible to specify dynamic/bespoke payload
definitions within this structure. Since SDP is the mechanism used by SIP endpoints
to negotiate media settings, this structure is loosely based on the representation of a
payload within SDP.

ACU_PAYLOAD structures represent different media types depending on which element
of the payload union is used. These structures are always elements of the structure
ACU_MEDIA_DESCRIPTION, which has a media_type element. It is important to ensure
that the payload type described within a payload structure corresponds to the
media_type of the containing ACU_MEDIA_DESCRIPTION. For example, for a linked list of

audio_video payloads the containing ACU_MEDIA_DESCRIPTION structure should have

media_type set as ACU_AUDIO or ACU_VIDEO.

typedef struct acu_payload

{

 union

 {

 struct

 {

 char* rtp_payload_name;

 ACU_INT rtp_payload_number;

 ACU_INT packet_length;

 ACU_INT clock_rate;

 char* payload_specific_options;

 } audio_video;

 struct

 {

 char* image_payload_name;

 } image;

 struct

 {

 ACU_INT dummy;

 } control;

 struct

 {

 ACU_INT dummy;

 } application;

 } payload;

 struct acu_payload* next;

} ACU_PAYLOAD;

NOTE

Additions to the ACU_PAYLOAD structure may be made in the future.

payload

The majority of this structure is within a union payload of structures, each internal
structure describing a specific payload type. Here is a description of the currently
implemented payload types available within this API.

The diversity of information configurable by SDP presents difficulties in modelling
payload types within fixed size “C” style structures. The only payload type for which it
is advantageous to employ a simple “C” style structure representing a subset of the
payload parameters is the audio/video type. To configure non-audio/types the
application writer is offered a more flexible scheme, that of
“miscellaneous_attributes”. These permit configuration of various, unlimited, media
description associated “a=” SDP parameters; T.38 fax and MRCPv2 payloads are

MAN1762 PUBLIC 112

represented by the Aculab API accordingly. Refer to the
ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE and ACU_MEDIA_DESCRIPTION for
further details.

audio_video

Populate this element of the union in order to configure an audio/video payload e.g.

g729 or telephone-event. A payload of this type would be a member of an m=audio or

m=video stream in SDP. The definition contains the following elements:

rtp_payload_name

A NULL-terminated string, holding the name for the payload being described. This may

be a string as referred to by RFC1890 e.g. PCMU, a well-known dynamic payload name
e.g. ‘telephone-event’ or bespoke dynamic payload name e.g. ‘VoIP-codec-123’. If
this field is left as NULL, then PCMU will be assumed.

The API header file contains commonly used RTP payload names for reference:

For example:

#define ACU_PCMU "PCMU"

#define ACU_PCMA "PCMA"

#define ACU_G723 "G723"

#define ACU_G729 "G729"

#define ACU_TELEPHONE_EVENT "telephone-event"

// the RTP payload used for DTMF

#define ACU_DTMF_RTP_PAYLOAD ACU_TELEPHONE_EVENT

 Note that if the user wishes to transmit a payload name with additional encoding
parameters then the entire string including the clock rate may be presented as the
rtp_payload_name. In the following example the clock rate defined in the string would
overwrite any clock_rate defined separately. The additional encoding parameters are
presented as a multiple channel option ‘/2’

For example:

“opus/8000/2” would produce an SDP offer containing

“a=rtpmap:100 opus/8000/2”

When sip_details() is called with PayloadParams set in the sipserv.cfg (See 2.9
Miscellaneous Global Settings) the entire payload string is returned in
rtp_payload_name if more than one ‘/’ occurs in the string thus for the example
above.

For example:

“a=rtpmap:100 opus/8000/2”

rtp_payload_name = “opus/8000/2”

but

“a=rtpmap:8 PCMA/8000”

rtp_payload_name = “PCMA”

rtp_payload_number

A number, used in the RTP header to describe the payload type. This number may be
chosen from RFC1890 or may be determined as required by a bespoke application.

The API header file contains commonly used RTP payload numbers for reference:

#define ACU_PCMU_PAYLOAD_NUMBER 0

#define ACU_PCMA_PAYLOAD_NUMBER 8

#define ACU_G723_PAYLOAD_NUMBER 4

#define ACU_G729_PAYLOAD_NUMBER 18

(Note that the ‘telephone-event’ payload type is dynamically assigned and hence a
number is not suggested in Aculab’s API.)

MAN1762 PUBLIC 113

packet_length

The field has been included for future development when it will be possible to specify
(within SDP) the packetisation of a payload in a payload specific way. Currently not
supported by SDP.

clock_rate

This field specifies the clock rate used in the codec. If left as 0 the sipserv assumes
the rate to be 8000Hz and writes this value into the SDP.

The API supplies a suitable constant for this value should applications wish to be
explicit regarding this field.

enum ePAYLOAD_DEFINITIONS

{

 ACU_EIGHT_K = 8000,

};

payload_specific_options

Certain audio/video codecs have options that are specific to that codec. SDP uses

the fmtp attribute to describe this. This field is a NULL-terminated string, which can
be used to specify that codec’s specific options.

For example:

 “0-15,66,70” for telephone-event, this advertises the supported DTMF events.
See RFC 2833 for more details on telephone-event.

“annexb=no” for g729, this advertises a lack of support for Annex B.

image

Populate this element of the union in order to configure an image or FAX payload e.g.

T38 over UDP. A payload of this type would be a member of an m=image stream in
SDP. It contains the following the elements:

image_payload_name

This is a NULL-terminated string which specifies the name of the image payload.

For example:

#define ACU_T38 "t38"

control

This element of the union has been provided for future development. It is envisaged

that the payload types of m=control streams will be described here, e.g. MRCP,
‘whiteboard’ etc.

application

This element of the union has been provided for future development.

The ACU_PAYLOAD structure may be an element in a list. This is enabled by one

element being a pointer to another ACU_PAYLOAD, as follows:

MAN1762 PUBLIC 114

next

This is a pointer to the next element in a list of ACU_PAYLOAD structures, or 0 if this
structure is the last/only element in the list.

For example, configuring a g729 and g711 codec and linking the definitions together

ACU_PAYLOAD payload1;

memset(&payload1, 0, sizeof(ACU_PAYLOAD));

ACU_PAYLOAD payload2;

memset(&payload2, 0, sizeof(ACU_PAYLOAD));

payload1.payload.audio_video.rtp_payload_name="g729";

payload1.payload.audio_video.rtp_payload_number=18;

payload1.payload.audio_video.clock_rate=8000;

payload1.payload.audio_video.payload_specific_options="annexb=no";

payload1.next = &payload2; // link payloads

payload2.payload.audio_video.rtp_payload_name="PMCU";

payload2.payload.audio_video.clock_rate=8000;

For example, configuring a t38 over UDP payload

ACU_PAYLOAD payloadi;

memset(&payloadi, 0, sizeof(ACU_PAYLOAD));

payloadi.payload.image.image_payload_name="t38";

// T.38 attributes configured using ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE

// see below

MAN1762 PUBLIC 115

4.4 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE
All of the commonly used media attributes and properties of SDP are represented by
the other structures described by this document. However, additions are frequently
made to SDP to cater for new requirements, for example, those facilitating NAT
traversal, MRCPv2, and T.38 configurations, specifications of which may be achieved
using this function. Session level attributes may also be provided using this structure,
when supplied in a media description with the type ACU_SESSION.

A list of attribute strings is included in the API to store any additional miscellaneous
SDP media elements in a generic fashion. Media attributes, which are not conveyed
by a specific element in this API, may be given here.

typedef struct acu_miscellaneous_media_attribute

{

 char* attribute;

 struct acu_miscellaneous_media_attribute* next;

} ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE;

attribute

This is a NULL-terminated string where the attribute is specified. Note that the a=
specifier of the SDP line is not included, for example the silence suppression line
a=silenceSupp:on - - - - would be represented as:

 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE media_attrib;

 memset(&media_attrib, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 media_attrib.attribute = “silenceSupp:on - - - -”;

next

This is a pointer to the next ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE.

For example, set this endpoint as being active in an asymmetric exchange:

 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE media_attrib;

 memset(&media_attrib, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 media_attrib.attribute = “direction:active”;

For example, set this endpoint as being active in an asymmetric exchange and
indicating silence suppression (as specified in RFC 3108).

 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE media_attrib, media_attrib2;

 memset(&media_attrib, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 memset(&media_attrib2, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 media_attrib.attribute = “direction:active”;

 media_attrib.next = &media_attrib2;

 media_attrib2.attribute = “silenceSupp:on - - - -”;

MAN1762 PUBLIC 116

4.5 ACU_MEDIA_DESCRIPTION
This structure is used to represent a media description. This may be offered
(proposed) by one party in a SIP session or may comprise an answer as provided by
the alternate party. The structure attempts to encapsulate the information conveyed in
an SDP body by the m= line and associated (optional) a= and c= lines. Facilitated by

the next field it is quite possible for an instance of this structure to be an element in a
list of these structures.

typedef struct acu_media_description

{

 ACU_IP_ADDRESS connection_address;

 ACU_USHORT port;

 unsigned char media_direction;

 unsigned char media_type;

 char* transport;

 ACU_INT packet_length;

 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE* miscellaneous_attributes;

 ACU_PAYLOAD* payloads;

 struct acu_media_description* next;

} ACU_MEDIA_DESCRIPTION;

connection_address

The ‘media description specific’ connection address is placed here. It is the address
in which the endpoint wishes to have media sent. It is optional to have the field here,
for most applications; it is sufficient to supply the connection address from within the
acu_media_offer_answer structure instead. If unused, the field should be left memset

to zero. If this field is used then a c= line is written to the media description in the

SDP body. If used for IPv4 the address_type should be set to ACU_IPv4. For IPv6 the

field should be set to ACU_IPv6. When creating an answer the ‘media description

specific’ address_type should match the respective address_type of the offer

otherwise the SDP will be considered invalid (i.e. don’t mix c= lines with IP4 and IP6).

port

This field is the port number in which the endpoint would like to receive the media at.
It should be a valid port number unless the endpoint wishes to delete/decline a
stream in which case it should be 0. If the application is using c=”0.0.0.0” as the
connection address then the port must be specified as any non-zero number.

media_direction

This field represents the direction/activity attribute, which may be present in an SDP
definition. It appears in the SDP body in the form of a=sendonly, a=inactive. Please
refer to RFC 2327 for further information on these attributes. The API header file
holds an enumeration that represents these attributes:

typedef enum acu_media_direction

{

 ACU_SEND_RECV,

 ACU_SEND_ONLY,

 ACU_RECV_ONLY,

 ACU_INACTIVE

} ACU_MEDIA_DIRECTION;

NOTE

The default setting in both SDP and this API is sendrecv.

