AW Lo W ACULAB.COM

Aculab digital
telephony software

o

DPNSS call control
API guide

MAN1140 Revision 6.8.7




PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab plc and may be the
subject of patents pending or granted, and must not be copied or disclosed without prior
written permission. It should not be used for commercial purposes without prior agreement in
writing.

All trademarks recognised and acknowledged.

Aculab plc endeavours to ensure that the information in this document is correct and fairly
stated but does not accept liability for any error or omission.

The development of Aculab’s products and services is continuous and published information
may not be up to date. It is important to check the current position with Aculab pilc.

Copyright © Aculab plc. 1998-2023 all rights reserved.
Document Revision

Rev Date By Detail

5.0 Sep For version 5.0.1 DPNSS enhanced call drivers
1998

5.0.1 Oct DJL | API change and review
2001

5.0.2 May DJL | Minor changes to section 3
2002

5.9.1 July DJL | Addition of call back when free appendix
2002

5.10 Mar DJL | Addition of new call-back functions
2003

6.0.0 09.05.05 | DJL | Updates for V6 software

6.0.1 05.10.05 | DJL | Additional clarification of feature messages added
6.4.0 02.12.05 | DJL | Updates for 6.4.0 release

6.4.1 18.01.06 | DJL | Small changes/typos following header file review

6.4.2 29.11.06 | EC | Addition of signalling message reference information

6.4.3d1 | 28.08.08 | MF | Addition of signalling message reference information

6.4.4 04.10.10 | DF | Removed references to withdrawn products
6.4.5 20.10.10 | EBJ | Updated to corporate fonts

6.4.6 11.11.10 | DF | Updated following QA assessment

6.4.7 16.11.10 | EBJ | Removal of Hyperlinks.

6.8.0 06.06.22 | DSL | Update page footers.
6.8.6 25.10.22 | DSL | Minor corrections.
6.8.7 13.02.23 | DSL | Update title page

MAN1140 Revision 6.8.7 PUBLIC Page 2



CONTENTS

1 INErOTUCHION. ... ————————————— 6
R T T« T T 7
2 Interface Definition (APIS)........cccovrerrerniinnss s ssseaes 8
2.1 feature_xparms - DPNSS feature support function library..........c.ccoourrninnnnnnnnnnssnnsnnns 8
2.1.1 DPNSS fEature MESSATES ....uvuuiiiieeeeieeeiiiiie e e e e e e e eeetrra e e e e e e e e earaaa e eaaes 9

2.2 dpns_openout() - DPNSS open for outgoing call..........cccoirrnmninnmnnnnsns 16
2.3 dpns_send_overlap() - DPNSS sending overlap digits/information...........ccccooovrerercncsnsnnnnns 18
2.4 dpns_call_details() - DPNSS get call details...........cccocrurnrrmrmrencssssnmnmnnnnnesesessssssesesesesssssssnnns 19
2.5 dpns_incoming_ringing() - DPNSS incoming ringing..........ccuummnmmmmnssmnmsmenssenssesnes 21
2.6 dpns_send_feat_info() - DPNSS send feature info...........ccceeeecnevcnnnnnnnnscsesenennnnsenescsessssnnnns 22
2.7 dpns_call_accept() - DPNSS accept incoming call ..o 24
2.8 dpns_getcause() - DPNSS get idle CAUSE........c.courmnrrmnmmnnmssnnssssssssss s 26
2.9 dpns_disconnect() - DPNSS disconnect call..........ccccoerurrnrnrnrnsnnnmnnnescsessnsnsssesesesesssssnnns 27
2.10 dpns_release() - DPNSS release Call ... 28
2.11 dpns_set_transit() - DPNSS set transit..........ccoovrvercvennninnnnssnssssesessssss s ssssesesessssssssnns 29
2.12 dpns_transit_details() - DPNSS transit details .........c.ccourrmerereresrsssmmsmenenesessssssssssesesesesssssssnens 30
2.13 dpns_send_transit() - DPNSS send transit...........c.cococeurmmmmnmresessssmsmsnesesmssssssssssssesesesesssssssnens 3
2.14 dpns_set_I2_ch() - DPNSS set layer 2 channel ... ssssesesesesssssnnns 31
2.15 dpns_|2_state() - DPNSS Layer 2 State...........cccornrrnmnnnnmessssssssssssssssssses 33
3 DPNSS feature call CONtrol .........ccorerecncsnrnesiressse s asas 34
3.1 set_feat_msg() - sending and receiving DPNSS feature messages ........cocoeumrrerereresessnsnnns 34
3.2 Call diversion immediate/busy (BTNR 188 section 11)...........ccocrrnnrnnsnsssssnessnssessssesesees 35
3.2.1 Incoming call diversion to another PBX ..., 35
3.2.2 Outgoing call diversion to another PBX ..., 35
3.2.3 Incoming call diversion on the same PBX..........cccccciieiiiiiiiiiiiiiicee e, 35
3.2.4 Outgoing call diversion on the same PBX.........cccccccviiiiiiiiiiiiiiiiiiiiniee, 35
3.2.5 Incoming call diVerting ..........ccouvviiiiiiiiiiiii 36
3.2.6 Outgoing call diVErtiNg .......ccuuuiiiiiieeiiecie e 36