MAN1762 PUBLIC 117

media_type

This field specifies the type of media session in which this SIP call is trying to setup.
This choice is reflected in the SDP by the first string in the m= line, e.g. m=audio. The
enumeration below is present within the API header and lists the range of choices for
this field. The ACU_SESSION type is provided as a means to set session level attributes

for the SDP body. An ACU_SESSION media description may contain a connection

address as well as miscellaneous attributes. The ACU_SESSION media description must
be provided as the first media description in the list. If the application wishes to
retrieve session level information then the ACU_USE_MEDIA_DESCRIPTION_FOR_SESSION

option must be provided in the call to sip_openin() or sip_openout().

typedef enum acu_media_types

{

 ACU_AUDIO,

 ACU_VIDEO,

 ACU_IMAGE,

 ACU_CONTROL,

 ACU_TEXT,

 ACU_APPLICATION,

 ACU_UNKNOWN_MEDIA_TYPE,

 ACU_SESSION

} ACU_MEDIA_TYPES;

NOTE

Only audio, video, image, text, session and application types are currently
supported.

transport

A NULL-terminated string, specifying the transport mechanism employed by the
media description negotiated. When not supplied by the developer the SIP service

will choose a sensible default, for example, for audio/video media types: RTP/AVP, for

image (fax) media types: udptl.

For example, configuring transport for audio media types such as g711, g729

ACU_MEDIA_DESCRIPTION md;

memset(&md, 0, sizeof(ACU_MEDIA_DESCRIPTION));

md.transport = 0;

// SIP service defaults this to “RTP/AVP”

For example, configuring transport for an MRCPv2 media description

ACU_MEDIA_DESCRIPTION md;

memset(&md, 0, sizeof(ACU_MEDIA_DESCRIPTION));

md.transport = “TCP/MRCPv2”;

packet_length

This field enables a non-default packetisation interval to be specified for all the
payloads present in the media description, as a number in milliseconds. This maps to

the a=ptime: attribute in the SDP body. In order that default packet lengths are used,
this field should be zero.

miscellaneous_attributes

This field specifies a list of miscellaneous media attributes, which do not have an
alternative logical definition within this API. Any media related additions to SDP or
similar esoteric options, which cannot be easily categorised, maybe specified in a
generic fashion. See the section ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE for further
details.

MAN1762 PUBLIC 118

payloads

A pointer to a list of payloads in this media description.

next

A pointer to the next media description in the list or 0 to indicate termination of the list.

For example, configuring an audio media description and a T38 media description
and linking them together

ACU_MEDIA_DESCRIPTION md1;

memset(&md1, 0, sizeof(ACU_MEDIA_DESCRIPTION));

ACU_MEDIA_DESCRIPTION md2;

memset(&md2, 0, sizeof(ACU_MEDIA_DESCRIPTION));

// set up the first media description

md1.port = 4088;

md1.connection_address.address="10.202.10.17";

md1.media_direction=ACU_SEND_ONLY;

md1.media_type=ACU_AUDIO;

md1.packet_length=40;

ACU_PAYLOAD payload1;

memset(&payload1, 0, sizeof(ACU_PAYLOAD));

ACU_PAYLOAD payload2;

memset(&payload2, 0, sizeof(ACU_PAYLOAD));

payload1.payload.audio_video.rtp_payload_name="g729";

payload1.payload.audio_video.rtp_payload_number=18;

payload1.payload.audio_video.clock_rate=8000;

payload1.payload.audio_video.payload_specific_options="annexb=no";

payload1.next = &payload2;

payload2.payload.audio_video.rtp_payload_name="PMCU";

payload2.payload.audio_video.clock_rate=8000;

md1.payloads = &payload1;

md1.next = &md2; // link media descriptions

// set up the second media description

md2.port = 4092;

md2.media_type=ACU_IMAGE;

ACU_PAYLOAD payloadi;

memset(&payloadi, 0, sizeof(ACU_PAYLOAD));

payloadi.payload.image.image_payload_name="t38";

md2.payloads = &payloadi;

ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE mma1,mma2,mma3,mma4;

memset(&mma1, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

memset(&mma2, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

memset(&mma3, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

memset(&mma4, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 mma1.attribute="T38MaxBitRate:512”;

 mma2.attribute="T38FaxRateManagement:localTCF”;

 mma3.attribute="T38FaxUdpEC:t38UDPFEC”;

 mma4.attribute="T38FaxMaxDatagram:1024”;

mma1.next=&mma2;

mma2.next=&mma3;

mma3.next=&mma4;

md2.miscellaneous_attributes=&mma1;

MAN1762 PUBLIC 119

For example, configuring an audio media description and an MRCPv2 media
description and linking them together

ACU_MEDIA_DESCRIPTION md1;

memset(&md1, 0, sizeof(ACU_MEDIA_DESCRIPTION));

ACU_MEDIA_DESCRIPTION md2;

memset(&md2, 0, sizeof(ACU_MEDIA_DESCRIPTION));

// set up the first media description

md1.port = 4088;

md1.connection_address.address="10.202.10.17";

md1.media_direction=ACU_SEND_ONLY;

md1.media_type=ACU_AUDIO;

md1.packet_length=40;

ACU_PAYLOAD payload1;

memset(&payload1, 0, sizeof(ACU_PAYLOAD));

ACU_PAYLOAD payload2;

memset(&payload2, 0, sizeof(ACU_PAYLOAD));

payload1.payload.audio_video.rtp_payload_name="g729";

payload1.payload.audio_video.rtp_payload_number=18;

payload1.payload.audio_video.clock_rate=8000;

payload1.payload.audio_video.payload_specific_options="annexb=no";

payload1.next = &payload2;

payload2.payload.audio_video.rtp_payload_name="PMCU";

payload2.payload.audio_video.clock_rate=8000;

md1.payloads = &payload1;

md1.next = &md2; // link media descriptions

// set up the second media description

md2.port = 4092;

md2.media_type=ACU_APPLICATION;

 md2.transport= "TCP/MRCPv2";

 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE mma1,mma2,mma3,mma4;

 memset(&mma1, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 memset(&mma2, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 memset(&mma3, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 memset(&mma4, 0, sizeof(ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE));

 mma1.attribute="setup:active";

 mma2.attribute="connection:new";

 mma3.attribute="resource:speechsynth";

 mma4.attribute="cmid:1";

 mma1.next=&mma2;

 mma2.next=&mma3;

 mma3.next=&mma4;

 md2.miscellaneous_attributes=&mma1;

MAN1762 PUBLIC 120

4.6 ACU_MEDIA_OFFER_ANSWER
This structure will contain either an offer or answer received in a SIP message or an
offer or answer to be sent out to a remote party. This offer/answer is conveyed by

SIP as an SDP body and the role of the ACU_MEDIA_OFFER_ANSWER is to encapsulate
information relevant to the composition of an SDP body. RFC 3264 contains
guidelines useful in the configuration of SDP bodies for SIP. An application will need
to populate structures of this type prior to calling various SIP call control functions, for

example sip_openout(); it will also be presented these structures by sip_details().

The information held in this structure is available in two conceptually different forms:
abstracted and raw.

The abstracted form is presented by the media_descriptions field which represents
the m= line (or potentially a list of these) and its associated a= lines and c= line and the

connection_address field which specifies the session global c= line. A representation

of the v=, o=, s= and t= lines mandatory to an SDP body is omitted from the
abstracted form, it is viewed that these may be satisfactorily deduced by the SIP
service without input from the application, as those fields have no effect on the media
negotiation effected by the SDP body. If global session attributes are required then
these can be supplied by supplying a media description with the type ACU_SESSION as

the first entry in media_descriptions.

The raw form of SDP is available, in its entirety, in the field raw_sdp – if it is an offer,
all lines must be included.

typedef struct acu_media_offer_answer

{

 ACU_IP_ADDRESS connection_address;

 ACU_MEDIA_DESCRIPTION* media_descriptions;

 char* raw_sdp;

} ACU_MEDIA_OFFER_ANSWER;

When the ACU_MEDIA_OFFER_ANSWER is used to convey information received in an
inbound SIP message both the raw and abstracted forms are present in the structure.
However when the structure is being used to configure an outbound SIP message
then it is the application writer’s decision as to whether or not to use the raw or
abstracted form. In most situations it will be adequate to use the abstracted form; it is
certainly easier to manipulate than the raw form. However, if the writer wishes to use
an SDP attribute absent from the Aculab API’s abstraction then it is possible to effect
this by the writer supplying an entire well-formed SDP body as the argument to the

raw_sdp field. The SIP service will ignore the fields comprising the abstracted form in
circumstance of the raw_sdp field being not NULL.

connection_address

The session global connection address should be entered here. In the SDP this will

appear in the c= line outside of the media descriptions. For IPv4 the address_type

should be set to ACU_IPv4. For IPv6 the field should be set to ACU_IPv6. If the
application wishes to present a ‘black-hole’ SDP address, for IPv4 they should set the
IP address within this field to 0.0.0.0. For IPv6 the field should be set to a domain

within the .invalid top level DNS domain (not ::), for example sip.invalid. When

creating an answer the address_type should match the address_type of the offer

otherwise the SDP will be considered invalid (i.e. don’t mix c= lines with IP4 and IP6).

media_descriptions

A pointer to a ACU_MEDIA_DESCRIPTION structure. This pointer could be: the first
element in a list of such structures, which would imply that the SDP body has multiple
m= lines; a pointer of a single structure, which is the single m= line case; or NULL which

MAN1762 PUBLIC 121

implies that the SDP has no associated media lines.

raw_sdp

A pointer to a NULL-terminated string assumed to contain an entire SDP body. If this is
present then the SIP Service will ignore the other fields in the structure.

For example, application defines the SDP used for a sip_openout() using the
abstracted mode of the structure:

ACU_MEDIA_OFFER_ANSWER mo1;

memset(&mo1, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

mo1.connection_address.address="10.202.10.16";

ACU_MEDIA_DESCRIPTION md1;

memset(&md1, 0, sizeof(ACU_MEDIA_DESCRIPTION));

// refer the above sections to configure the ACU_MEDIA_DESCRIPTION

// structure(s).

mo1.media_descriptions = &md1;

See Appendix B for further information on using raw SDP.

MAN1762 PUBLIC 122

4.7 ACU_MEDIA_SESSION

An instance of ACU_MEDIA_SESSION will be queued for a call in the SIP service
whenever an offer answer exchange of SDP bodies has been effected by the SIP
call. An offer answer exchange is complete after one party has sent some initial/new
SDP [1] and the other party has sent its SDP [2] – which is compatible with SDP [1].

The structure’s presence is flagged by an EV_MEDIA event being raised to the

application, calling sip_details() at this point will collect this structure for the
application to inspect.

The purpose of this structure is to convey the SDP bodies, which have been used in a
media negotiation – the sent and received SDP being presented. It is very important

for an application to process this structure when flagged by the EV_MEDIA event as it
signifies the opportunity in which an application should start, stop or re-configure
media streams.

typedef struct acu_media_session

{

 ACU_MEDIA_OFFER_ANSWER sent_media;

 ACU_MEDIA_OFFER_ANSWER received_media;

 char sent_is_answer;

} ACU_MEDIA_SESSION;

sent_media

This field holds the SDP body, which was sent by this call in the most recent offer
answer exchange. In a simple call, that is, one without any third party call control, the
field can also be perceived as the local SDP settings, regarding IP address/port
details, payload choices and so on. However, in the case of third party call control
when this party may be acting as a controller between two other parties, this field is
just the sent SDP. It is no longer to be considered local to this call, as this party
merely controls the media streams, it does not participate in them.

NOTE

If an application, when populating an ACU_MEDIA_OFFER_ANSWER structure prior to
transmission, leaves any fields unset, that is assumes use of the SIP service’s
default settings, then those fields will appear unset in the sent_media element of
the ACU_MEDIA_SESSION structure. This is due to a considered optimisation in which
these fields are not converted to their real values until the preparation of the raw
SDP body.

MAN1762 PUBLIC 123

received_media

This field holds the SDP body, which was received by this call in the most recent offer
answer exchange. In a simple call, that is, one without any third party call control, the
field can also be perceived as the remote SDP settings regarding IP address/port
details, payload choices and so on. In a simple call setup, this field contains the other
party’s IP address/port details to which the application should be sending its media.
However, in the case of third party call control when this party may be acting as a
controller between two other parties, this field is just the received SDP. It is no longer
to be considered remote only to this call as this party merely controls the media
streams, it does not participate in them.

sent_is_answer

The above fields contain SDP bodies as sent and received during a call in an offer
answer exchange. Though the received media field holds the IP details of the
destination of egress media packets, in a simple call it is the answer SDP, which
specifies the payloads to be used for the media session. Hence, this flag is required
in order that the application may determine these payloads with ease.

MAN1762 PUBLIC 124

4.8 ACU_SIP_MESSAGE
This structure is used to represent a SIP message received from the IP network by
the application. The presence of a SIP message, queued by the SIP service and

available for collection is flagged by the raising of EV_DETAILS. The message may be

collected by sip_details().

typedef struct acu_sip_message

{

 unsigned char* message;

 ACU_INT message_length;

 ACU_UINT message_handle;

} ACU_SIP_MESSAGE;

message

This points to memory holding an inbound SIP message.

message_length

The size of the above message in bytes is held here.

message_handle

Reserved for future use

4.9 ACU_STRING_LIST
This structure provides a basic list of NULL terminated strings.

typedef struct _ACU_STRING_LIST

{

 char* string;

 struct _ACU_STRING_LIST* next;

} ACU_STRING_LIST;

string

The NULL terminated string for the current element in the list.

next

A pointer to the next string in the list, or 0 to indicate termination of the list.

4.10 ACU_REDIRECT_INFO

This structure provides sip_details with the contact details and SIP response code
contained in any 3xx response.

typedef struct

{

 int sip_response_code;

 ACU_STRING_LIST* contact_list;

} ACU_REDIRECT_INFO;

sip_response_code

The SIP response code. This will always be a 3xx response.

contact_list

A linked list of NULL terminated strings containing the Contact headers contained in
the 3xx response.

MAN1762 PUBLIC 125

4.11 ACU_SUBSCRIPTION_INFO

This structure, in conjunction with ACU_SIP_MESSAGE and ACU_REDIRECT_INFO provides

sip_details() with subscription related information.

typedef struct _ACU_SUBSCRIPTION_INFO

{

 ACU_INT expires;

 ACU_INT dialog_count;

 ACU_INT dialog_id;

ACU_INT notify_required;

ACU_STRING_LIST* body_types;

char* event_id_param;

} ACU_SUBSCRIPTION_INFO;

expires

In general, this field represents the remaining seconds left on the subscription with
the following exception. At EV_SIP_SUBSCRIPTION_REQUEST the expires parameter

corresponds to the Expires header contained in the initial SUBSCRIBE request which
is the subscriber requested duration of the subscription in seconds. An application
wishing to lower this duration must specify an alternative expires value in a call to

sip_sub_accept(). Note that ERR_PARM will be returned should any attempt be made to
increase this value.

dialog_count

Notifiers will only ever be associated with a single SIP dialog. As such, this value will
always be 1 until an EV_SIP_SUBSCRIPTION_CANCELLED event is raised at which point it
will be set to 0.

Subscribers, however, may be associated with multiple dialogs if the initial SUBSCRIBE
request forked in a proxy. This field will contain the current number of dialogs
associated with the subscription. Because of this, EV_SIP_SUBSCRIPTION_CANCELLED
may be raised many times on a single subscription, each time lowering this field by 1.

The application should call sip_sub_release() when this count reaches 0.

ERR_COMMAND will be returned if this is attempted beforehand.

dialog_id

For notifiers, this field will always be set to 1 as there will only ever be a single dialog
associated with the subscription.

For subscribers, each successive successful response to the initial SUBSCRIBE will
create a new dialog and associate a dialog_id with it. This allows the application to

know which dialog has been notified or cancelled. It also allows the application cancel
specific dialogs within a subscription as some event packages do not allow multiple
dialogs to be created.

MAN1762 PUBLIC 126

notify_required

This field has no meaning for subscribers and will always be set to 0.

For notifiers, some events require the application to call sip_sub_notify() in order to
conform to RFC 3265. This field will always be set after the events
EV_SIP_SUBSCRIPTION_PENDING and EV_SIP_SUBSCRIPTION_REFRESH are raised. At

EV_SIP_SUBSCRIPTION_CANCELLED this field will be set if the underlying cause was the

receipt of a SUBSCRIBE request with an expires value of 0. At EV_SIP_SUBSCRIBED this
field will be set if the subscription was not previously in a pending state.

body_types

This field only applies to notifiers and will only ever be populated at

EV_SIP_SUBSCRIPTION_REQUEST. It denotes the formats of the message bodies that the
subscriber is able to accept. These formats will be defined by the individual event
package being implemented.

event_id_param

Reserved for future use.

MAN1762 PUBLIC 127

5 Dual redundant SIP service (DRSS)

5.1 Description
The SIP service may be deployed on two separate servers that act to provide a
resilient system that can reduce interruptions to applications if hardware or network
issues affect one of the servers.

The resilient SIP service consists of a pair of separate servers configured to share a
well-known address to the outside world for SIP traffic. One of these servers will
process call control traffic, known as the active server and the other server that is
known as the passive mirrors the state of calls on the active, using a separate
connection. When a problem occurs on the active the passive performs a takeover
(whereby it assumes the role of the active) and manages all existing connected calls,
indicating to the application that a takeover has occurred.

Extra functionality provides applications with the means to query the existing state of
the resilient system and also with the means to force a takeover, for maintenance
purposes.

Extra configuration options need to be set for the applications and the individual sip
servers to ensure that the system operates correctly.

A pre-existing application does not need to be modified to take advantage of the
resiliency provided by these features. However, some new events and routines are
provided to make management of the system easier.

5.2 Terms used during this section
Active server

This is one of the servers that in combination with a passive server will provide the
resilient SIP service. The active server will handle incoming and outgoing calls while
providing the passive server with data that would allow the passive server to takeover
in the event of a problem. The active server will advertise itself as the owner of the
floating IP address, meaning SIP traffic will be directed towards it.

Passive server

This server builds a mirror of the current state of the active server allowing it to
takeover in the event of an error. The passive server will only handle SIP traffic during
maintenance.

Floating IP address

The floating IP address acts as the public address for the resilient SIP service. The
active server will configure one of its interfaces to use this as a virtual address or
alias. The system uses ARP to advertise the current owner of the floating IP address
to ensure that traffic reaches the correct destination.

Takeover

This is the process that results in the passive server becoming an active server when
the system discovers a problem with the current active server. The passive takes on
the floating IP address and advertises that it is now the owner of that IP address. It
then becomes the active server. When the former active server is no longer in an
error condition then that server will become a passive server, meaning that their roles
have switched.

Maintenance

When it is necessary to modify the current active server in some way the active
server can be shut down gracefully allowing calls to migrate to the passive server.
This process is called maintenance and is invoked by the user.