3.3 Call diversion no reply (BTNR 188 S€CtioN 11)......cccevenrrrinmnmrensmmncnnssnessssesssssesssssssssssesssseses 36
3.3.1 Incoming call diversion to another PBX ..o, 36
3.3.2 Outgoing call diversion to another PBX .........c..ooouiiiiiiiiiiiiiiiieeeeeee, 37
3.3.3 Incoming call diversion on the same PBX..........cccccoiieiiiiiiiiiiiiiieeeeee, 37
3.3.4 Outgoing call diversion on the same PBX.........ccccccvviiiiiiiiiiiiiiiiiiiinne, 37
3.3.5 Incoming call diVErtiNg .........uuuiiiiiieiiiccee e 37
3.3.6 Outgoing call diVerting .......co.uuiii i 37

3.4 Diversion validation (BTNR 188 section 11) ... 38
3.4.1 Incoming diversion validation.................uiiiiiiiiii e 38
3.4.2 Outgoing diversion validation.................ooiiiiiiiii e 38

3.5 Call hold (BTNR 188 SECHON 12) ......ccoervererermrresrnsnsesssssssesssssssessssessessssssssssssessssssesssssssesssssssenss 38
3.5.1 Application initiated call hold.............oooiiiiiii 38
3.5.2 Remote initiated call NOId.............coooii 39

3.6 Enquiry call (BTNR 188 SECtiON 13).......ccovuirrinmrmmninnsrinssissssssssssssessssssssssssssssssessssesssssses 39
3.6.1 Outgoing enquiry Call.........oouuuiiiii e 39
3.6.2 Incoming enquiry Call........ooouumiiiii i 39

3.7 Call transfer (BTNR 188 seCtion 13) ......ccconirnimnnnnnssssssssssssssssesssessssses 39
3.7.1 Application initiated call transfer .............cccooii i 39
3.7.2 Remote party initiated call transfer ... 40

3.8 DPNSS transit WOrKiNg .........ccceevermnrmrnmnmscssssssssssssssesessssssssssssssessssssssssssssssessssssssssssssssesssssssssassns 40
3.9 Call back when free (CBWF) - BTNR 188 SeCtion 9........ccoourinrnirinninissnsssesssnsssesssssssessssessens 40

MAN1140 Revision 6.8.7 PUBLIC Page 3



3.9.1 OULJOING FEOUESE ......uuiitiiiiiiiiiiittiiieiiit e 41

3.9.2 INCOMING FEOUEST .....cvviiiie e e e e e e e e e e aaraa s 41
3.9.3 0utgoing free NOLIY ....vveeee e 41
3.9.4 INCOMING fre@ NOLITY .......uuiiiiiiiiiiiiiiiieii e 41
3.9.5 OUtgOING CANCEL......uuuiiiiiiiiiiiiiiiiit e 41
3.9.6 INCOMING CANCEL.......coviiiiiii i e 42
3.9.7 OutgoinNg Call SETUP ......uuuuiiiiiiiiiiiiiii it 42
3.9.8 INCOMING CAll SEIUP .....uuuiiiiiiiiiiiiiiiii e 42

3.10 Add on/conference (BTNR 188 Section 13).......cccvcecverennmrnnnenmscssnsssnnsssssesessss s sssesesesesssssssssnes 42
3.10.1 Application controlled add on/conference .............cccccuevvevmmmemiinnninnnennnnns 42
3.10.1.1 Conference establishment...........ccccccceeiiiiiiiiiiiiii e, 42
3.10.1.2 ACtiVE CONfEIENCE .......cceiiiiieiiiiii 43

3.10.2 Remote add ON/CONFEIENCE.........uuuuuiiiiiiiiiiiiiiiiiiiiiiieiiabiieeeeeaneeeeeeeaeeee 44
3.10.2.1 Remote conference establishment ...........cccccccvviiiiiiieiiiiiiiinnnnn. 44
3.10.2.2 Active remote CONfErencCe ..........cccccvvvviiiiiiiiiiiiiieee 44

3.11 Executive intrusion (BTNR 188 section 10)..........cccccoevennnnnncnsnsnnnnnnnesessss s nsssesesesessssssssnes 45
3.11.1 Application controlled intrusion without prior validation ........................ 45
3.11.1. 1 INtrUSION FEOUEST.....cciiieeiiiee et 45
3.11.1.2 INtrusion CONNECHION .......ccovviiiiiiiiiiieieeeeee e 46
3.11.1.3  INtrUSION @CHIVE ...uieeei e 47
3.11.1.4 Intrusion WItRAraw.............eiiiiieiiiicee e 47

3.11.2 Application controlled intrusion with prior validation ..................cccc.uue... 48
3.11.2.1 Prior validation intrusion reqUESt..........c..ccevvvveviiiiiiee e, 48
3.11.2.2 Prior validation intrusion establishment..............ccccooeevvvviiiinnnnnn. 49

3.11.3 Network controlled intrusion without prior validation..................cccc........ 50
3.11.3.1 Remote intrusion request without prior validation ..................... 50
3.11.3.2  INtrusSion CONNECLION ......cuuuuiiiieeeiiieiiiiiae e e e et e e e 51
3.11.3.3  INtrUSION @CHIVE ....ieeeiiieeeecee e 51
3.11.3.4 Intrusion WItRAraW............covviiiiiiiiieeeee 52

3.11.4 Network Controlled Intrusion With Prior Validation.................cccccevvvvnnn. 53
3.11.4.1  INtrusion REQUEST .......ccoiiiiiiiiiiiiii 53