MAN1762 PUBLIC 128

5.3 Pre-requisites, restrictions and usage information

• See the current release notes for information on supported operating systems
and variants

• It is very strongly recommended that each server used to host the resilient sip
service use at least two separate network interface cards, one for communication
between the application and the SIP service and another for communication
between the active and the passive server

• DHCP is not supported. Each server must be configured with static IP addresses

• It is strongly recommended that applications reside on separate servers to those
used by the SIP servers. Each application must be configured to use the same
DRSS servers in the same order

• In the event of a failure resulting in a takeover calls that had been connected will
be available after the takeover. In addition if an incoming call had successfully
sent a 180 or 183 response then that call will be available. If an outgoing call had
received a 180 or 183 then it will be available

• Calls associated with application failover using call_get_failover_id() will only be
recoverable after at most one takeover. If two or more takeovers occur it will not
be possible to reopen the call

• If media resources are located on the same servers used for the resilient SIP
service then adequate arrangements need to be made to ensure that the media
connections are maintained after a takeover. These arrangements are outside
the scope of the functionality provided by the resilient SIP service. However API
functionality is provided to provide a means of indicating that resources have
moved, see sip_target_refresh()

• Use of DRSS functionality requires the installation of a licence on each server

• In the event of a takeover the passive server that takes over will mirror the queue
of sip_details() information for every connected call. It is possible that the failure
that caused the takeover may result in the new active server having fewer items
in the queue than the application was expecting. If this occurs the application
may receive a SIP_DETAILS_PARMS structure which has not supplied any
information in the sip_message, media_offer_answer or media_session fields, or
has supplied a different field to that which the application might have been
expecting. It is recommended that these fields are tested for NULL on a
successful return from sip_details before attempting to access them

• Using the Generic Call Control API (also referred to as the Media Handler Plugin
or MHP) with DRSS is not supported

MAN1762 PUBLIC 129

5.4 How it works
Every application is configured to connect to the same pair of SIP servers. These SIP
servers are in turn configured to accept connections from remote applications. The
SIP servers are also configured to know about their corresponding peer SIP server
and how to connect to each other. In addition each SIP server knows the well-known
IP address, known as the ‘Floating IP Address’. This Floating IP address must be the
only IP address used to deliver normal SIP traffic to the server. The IP addresses of
the individual SIP servers will be used during managed maintenance.

When the application starts the SIP servers will be designated either the active role or
the passive role. The active server will configure the Floating IP address and
advertise that it owns this address. The passive server will wait for messages from
the active server that allow it to act as a replacement for the active server in the event
of a failure.

During normal operation the active server will send messages to the passive server
that allow the state of calls to be mirrored on the passive server. In the event of a
failure the passive server will be instructed to assume the active role and it will
configure the Floating IP address and resume call processing for existing calls and
new traffic.

If a server loses its connection to the application (or all applications if multiple
applications are present) then it will revert to an un-configured state.

It is also possible for an application to force a takeover to occur using maintenance
commands allowing a server to be stopped gracefully.

MAN1762 PUBLIC 130

5.4.1 Example

MAN1762 PUBLIC 131

5.5 Configuration

5.5.1 Application configuration

Each application must be configured identically; otherwise the system will not work
correctly.

The application must configure both SIP servers in sipplugin.cfg. This configuration
is described in Distributed SIP Settings. Where multiple applications are used on
different servers the order for the SIP servers should be the same for each
sipplugin.cfg.

For the example above sipplugin.cfg should be as follows, assuming port 33300 is
being used for IPC on each server :

RemoteIPCAddress = 10.0.0.1:33300

RemoteIPCAddress = 10.0.0.2:33300

5.5.2 SIP server configuration

The following options apply to the sipserv.cfg configuration file as described in
Configuring the SIP service.

5.5.2.1 IPC configuration

The SIP server must be configured to listen for connections from remote applications,
as described in Distributed SIP Settings, and these settings must correspond with the
settings that have been chosen for the application.

5.5.2.2 Fault tolerance configuration options

The following options must be configured to ensure that communication between the
SIP servers will work correctly. All parameters are mandatory unless stated
otherwise.

EnableFT = <0 or 1>

This value must be set to 1 in order for the SIP service to run in resilient mode.

FTPort = <n>

This value must specify an IP port number. It should be greater than 0 and less than
65535, and should not be already in use by the operating system. It is also
recommended that you avoid IP ports that could already be in use by other servers,
for example, 0-1023, which are assigned by the Internet Assigned Numbers Authority
(IANA), and registered ports 1024 to 49151.

The SIP service will use this port to listen for resilience messages from its peer.

FTPeerPort = <n>

This optional value is used to specify the port that the peer server is listening on. If it
is not present, both servers must have FTPort configured to the same value.

FTPeerInterface = <IP address>

This value must be an IP address resident on the host in which the SIP service is
deployed.

The indicates to the SIP server which NIC to use to communicate with the peer SIP
server.

FTPeer = <IP address>

This value must be the IP address that the peer SIP server uses for it’s inter-service
communication.

FTPeerFloatingInterface = <IP address>

This value must be the IP address that the peer SIP server uses as its floating

MAN1762 PUBLIC 132

interface. This is required so that the active server may redirect calls to the correct
address during a period of maintenance.

FTFloatingInterface = <IP address>

This value must be an IP address resident on the host in which the SIP server is
deployed.

This indicates to the SIP server which NIC to use to configure the floating IP address.

FTFloatingAddress = <IP address>

This value must be an IP address that will be used as the well-known IP address to
which SIP traffic will be directed.

FTRole = <active|passive>

If a pair of SIP servers are to be used in a resilient configuration one of them must be
set to active and one to passive. This role does not determine their initial
configuration that is designated when the application connects to the SIP server. It is
used instead to act as a ‘tie-breaker’ in the event of a race condition.

Example configuration for server 10.0.0.1

Assuming 2 NICs 192.168.0.1, 10.0.0.1

FTPort = 44400

FTPeerInterface = 10.0.0.1

FTPeer = 10.0.0.2

FTFloatingInterface = 192.168.0.1

FTPeerFloatingInterface = 192.168.0.2

FTFloatingAddress = 192.168.0.100

FTRole = active

Example configuration for server 10.0.0.2

Assuming 2 NICs 192.168.0.2, 10.0.0.2

FTPort = 44400

FTPeerInterface = 10.0.0.2

FTPeer = 10.0.0.1

FTFloatingInterface = 192.168.0.2

FTPeerFloatingInterface = 192.168.0.1

FTFloatingAddress = 192.168.0.100

FTRole = passive

In this example, the heart beat exchange and the persistence of call state between
the two servers takes place between 10.0.0.1:44400 and 10.0.0.2:44400. When
active, a server will configure 192.168.0.100 (the floating IP address) as an additional
address on the floating interface. SIP signalling will take place on 192.168.0.100 in
normal operation and during periods of maintenance, calls will be redirected to
192.168.0.1 or 192.168.0.2 depending on which server is active when the
maintenance starts.

The FTRole options will only be used in the event that more than one application
connect to the servers at the same time and the period of negotiation fails to
determine which server should take on the active role. This is only possible if the
applications are configured to connect to the servers in a different order.

MAN1762 PUBLIC 133

5.6 API for resilient SIP service

5.6.1 sip_rss_get_server_details() – get resilient server status

This function is used to obtain the current state of the SIP servers that make up the
resilient SIP service. This routine may called at any time.

Synopsis
ACU_ERR sip_rss_get_server_details(SIP_RSS_SERVER_DETAILS_PARMS*

sip_server_details_parms);

typedef struct sip_rss_server_detail_parms

{

 ACU_ULONG size; /* IN */

 RSS_SERVER_DETAILS* server_details; /* OUT */

} SIP_RSS_SERVER_DETAILS_PARMS;

typedef struct rss_server_details

{

 ACU_CHAR address[ACU_MAX_IP_ADDRESS]; /* OUT */

 ACU_USHORT port; /* OUT */

 ACU_UINT state; /* OUT */

 ACU_CHAR heartbeat_present; /* OUT */

 ACU_CHAR server_alive; /* OUT */

 ACU_UINT calls; /* OUT */

 ACU_UINT error; /* OUT */

 struct rss_server_details* next; /* OUT */

} RSS_SERVER_DETAILS;

Input parameters

The sip_rss_get_server_details() function takes a pointer,

sip_server_details_parms, to a structure SIP_RSS_SERVER_DETAIL_PARMS. Before

invocation, the structure must be cleared using INIT_ACU_STRUCT.

server_details

The server_details field is a pointer to a RSS_SERVER_DETAILS structure. This
structure contains the following fields:

address

This field contains the IP address of a SIP server, which is used to differentiate
between the servers forming the resilient SIP service.

port

This field contains the port number that the SIP server is listening on.

state

This field holds a value reflecting the current ‘fault tolerant’ state for this server. This
value will be one of the following:

RSS_NONE not capable of resilience

RSS_NOT_CONFIGURED not configured

RSS_PASSIVE working as a passive server

RSS_ACTIVE working as an active server

RSS_FAILED currently not working correctly due to error

heartbeat_present

A value of 1 indicates that this server is receiving valid ‘heartbeat’ messages from its
peer. These messages act as a means of determining the health of the connection
between the two servers. If there is a problem with these messages then a value of 0
will be returned in this field.

server_alive

A value of 1 indicates that this application is able to communicate correctly with this

MAN1762 PUBLIC 134

server. A value of 0 indicates that there is a problem with communicating with this
server.

calls

For an active server this field contains the number of calls currently managed by this
server.

error

a value of 1 indicates that the system is not operating correctly, possibly due to
configuration problems or connection issues. This field will be set for all servers if an
error is detected.

next

This field contains a pointer to the next set of server details. A NULL value indicates
that no more details are available.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1762 PUBLIC 135

5.6.2 sip_rss_maintenance() – initiate a takeover from an application

This function may be used by an application when it is felt necessary to explicitly
initiate a takeover for maintenance reasons. As a result of invoking
sip_rss_maintenance() the active server will enter a maintenance mode and will
redirect any new calls to the passive server. During this maintenance period the
passive server will handle new incoming and outgoing calls while waiting for the
system to perform a takeover. Depending on the options supplied in the call to
sip_rss_maintenance() the system will wait until the calls in progress on the active
server have completed before the takeover occurs. After the takeover the formerly
active server will either switch to passive mode or quit depending on the options
provided.

Events will be raised to all applications using the resilient SIP service when
maintenance mode has begun, and when it has ended.