3.11.5 Incoming Protection rEQUEST...........ceiiiieeiiieiicee e 53
3.11.6 Outgoing Protection rEQUEST...........eiiii e 53
3.12 Extension Status CallS...........cocoermmermrmnesssssmsmsnesesesesssssssssesesessssssssssssesesesssssssssssesessssssasssanes 55
3.12.1 Application Initiated Extension Status Call..............ccccccvvieeiieeeeiiiiiiinnnnn. 55
3.12.2 Remote Initiated Extension Status Call.................euvvieiiiiiiiiiiiiiiiiiiiininn. 55
3.13 DPNSS Call Back MeSSagiNng .........couuurersssssemssesmssssesmssssssssssessssssesssssssssssssssssesssssssssssssssssssseas 55
3.13.1 Application Initiated Call Back REQUESL..........cccceveeeiiiiiiiiiiie e, 55
3.13.2 Application Initiated Call Back Cancel..........ccccoeeeeiiiiiiiiiiiiniieeecceeiiiinn, 56
3.13.3 Remote Initiated Call BaCk REQUEST ............uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiies 56
3.13.4 Remote Initiated Call Back Cancel............couviiiiiiieiiiii e, 56
3.14 Charge RepOrting ... ssssassans 56
3.14.1 Application Initiated Charge ACtIVatiON.............uuvueuriiiiiiiiiiiiiiiiiieiiiieieenns 56
3.14.2 Remote Initiated Charge ACtivation...............uiiiiieeiiiiiiiiii e, 57
3.14.3 Application Initiated Account Code Indication ............ccccceeiiiieerieeiiinnnnnn. 57
3.14.4 Remote Initiated Account Code Indication ...........cccoeeevvvvveiiiiiiiieeenneennnns 57
3.14.5 Application Initiated Account Code ReqUESE ........ccceeeevvvviiiiiiiiieeeereenans 57
3.14.6 Remote Initiated Account Code ReqUESt .........ccoeeveviiiiiiiiiiieeeeeeeeiiiinn, 57
3.14.7 Application Initiated Call CoSt DetailS ..............euvuvuiiiimiiiiiiiiiiiiiiiiiiiiinnnns 57

3.15 DPNSS JQYEr 2........cecereccrrresssesssse s s se s s s sns s s s sse s sssss s sss s s assnsnenns 58
3.16 DPNSS non specified information ..o 58
317 DPNSS tXL.....ccccurrrcsrrereessrsessssesessssesssssse s ssssss s ss s ssessssssesssnssesssssssssssssssssssssessssssassnsneans 59
0 I 111G |0 T 59
3.19 Sending DPNSS raWw MESSAQES ........couriurenmssmssessssmsssssssissssssesssssssssss s sssssssssesssssssssssssssessans 59
3.20 Charge aCCOUNt COURS .....uvmrmrrrmrmmrmrrrreresessssssssss s ess s e e s s s s s s e e s ansnsnes 60

MAN1140 Revision 6.8.7 PUBLIC Page 4



£

Appendix A: Command Line SWItChes...........ccovnnnnnnnnn s 61
Appendix B: Error COES ........coummsssssssssssssssssssssssssssssssssssssssssssssss s ssssssssssssssas 62
Appendix C: Feature Details QUEUING........c.cocrummrrrmrinmnmsssnsnisssss s ssssssesssns 63

MAN1140 Revision 6.8.7 PUBLIC Page 5



1 Introduction

This functional specification describes the interface of a device driver capable of
providing the requirements of a ‘Layer 3’ interface to the signalling code (DPNSS)
when resident on an Aculab card.

The DPNSS driver has been written to support basic call control and the following
extra features:

e Call Diversion Immediate and Busy
e Call Diversion on No Reply

e Diversion validation

e Virtual calls

e Call Hold

e Enquiry Call

e Call Transfer

e Transit working

e Layer 2 channel control

¢ Non Specified Information (NSI)
e Text

e Trunk Identity

e Conference

e Executive Intrusion

e Sending raw DPNSS SIS messages
e State of destination Enquiry

e Number Presentation Restriction
e Charge Account Codes

e Call back when free

e Call back when next used

e Call back messaging

e Loop Avoidance

¢ Extension status calls

MAN1140 Revision 6.8.7 PUBLIC Page 6



CAUTION

This document is intended for use in conjunction with the DPNSS
Specification BTNR 188 ISSUE 5 (BT Document - Digital Private Network
Signalling System NO1 (DPNSS1)). Before using these features, the user
should be familiar with the Aculab Generic Call Control document (Aculab
Call Control Driver Interface Guide) and BTNR 188. (DPNSS1)).

If compliance with BTNR 188 is to be achieved, it is also recommended that
the compliance tables within BTNR 188 be adhered to, and that the
document BTNR 188T is used as a test specification.