Synopsis
ACU_ERR ACU_EXPORT sip_rss_maintenance(SIP_RSS_MAINTENANCE_PARMS*

sip_maintenance_parms);

typedef struct sip_rss_maintenance_parms

{

 ACU_ULONG size; /* IN */

 ACU_INT timeout; /* IN */

 ACU_UINT shutdown; /* IN */

} SIP_RSS_MAINTENANCE_PARMS;

Input parameters

The sip_rss_maintenance() function takes a pointer sip_maintenance_parms to a
structure SIP_RSS_MAINTENANCE_PARMS. This structure must be initialised in the following
way before being used.

timeout

While there are calls in progress that have not been connected the active server will
wait before forcing a takeover. Only connected calls will be migrated during a

takeover. This timeout field contains the maximum positive number of seconds that
the system should wait in maintenance mode before forcing a takeover. When all
calls are in the connected state the takeover will happen. If the timeout has elapsed
then any calls that have not reached the connected state will be dropped. The other
possible values that this field can have are:

-1 Infinite timeout – takeover will only happen when all calls in

progress have reached the connected state.

0 Immediate timeout – only calls that have already reached the

connected state will be migrated.

shutdown

A non-zero value in the shutdown field will result in the SIP service halting after the
takeover. A zero value indicates that after maintenance is over the formerly active
server will become a passive server.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1762 PUBLIC 136

5.6.3 sip_target_refresh() – update the route set for a call

A target refresh may be required after takeover for calls that were redirected towards
the passive server during maintenance mode. These calls will be using the IP
address of the passive server and not the floating IP address. The result will be to
update the remote endpoint's route set in order that it uses the floating IP address for

the remainder of the call. It may be achieved by calling either sip_target_refresh()
that will simply update the route set or, if the media has also moved during the

takeover process, sip_media_propose() may be used to send both the target refresh
and the new media offer.

Synopsis
ACU_ERR sip_target_refresh(SIP_TARGET_REFRESH_PARMS* sip_target_refresh_parms);

typedef struct tSIP_TARGET_REFRESH_PARMS

{

 ACU_ULONG size; /* IN */

 ACU_CALL_HANDLE handle; /* IN */

} SIP_TARGET_REFRESH_PARMS;

Input parameters

The sip_target_refresh() function takes a pointer sip_target_refresh_parms to a

SIP_SEND_REQUEST_PARMS structure. The structure must be initialised in the following
way before invoking the function.

handle

The handle field identifies the call that is to send the target refresh. This field is
mandatory.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1762 PUBLIC 137

5.7 Events for resilient SIP service
A number of new events will be generated by the resilient SIP service.

5.7.1 Global events
EV_SIP_RSS_PEER_CONNECTED

This event occurs whenever a SIP server establishes a connection to a peer server

EV_SIP_RSS_SERVER_LOST

This event occurs whenever a connection from an application to a resilient SIP server
fails.

EV_SIP_RSS_MAINTENANCE_STARTED

This event occurs when a call to sip_rss_maintenance() has completed its initial
phase.

EV_SIP_RSS_MAINTENANCE_COMPLETED

If maintenance has completed without needing to drop calls before they got to the
connected state then this event will be raised.

EV_SIP_RSS_MAINTENANCE_TIMEOUT

If maintenance has completed due to a timeout then this event will be raised. Some
calls were dropped.

EV_SIP_RSS_SERVER_CONFIG_ERROR

This event occurs if a problem is detected involving the status or role of the servers.

EV_SIP_RSS_SERVER_HALT

Some configuration errors may require that a server must shut down to ensure that
some service is possible. This event is raised when a server halts due to this
condition.

EV_SIP_RSS_SERVER_CONFIGURED

This event occurs when a server goes from a RSS_NOT_CONFIGURED state to a

RSS_ACTIVE or RSS_PASSIVE

EV_SIP_RSS_TAKEOVER_STARTED

This event occurs when the servers start to reconfigure their respective roles. This
will happen once when the first application connects and the roles are configured for
the first time. It will also happen when the roles change due to either an error
condition or a period of maintenance.

EV_SIP_RSS_TAKEOVER_COMPLETED

This event occurs when the servers have completed reconfiguring their respective
roles. During the interval between receipt of an EV_SIP_RSS_TAKEOVER_STARTED and an

EV_SIP_RSS_TAKEOVER_COMPLETED, the application may experience a pause in response
from the servers. During this period, the servers are in an indeterminate state where
the plugin cannot reliably decide to which server a given API call should be sent. It
will therefore hold these API calls back until the takeover is complete.

EV_SIP_RSS_IPTAKEOVER_SUCCESSFUL

This event occurs when a passive server changes to an active server during a
Takeover process and has successfully acquired the floating address. It would
normally occur between the EV_SIP_RSS_TAKEOVER_STARTED and

EV_SIP_RSS_TAKEOVER_COMPLETED events but in extreme cases may take place after

the EV_SIP_RSS_TAKEOVER_COMPLETED event. It is only when both the

EV_SIP_RSS_TAKEOVER_COMPLETED and EV_SIP_RSS_IPTAKEOVER_SUCCESSFUL events have
been received that full service is restored to the new active server. The user may

wish to set a timer triggered by the EV_SIP_RSS_TAKEOVER_STARTED event and when

both EV_SIP_RSS_TAKEOVER_COMPLETED and EV_SIP_RSS_IPTAKEOVER_SUCCESSFUL events
are received within a specified interval duration will there be no need for the
user/application to intervene by restarting the ‘non-responsive’ server (i.e, previous

MAN1762 PUBLIC 138

active server). Note that if EV_SIP_RSS_TAKEOVER_STARTED and

EV_SIP_RSS_TAKEOVER_COMPLETED events are received it means that all active calls
have been successfully transferred and the new active server is ready to takeover
upon receipt of the floating address. If it takes too long to receive the

EV_SIP_RSS_IPTAKEOVER_SUCCESSFUL event then upon restarting the previous active
server it will assume a passive role and surrender the floating address. It is left up to
the user to determine and appropriate interval duration.

EV_SIP_RSS_HEARTBEAT_LOST

This event occurs when a server loses contact with its peer.

EV_SIP_RSS_HEARTBEAT_ESTABLISHED

This event occurs when a server establishes contact with its peer.

5.7.2 Call events
EV_SIP_RSS_CALL_MIGRATION

After a takeover when a call has migrated from one server to another, this event is
generated. This allows the user to make adjustments for this call (e.g. if media
settings need to be modified).

EV_SIP_RSS_CALL_LOST

If a takeover occurs then only those connected calls that migrated will still be
available on the new server. To indicate if a call was ‘lost’ during a takeover (e.g. an
unconnected call) this event will occur. The application need not act on this event as
an EV_IDLE will immediately be raised. This allows existing applications to clear their
resources in the usual fashion.

MAN1762 PUBLIC 139

Appendix A: SIP specific events
A number of SIP specific events have been added:

EV_MEDIA

When the media session between two parties has changed insofar as local and
remote SDP have been negotiated, either initially or in a mid-call transaction, this
event is raised. The application must now call sip_details(). This function will return

a pointer to an ACU_MEDIA_SESSION structure. This structure contains three elements,

sent SDP, received SDP and a flag indicating which of these was the answer in the
offer-answer exchange – the transaction in which the SDP negotiation occurred. It is
worth noting for a simple SIP call, that is one with a single audio stream, the first

payload specified in the answer SDP is the payload to be used, initially, for both
parties to send/receive media with.

EV_MEDIA_PROPOSE

A SIP call has received a new media offer, outside of the generic call control model,

for example in a re-INVITE transaction (in contrast to the classic inbound call setup in

which EV_INCOMING_CALL_DET will flag the presence of this offer). This event may also

be raised if an initial 200OK is received for an outgoing call, which was initiated by an

INVITE with no SDP. The application must call sip_details() and process the

media_offer_answer, then sip_media_accept() with an appropriate answer.
Alternatively the application may decline this proposal with

sip_media_reject_proposal(). This event may also be received when an UPDATE
request containing an SDP offer is received, and may be responded to using either

sip_media_accept() or sip_send_response().

If the application makes an outgoing call by sending an INVITE without SDP (when
acting as a B2BUA for example) there is no way to guarantee that the SDP offer will
arrive in a 200 OK. If it arrives in a 180 or 183 then calling sip_media_accept() before

the arrival of the 200 OK will be ignored. The application should register for the

ACU_SIP_INITIAL_INVITE_NOTIFICATION and inspect the raw message to determine if

a 200 OK has been received and at that point call sip_media_accept().

EV_MEDIA_REJECT_PROPOSAL

This event occurs when a SIP call, after previously sending an offer using
sip_media_propose() receives a rejection, a non-2xx final response, for that offer. The
application need not take any particular action at this point, as the previously
established media session will still be valid.

EV_MEDIA_REQUEST_PROPOSAL

A SIP call has received a re-INVITE with no SDP. The application may either provide

a media proposal using sip_media_propose() or reject the INVITE using
sip_media_reject_proposal().

EV_MEDIA_REJECT_REQUEST_PROPOSAL

This event is raised on a SIP call when, subsequent to sending a re-INVITE with no

SDP (e.g. with sip_media_request_proposal()), receives a non-2xx response.

EV_MEDIA_REJECT_COLLISION

This (configurable) event is raised on a SIP call when, subsequent to sending a re-
INVITE with sip_media_propose() or sip_media_request_proposal(), the re-INVITE

collides with a re-INVITE sent at the same time from the remote end. The re-INVITE
from the remote end ‘wins’ and after the EV_MEDIA_REJECT_COLLISION there will be

either an EV_MEDIA_PROPOSE or an EV_MEDIA_REQUEST_PROPOSAL.

EV_SIP_MEMORY_LIMIT_EXCEEDED

This event is raised on the global notification event queue to indicate that a pre-
configured maximum memory limit has been reached by the SIP service. See

MAN1762 PUBLIC 140

configuring the Overload Monitor for more details.

EV_SIP_MEMORY_LIMIT_WARNING

This event is raised on the global notification event queue to indicate that a pre-
configured memory limit to indicate high levels of traffic has been exceeded by the
SIP service. See configuring the Overload Monitor for more details.

EV_SIP_MEMORY_OK

This event is raised on the global notification event queue to indicate that the
SIPservice’s memory usage has fallen back to acceptable levels after a previous
spike in traffic. See configuring the Overload Monitor for more details.

EV_SIP_WAIT_FOR_SUBSCRIBER

This event is raised on a SIP subscription after a new notifier has been created using
sip_sub_notifier().

EV_SIP_WAIT_FOR_NOTIFIER

This event is raised on a SIP subscription after a new subscriber has been created
using sip_sub_subscriber().

EV_SIP_SUBSCRIBED

sip_details() must always be called here.

This event is raised on a SIP subscription given the following conditions:

 The application has accepted an incoming SUBSCRIBE request with a call to

sip_sub_accept(). sip_sub_notify() must be called in order to conform to
RFC 3265.

 The application accepted an initial SUBSCRIBE with a 202 Accepted and
subsequently called sip_sub_notify() with the pending field set to 0.

 The SIP service has received either a 200 OK response to an initial SUBSCRIBE

request or a NOTIFY request whose Subscription-State is active for the same
subscription but on a new dialog. As such, the application may receive
multiple events of this type for a single subscription.

EV_SIP_SUBSCRIPTION_PENDING

sip_details() must always be called here.

This event is raised on a SIP subscription given the following conditions:

 The application has accepted an incoming SUBSCRIBE request with a call to
sip_sub_accept() with the acknowledge field set to 1. sip_sub_notify() must

be called in order to conform to RFC 3265.

 The SIP service has received either a 202 Accepted response to an initial

SUBSCRIBE request or a NOTIFY request whose Subscription-State is pending
for the same subscription but on a new dialog. As such, the application may
receive multiple events of this type for a single subscription.

EV_SIP_SUBSCRIPTION_CANCELLED

sip_details() must always be called here.

This event is raised on a SIP subscription given the following conditions:

 A subscriber has received a NOTIFY whose Subscription-State is terminated.
sip_sub_release() should be called here if the dialog_count is 0.

 A subscriber has received a non-2xx response to the initial SUBSCRIBE request.
sip_sub_release() should be called here if the dialog_count is 0.

 A subscriber has received one of the following responses to a SUBSCRIBE sent
to refresh the subscription. The responses at the time of writing are 404, 405,
410, 416, 480, 481, 482, 483, 484, 485, 489, 501 and, 604.

 sip_sub_release() should be called here if the dialog_count is 0.

MAN1762 PUBLIC 141

 A notifier has received a SUBSCRIBE with an expires value of 0.

sip_sub_notify() must be called here in order to conform to RFC 3265.

 A notifier has received a non-2xx response to a NOTIFY request.

Notifiers should always call sip_sub_release() on receipt of this event.

EV_SIP_SUBSCRIPTION_REQUEST

sip_details() must always be called here.

This event is raised on a SIP subscription when a notifier receives an initial SUBSCRIBE

request. The application must call either sip_sub_accept() or sip_sub_cancel() in
response.

EV_SIP_SUBSCRIPTION_NOTIFICATION

sip_details() must always be called here.

This event is raised on a SIP subscription when a subscriber receives a NOTIFY
request on an existing subscription.

EV_SIP_SUBSCRIPTION_REFRESH

sip_details() must always be called here.

This event is raised on a SIP subscription when a notifier receives a SUBSCRIBE

request on an existing subscription. The application must call sip_sub_notify() here
in order to conform to RFC 3265.

EV_SIP_SUBSCRIPTION_REFRESH_FAILED

sip_details() must always be called here.

This event is raised on a SIP subscription when a subscriber receives an
unsuccessful response to a refresh attempt on an existing subscription, which is not
one of the following: 404, 405, 410, 416, 480, 481, 482, 483, 484, 485, 489, 501 and,
604. There will be no further attempts to automatically refresh the subscription but the
subscription will be valid until it eventually expires.

MAN1762 PUBLIC 142

Appendix B: Raw SDP usage
The structure ACU_MEDIA_OFFER_ANSWER contains a field called raw_sdp. When present
in the call’s details, this field will always be populated if there is some new SDP
received in a SIP message. However, when this structure is used to populate some
SDP prior to transmission, then usage of the raw_sdp is strictly optional. For the vast
majority of SIP/SDP applications, the structures defined in this API are adequate and
in need of no further refinement.

In the event of needing to set an SDP feature not specified in the API, the application
may populate the SDP body itself and set the raw_sdp element with a char* holding
this body. To do this correctly it is recommended that the application writer refer to
the IETF documents: RFC 2327 and RFC 3264, as, when raw SDP mode is used the
sipserv executes no checking or validation code. Note that when the sipserv detects

a non-NULL value for raw_sdp it assumes that the application wishes to use purely the
raw mode for this call and ignores any SDP representation structures present.

It is possible for the application to use a combination of raw SDP and abstracted SDP
structures. For example, an application calls sip_openout() using the abstracted
structures to initially place a call and subsequently use raw SDP for a complex re-
INVITE sent using sip_media_propose(). Note that when using raw SDP, either alone
or accompanying function calls made with the abstracted structures, it is very
important that the application increment the ‘SDP session version’, a field held within
the SDP body, at the correct junctures. The above RFCs provide guidance in
achieving this.

e.g. Application defines the SDP used for a sip_openout() using the raw mode of the
structure:

SIP_OUT_PARMS outx;

INIT_ACU_STRUCT(&outx);

// full setup of open out structure omitted for brevity

ACU_MEDIA_OFFER_ANSWER mo1;

memset(&mo1, 0, sizeof(ACU_MEDIA_OFFER_ANSWER));

char* sdpUser =

“v=0\r\n”

“o=VoIP-media-session 123 123 IN IP4 192.168.15.202\r\n”

“s=SIP Call\r\n”

“c=IN IP4 192.168.0.2\r\n”

“t=0 0\r\n”

“m=audio 5006 RTP/AVP 18 121\r\n”

“a=ptime:80\r\n”

“a=fmtp:121 0-16\r\n”

“a=rtpmap:121 telephone-event/8000/1\r\n”;

// populate open out structure with raw SDP

mo1.raw_sdp = sdpUser;

outx.media_offer_answer=&mo1;

ACU_ERR rc = sip_openout(&outx);

MAN1762 PUBLIC 143

Appendix C: Receipt of raw SIP messages
The Extended SIP API provides applications with the opportunity to inspect raw SIP
messages as received by the protocol stack. Since the internal queuing of these
messages may give rise to a performance overhead, their delivery to the application
is switched off by default. Furthermore, different applications may wish to examine
different message types. To permit the developer to select which SIP messages, if
any, should be queued then passed up the application, a set of bit flags is provided:

typedef enum acu_sip_message_notification_masks

{

ACU_SIP_INITIAL_INVITE_NOTIFICATION = 0x00000001, (see note 1)

ACU_SIP_REINVITE_NOTIFICATION = 0x00000002, (see note 1)

ACU_SIP_TRANSFER_INVITE_NOTIFICATION = 0x00000004, (see note 1)

ACU_SIP_INFO_NOTIFICATION = 0x00000008,

ACU_SIP_NOTIFY_NOTIFICATION = 0x00000010,

ACU_SIP_REGISTER_NOTIFICATION = 0x00000020, (see note 2)

ACU_SIP_SUBSCRIBE_NOTIFICATION = 0x00000040, (see note 2)

ACU_SIP_OPTIONS_NOTIFICATION = 0x00000080,

ACU_SIP_BYE_NOTIFICATION = 0x00000100,

ACU_SIP_MESSAGE_NOTIFICATION = 0x00000200,

ACU_SIP_UPDATE_NOTIFICATION = 0x00000400,

ACU_SIP_PRACK_NOTIFICATION = 0x00000800, (see note 1)

ACU_SIP_REFER_NOTIFICATION = 0x00001000, (see note 1)

ACU_SIP_INITIAL_ACK_NOTIFICATION = 0x00002000, (see note 1)

ACU_SIP_REINVITE_ACK_NOTIFICATION = 0x00004000, (see note 1)

ACU_SIP_TRANSFER_ACK_NOTIFICATION = 0x00008000, (see note 1)

 } ACU_SIP_MESSAGE_NOTIFICATION_MASKS;

note 1. These message types are not valid for use with enable_midcall_response_mask.
note 2. These message types are only valid for use with out of dialog API functions.

A combination of these flags may be written to the request_notification_mask,

response_notification_mask and enable_incall_response_mask field elements of the

SIP_OUT_PARMS and SIP_IN_PARMS API structures. (Note that the application can
separately configure a requirement to be notified on receipt of request or response
messages, in addition to message type based selection.)

Here are some examples of configuration of a call in order that it may be notified on
receipt of given messages:

For example, call requires notification of INFO request receipt

SIP_OUT_PARMS outx;

INIT_ACU_STRUCT(&outx);

outx.request_notification_mask = ACU_SIP_INFO_NOTIFICATION;

For example, call requires notification of initial INVITE response receipt

SIP_OUT_PARMS outx;

INIT_ACU_STRUCT(&outx);

outx.response_notification_mask = ACU_SIP_INITIAL_INVITE_NOTIFICATION;

(It is possible to bitwise OR the above flags into a mask, to specify interest in more
than one message type.)

On receipt of a message whose type was specified in one of the above fields, the SIP
service will queue the message and raise EV_DETAILS to notify its presence. The

message must be collected by the application using the sip_details() function call

and will be presented in the sip_message field of SIP_DETAIL_PARMS structure.

Note that not calling sip_details() to retrieve SIP messages flagged by EV_DETAILS

MAN1762 PUBLIC 144

results in these messages remaining in memory until the call handle is released.

How the SIP service responds to a given request depends on whether the relevant

mask has been set in the request_notification_mask and enable_response_mask
fields. This is most easily explained with an example. Here we will assume that the
SIP service has just received a mid call INFO request. There are then the following
possibilities:

• If INFO notification has not been requested, the SIP service will silently accept
the request and respond with a 200 OK.

• If INFO notification has been requested but the enable_response_mask has not
been set, the SIP service will silently respond with a 200 OK and notify the
application of the INFO request by raising an EV_DETAILS.

• Finally, if both request_notification_mask and enable_response_mask have been
set, an EV_DETAILS will be raised and no response will be sent. It is then down
to the application to formulate its own response in a timely fashion through a call
to sip_send_response().

MAN1762 PUBLIC 145

Appendix D: Using TLS to provide security
TLS, transport layer security, (SSL as standardised by the IETF) is available as a
transport mechanism when using the Aculab SIP service in combination with the
SIP_TLS software. This protocol encrypts the SIP messages prior to transmission
over a TCP stream. The ability to exploit this form of transport security is announced
by SIP entities by the ‘sips’, as opposed to ‘sip’ URI scheme.

NOTE

The default IP network port for secure SIP is 5061.

The application writer is advised that some existing background knowledge in IP
security and TLS may be useful in configuring the Aculab SIP service for TLS and
trouble-shooting any issues may arise.

TLS draws upon a wealth of cryptographic routines and techniques: very briefly, it
permits the creation of a symmetric cryptography session by use of public key
techniques to negotiate encryption parameters. In order for creation of this session
the parties involved must supply a minimum set of parameters, here follows a very
brief description of the configuration information required by the application in order
that those parameters are present.

In order to support TLS, it must be configured via the configuration file sipserv.cfg.
Supply the following option to the SIP service:

UseTLS = 1

For a minimal TLS configuration, at least one trusted third party, who is often known
as a ‘Certification Authority’ (CA), must be specified. This is in the form of a digital
certificate. A TLS application may have a list of trusted third parties. To configure this
list use the setting below:

TLS_TrustedCertificates = <path to file containing a list of certificates>

Below is an example of the possible content of such a file:

-----BEGIN CERTIFICATE-----

MIICoDCCAgmgAwIBAgIBADANBgkqhkiG9w0BAQQFADBFMQswCQYDVQQGEwJBVTET

MBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50ZXJuZXQgV2lkZ2l0cyBQ

dHkgTHRkMB4XDTA2MDcxMjA3NDc1MloXDTA2MDgxMTA3NDc1MlowRTELMAkGA1UE

BhMCQVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNVBAoTGEludGVybmV0IFdp

ZGdpdHMgUHR5IEx0ZDCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAlX/aSX2G

7VRbQgEvDYO2ALFrwAUF3Ptc4IBY4ouY9oEEFYOpsuQcZUAfEMutnQ8+n5/hwKKG

+F1+Tz7u06q+zkN2sE9EvU5xBVCoIM9GP+mIgOqSgNSdA1zf7c3bnJXxsrGKljJg

B7DCZoaKqn6udhVwSxtJAbB4TfEiI+0jiHsCAwEAAaOBnzCBnDAdBgNVHQ4EFgQU

WN7cMk4ie3WI44p2j4SdSv+xqvgwbQYDVR0jBGYwZIAUWN7cMk4ie3WI44p2j4Sd

Sv+xqvihSaRHMEUxCzAJBgNVBAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEw

HwYDVQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCAQAwDAYDVR0TBAUwAwEB

/zANBgkqhkiG9w0BAQQFAAOBgQAsPBL+SyO4tytnjDx874qap21SiBj6ha8DrLLB

TY1W2KHzKdjv1tAweF9z914HNQU594fB7XtDa1VMT3VOZ1EKJk+NOd3Wnbyn6Chy

KjZ4EOcE9BZjuSmvJlGIVtRrN2LrU7cSHFxoY8FUtDYpox1lUoiiZmVVuTrxv/1u

DVnk8A==

-----END CERTIFICATE-----

The above file contains one certificate; additional certificates would be concatenated
to the end of this.

In order that the TLS application may act as a ‘server’ in a TLS transaction, that is
receive simple requests to establish secure channels from clients, a path to a server
certificate must be configured:

TLS_ServerCertificate = <path to server certificate>

MAN1762 PUBLIC 146

The following is an example of the possible server certificate file:

-----BEGIN RSA PRIVATE KEY-----

MIICXQIBAAKBgQD2lvP2blSTmEl+6hBr+zVL8PukYDJty4yPRlnsTqaEmOz1ryCt

c3fXfGpxvXKoZ42Z8BjE4oE7IrJDIoOVJkjAhW1JAxawt18Jo0nh59aAJMMiudkl

wnMkLx2WLq79MRs/bl6epIQMcWrUvrqEwvL+vpwwtwwql5/xFimPqlPtFwIDAQAB

AoGAPhv5aNmTTfWulVvpNPl6DB2vlFBygzsgtTm4DpAk2wMVtDAfH/EUf18kBG/+

QDKM9PgHlRekCzwLAGPiFqAk9HJQKwrxCWI2OSwAAE5zMHJJSHD3aJoU6TKRurhp

G1lKDn/Efn+u3FVjl14vkhgbxDWil99xIcO0zrHiCUd3DRkCQQD/07Y90BtnqFey

sFHeITaA57z+H8NszATKaOpKesjCFbNIcMHc0BD3iwySiG89LI68PwWtEnrxa93B

FKx6lFP1AkEA9sGkVxIQ8R4Ru5q4lfm6hQPBQtJYF2DBgzZViZsDzuOuFWmh2EK5

FHry7ugejbPCofc47yFCxBxPZt/EoHmhWwJBAP8w0xOp6gxmssR+ecvY2aOQhsgA

K1L12LmIGl4dSPHB78sNH3UC4EnuHKZ3Dm+5aNCDFUhlrNnyPYyC8OJ935kCQQDx

FRQZNb9ztCsjHfFGJi1Dk/2X6abDgHbQWZ+Mx/Uah3wn04KapeXpyo3bONHRJFX+

pGntyJNQw1AYdHvJRcyNAkB9Ulyxvubh/xfVIHliKFh1RHkf212W3q3s4WlFRDip

GImb4H6wHQwwyIbwnG5gRaOYMelMjHErB8nHv/+4vd62

-----END RSA PRIVATE KEY-----

-----BEGIN CERTIFICATE-----

MIIB+TCCAWICAQEwDQYJKoZIhvcNAQEFBQAwRTELMAkGA1UEBhMCQVUxEzARBgNV

BAgTClNvbWUtU3RhdGUxITAfBgNVBAoTGEludGVybmV0IFdpZGdpdHMgUHR5IEx0

ZDAeFw0wNjA3MTIwNzQ5NTBaFw0wNjA4MTEwNzQ5NTBaMEUxCzAJBgNVBAYTAkFV

MRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5ldCBXaWRnaXRz

IFB0eSBMdGQwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAPaW8/ZuVJOYSX7q

EGv7NUvw+6RgMm3LjI9GWexOpoSY7PWvIK1zd9d8anG9cqhnjZnwGMTigTsiskMi

g5UmSMCFbUkDFrC3XwmjSeHn1oAkwyK52SXCcyQvHZYurv0xGz9uXp6khAxxatS+

uoTC8v6+nDC3DCqXn/EWKY+qU+0XAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEANK35

BNKwrQuxLcAu406siXOQ5SU1d7zFB4Jp9LWcR2CXxngztmUryTk4zWEWOpQzy/bT

+tjRZLhtGQqUypNOo2wESjlEh1+sLiSBHErIaXpRHaVoWlq+yD2zMtdNuB3IFcId

wGLQkvMV8OigZhDGfCtsvGYFog1xmKk18SZHcR8=

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE-----

MIICoDCCAgmgAwIBAgIBADANBgkqhkiG9w0BAQQFADBFMQswCQYDVQQGEwJBVTET

MBEGA1UECBMKU29tZS1TdGF0ZTEhMB8GA1UEChMYSW50ZXJuZXQgV2lkZ2l0cyBQ

dHkgTHRkMB4XDTA2MDcxMjA3NDc1MloXDTA2MDgxMTA3NDc1MlowRTELMAkGA1UE

BhMCQVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNVBAoTGEludGVybmV0IFdp

ZGdpdHMgUHR5IEx0ZDCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAlX/aSX2G

7VRbQgEvDYO2ALFrwAUF3Ptc4IBY4ouY9oEEFYOpsuQcZUAfEMutnQ8+n5/hwKKG

+F1+Tz7u06q+zkN2sE9EvU5xBVCoIM9GP+mIgOqSgNSdA1zf7c3bnJXxsrGKljJg

B7DCZoaKqn6udhVwSxtJAbB4TfEiI+0jiHsCAwEAAaOBnzCBnDAdBgNVHQ4EFgQU

WN7cMk4ie3WI44p2j4SdSv+xqvgwbQYDVR0jBGYwZIAUWN7cMk4ie3WI44p2j4Sd

Sv+xqvihSaRHMEUxCzAJBgNVBAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEw

HwYDVQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCAQAwDAYDVR0TBAUwAwEB

/zANBgkqhkiG9w0BAQQFAAOBgQAsPBL+SyO4tytnjDx874qap21SiBj6ha8DrLLB

TY1W2KHzKdjv1tAweF9z914HNQU594fB7XtDa1VMT3VOZ1EKJk+NOd3Wnbyn6Chy

KjZ4EOcE9BZjuSmvJlGIVtRrN2LrU7cSHFxoY8FUtDYpox1lUoiiZmVVuTrxv/1u

DVnk8A==

-----END CERTIFICATE-----

NOTE

The above file contains the server’s private key, certificate and (the final block)
the digital certificate of the trusted entity that ‘signed’ the server’s certificate.

Configuration of the 3 settings mentioned above are sufficient in order that the SIP
service may negotiate secure sessions with a variety of remote TLS applications. For
such a simple configuration, the digital certificates used should be created using the
RSA public key algorithm as this provides authentication, encryption, and secrecy.
New certificates may be loaded at runtime through a call to

sip_load_tls_configuration().

MAN1762 PUBLIC 147

Additional parameters, beyond the simple configuration exemplified above, may be
provided to further tailor the cryptographic characteristics of the negotiated sessions.
Again, note that the 3 basic settings mentioned above are quite adequate for most
secure sessions. The additional, ‘advanced’, parameters are briefly explained below:

TLS_VerifyPeer = <0 or 1>

This setting forces the TLS software to attempt to authenticate the remote peer.
Additionally, an application running as a server would insist on presentation of a
certificate by the client application, and fail the handshake on it’s absence.

TLS_VerifyDepth = <n>

Where n is a positive integer or zero.

This setting configures the maximum depth to which certificates may be chained. To

explain further: a server certificate may be signed by certificaten where

certificaten itself is not a certificate trusted by the peer; provided that certificaten
is signed by a trusted party. This process, that is the delegation of certificate signing
to an intermediary, may be repeated. Hence, the above setting ‘TLS_VerifyDepth’ is
provided in order that the extent of this delegation be limited to a specified number of
intermediaries. Zero for this parameter yields default behaviour: no verify depth
checking.

TLS_DH512File = <path to 512-bit Diffie-Hellman file>

TLS_DH1024File = <path to 1024-bit Diffie-Hellman file>

The above settings permit the TLS application to provide Diffie-Hellman (DH)
parameter files. There are 2 reasons why the application writer may wish to support
DH parameters. Firstly, in the case of the certificates being based upon DSA keys, no
encryption mechanism is provided by the DSA keys: the DH parameters may be used
to provide this mechanism which is essential in the negotiation of keys used for the
symmetric exchange. Secondly, when the certificates are based on RSA keys, where
an encryption mechanism is available, the DH parameters provide additional security
in the form of ‘forward secrecy’.

TLS_PostConnectionCheck = <0 or 1>

Attempting to authenticate the peer through use of the TLS_VerifyPeer options above
does not always provided the required level of security. Firstly, a NULL certificate is
considered valid by the verify peer mechanism and secondly, any certificate signed
by the CA will also be considered valid. Nothing prevents an attacker from acquiring
their own certificate signed by the CA and then masquerading as a genuine peer.
This may be prevented by performing a DNS lookup on the fully qualified domain
name (FQDN) contained within the certificate and comparing it with the known IP

address of the remote party. If TLS_PostConnectionCheck is set, both of these
additional checks will be performed.

NOTE

This product includes cryptographic software written by Eric Young
(eay@cryptsoft.com).

MAN1762 PUBLIC 148

Appendix E: Using the Tel URI scheme
The Tel URI scheme is another scheme supported in the formation of the To and
From headers based on RFC 3966. This scheme is used to support telephone

numbers and is used mainly in the API commands sip_openout() and
sip_send_out_of_dialog_request().

A Route header must be included in each request. If ipt_set_sip_proxy() has been
used to configure a global outbound proxy then this happens automatically.Otherwise
the Route header should be included as one of the custom_headers.

For example:

SIP_OUT_PARMS outx;

INIT_ACU_STRUCT(&outx);

outx.net = sipPort;

outx.destination_addr = “tel:+1-555-01234”;

outx.originating_addr = “tel:863-6789;phone-context=+1-914-555”;

outx.custom_headers = “Route: <sip:10.202.205.219:5060;lr>”;

// This field must be null terminated

// setup SIP_OUT_PARMS

rc = sip_openout(&outx);

MAN1762 PUBLIC 149

Appendix F: Quality Of Service for Windows(DSCP)
For Windows, consult the latest Technet documentation for Policy-based Quality of
Service for the version of your operating system.

Here are examples of how you would configure sipserv.exe to use a particular DSCP
value.

MAN1762 PUBLIC 150

MAN1762 PUBLIC 151

MAN1762 PUBLIC 152

MAN1762 PUBLIC 153

MAN1762 PUBLIC 154

• ACULAB.COM

Contact us

Phone

+44 (0) 1908 273800
(UK)

+1 (781) 352 3550
(USA)

Email

info@aculab.c

om

sales@aculab

.com

support@acul

ab.com

Socials

@
a
c
u
l
a
b

a
c
u
l
a
b

• ACULAB.COM

@
a
c
u
l
a
b

a
c
u
l
a
b

mailto:info@aculab.com
mailto:info@aculab.com
mailto:sales@aculab.com
mailto:sales@aculab.com
mailto:support@aculab.com
mailto:support@aculab.com
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab

	1 Introduction
	1.1 Scope
	1.2 Overlap of the extended SIP API and generic call control API
	1.2.1 Extended versions of existing generic API functions
	1.2.2 SIP/SDP specific routines targeted towards third party call control and re-INVITE handling
	1.2.3 Routines supporting the extended architecture
	1.2.4 Miscellaneous
	1.2.5 Out of dialog messages
	1.2.6 Subscription API
	1.2.7 Transports
	1.2.8 IPv6
	1.2.9 Asynchronous calls

	2 Configuring the SIP service
	2.1 SIP service logging configuration
	2.2 Session timer configuration
	2.3 SIP header configuration
	2.4 TLS configuration
	2.5 Distributed SIP settings
	2.6 IPv6
	2.7 Listen Parameters
	2.7.1 IPv6 Listen Addresses

	2.8 Overload Monitor
	2.9 Miscellaneous global settings
	2.10 Media Handler Plugin Settings

	3 Interface definition (APIs)
	3.1 sip_open_port() – open a SIP call control port

	sip_port
	3.2 sip_openout() - open for outgoing call
	3.3 sip_openin() - open for incoming call
	3.4 sip_accept() - accept incoming call
	3.5 sip_details() - get call details

	The handle field is used to identify the call that is to be examined. This field is mandatory.
	3.6 sip_free_details() - return memory allocated by sip_details()
	3.7 sip_incoming_ringing() – send incoming ringing

	The handle field identifies the call that will send the incoming ringing message. This field is mandatory.
	3.8 sip_progress() - send progress information
	3.9 sip_send_invite_response() - Send response to initial INVITE
	3.10 sip_feature_send() - sending feature information
	3.11 sip_media_propose() – send a media proposal
	3.12 sip_media_accept() – accept a media proposal
	3.13 sip_media_request_proposal() – request a media proposal
	3.14 sip_media_reject_proposal() – reject a media proposal
	3.15 sip_send_request() - send a mid call SIP request
	3.16 sip_send_response() - send a mid call SIP response
	3.17 sip_set_reason_phrase() – modify a SIP response reason phrase
	3.18 sip_add_answer_challenge_credentials() – provide authentication credentials
	3.19 sip_remove_answer_challenge_credentials() – remove authentication credentials
	3.20 sip_disconnect() – send a 3xx response, CANCEL or BYE or response to BYE
	3.21 sip_recall() – call an alternative address
	3.22 sip_set_tls_private_key_password() – pass a password for a TLS private key
	3.23 sip_load_tls_configuration() – load a new set of TLS certificates
	3.24 sip_set_message_notification() - declare an interest in out of dialog messages
	3.25 sip_send_out_of_dialog_request() - send an out of dialog request
	3.26 sip_send_out_of_dialog_response() - send an out of dialog response
	3.27 sip_read_request() - collect an out of dialog request
	3.28 sip_read_response() - collect an out of dialog response
	3.29 sip_read_out_of_dialog_failure () – collect out of dialog failure notification
	3.30 sip_free_message()- free memory associated with out of dialog notification
	3.31 sip_sub_subscriber() – SUBSCRIBE to an event package
	3.32 sip_sub_notifier() – wait for SUBSCRIBE requests to a specific event package
	3.33 sip_sub_accept() – accept or acknowledge a SUBSCRIBE request

	The handle field identifies the subscription which is to be accepted. This field is mandatory.
	3.34 sip_sub_notify() – NOTIFY a subscriber of a state change in an event package

	The handle field identifies the subscription that is to send the NOTIFY message. This field is mandatory.
	3.35 sip_sub_cancel() – cancel an existing subscription

	The handle field identifies the subscription that is to be cancelled. This field is mandatory.
	3.36 sip_sub_release() – release the internal resources associated with a subscription

	The handle field identifies the subscription that is to be released. This field is mandatory.
	3.37 sip_sub_fetch() – request an immediate fetch of subscription state

	The handle field identifies the subscriber that is to request the fetch of state. This field is mandatory.
	3.38 sip_set_global_tos() – Change the ToS (Type of Service)

	The tos_value field is an 8-bit value used to allow the network equipment to prioritise certain traffic at times of high load. The 6 MSB correspond to the DSCP (Differentiated Services Codepoint) value which determines the flow path of datagram packet...
	4 SIP specific structures
	4.1 ACU_RAW_MESSAGE_BODY
	4.2 ACU_IP_ADDRESS
	4.3 ACU_PAYLOAD
	4.4 ACU_MISCELLANEOUS_MEDIA_ATTRIBUTE
	4.5 ACU_MEDIA_DESCRIPTION
	4.6 ACU_MEDIA_OFFER_ANSWER
	4.7 ACU_MEDIA_SESSION
	4.8 ACU_SIP_MESSAGE
	4.9 ACU_STRING_LIST
	4.10 ACU_REDIRECT_INFO
	4.11 ACU_SUBSCRIPTION_INFO

	5 Dual redundant SIP service (DRSS)
	5.1 Description
	5.2 Terms used during this section
	5.3 Pre-requisites, restrictions and usage information
	5.4 How it works
	5.4.1 Example

	5.5 Configuration
	5.5.1 Application configuration
	5.5.2 SIP server configuration
	5.5.2.1 IPC configuration
	5.5.2.2 Fault tolerance configuration options

	5.6 API for resilient SIP service
	5.6.1 sip_rss_get_server_details() – get resilient server status

	The server_details field is a pointer to a RSS_SERVER_DETAILS structure. This structure contains the following fields:
	This field contains the IP address of a SIP server, which is used to differentiate between the servers forming the resilient SIP service.
	This field contains the port number that the SIP server is listening on.
	This field holds a value reflecting the current ‘fault tolerant’ state for this server. This value will be one of the following:
	RSS_NONE not capable of resilience
	RSS_NOT_CONFIGURED not configured
	RSS_PASSIVE working as a passive server
	RSS_ACTIVE working as an active server
	RSS_FAILED currently not working correctly due to error
	5.6.2 sip_rss_maintenance() – initiate a takeover from an application
	5.6.3 sip_target_refresh() – update the route set for a call
	5.7 Events for resilient SIP service
	5.7.1 Global events
	5.7.2 Call events

	Appendix A: SIP specific events
	Appendix B: Raw SDP usage
	Appendix C: Receipt of raw SIP messages
	Appendix D: Using TLS to provide security
	Appendix E: Using the Tel URI scheme
	Appendix F: Quality Of Service for Windows(DSCP)