This specification does not presume any particular environment. It is
intended for use under various operating systems. The functions are
defined as library calls where isolation from the operating system is
desired.

11  Scope

This functional specification is intended to be of use in the development of
applications that make use of the various DPNSS function calls.

This specification describes the initiation and control of an outgoing call, the reception
and control of an incoming call, and support of various DPNSS features. The control
of timeslots and streams is documented in the switch API guide.

MAN1140 Revision 6.8.7 PUBLIC Page 7



21

Interface Definition (APls)

The following section describes the interface of the library functions and the device
driver. Each function is described in terms of its calling parameters and the values
that the function will return. No particular operating system is assumed.

Enhancements to the Aculab API often require extension of the structures used as
parameters to Aculab API calls. To eliminate problems associated with this, the
following steps must be performed:

memset (&structure, 0, sizeof (structure));

structure.size = sizeof (structure);

In C and C++ programs, these steps can be replaced with the following macro,
defined in acu_type.h:

INIT ACU STRUCT (&structure) ;

feature_xparms - DPNSS feature support function library

DPNSS feature support uses a set of library function calls provided in addition to the
generic call control library.

The DPNSS function library enables the application to send and receive
instructions/information required to support the features specified at the start of this
document.

The additional library function calls are shown below:

dpns_openout open for outgoing call
dpns_send _overlap sending overlap digits/information
dpns_incoming ringing incoming ringing
dpns_call accept accept incoming call
dpns call details get call details
dpns_send feat info send feature information
dpns_disconnect disconnect call
dpns_release release call
dpns_getcause get idle cause

dpns_set transit set transit

dpns_send transit send transit

dpns_transit details transit details

dpns_set 12 ch set layer 2 channel
dpns_set 12 state set layer 2 state

The DPNSS feature xparms Structure is common to most of the above functions. It is
used in addition to the parameters used for Basic Call Control with the generic call
control library.

typedef struct feature xparms

{

ACU_INT msg[MAX_FEAT_MSG]; /* Feature information message */
ACU UCHAR call type; /* Call type - real or virtual */
ACU_CHAR digits[MAXNUM] ; /* Feature digits */
ACU CHAR cli[MAXNUM] ; /* Called Line Identity */
ACU_CHAR nsi[MAXNSI]; /* Non Specified Information */

MAN1140 Revision 6.8.7 PUBLIC Page 8



ACU_CHAR
ACU CHAR
ACU_UCHAR
ACU UCHAR
ACU_UCHAR
ACU UCHAR
ACU_UCHAR
ACU UCHAR

} FEATURE XPARMS;

msg

txt [MAXTXT]
tid[MAXTID]
clc;

held clc;
ipl;

icl;

routes

transits

; /* Text */
; /* Trunk ID */
/* Call/Called Line category */
/* Held Calling Line Category */
/* Intrusion protection level */
/* Intrusion capability level */
/* Remaining routes */
/* Remaining transits */

This parameter is used to send and receive DPNSS feature messages and may be
set to one of the following values, (the corresponding DPNSS identifiers are given in

brackets):
211

DPNSS feature messages

DIB — diversion immediate and busy

Mnemonic

DPNSS identifier and description

Aculab

Message
DIVERT IMMEDI
ATE

DVT I

Call divert immediate — used to indicate that the call
has been generated following call diversion
immediate. The array digits will contain the number
from which the calling party has been diverted.

DIVERT BUSY

DVT B

Call divert on busy— used to indicate that the call has
been generated following busy call diversion. The
array digits will contain the number from which the
calling party has been diverted

DIVERTING IMM

DVG_I

Call diverting immediate - Used to indicate that the
outgoing call has been generated following call
diversion immediate. The array digits must hold the
number from which the calling party has been
diverted.

DIVERTING BSY

DVG_B

Call diverting on busy - Used to indicate that the
outgoing call has been generated following busy call
diversion. The array digits must hold the number from
which the calling party has been diverted.

DIVERTED IMM

DVD_I

Call diverted immediate - An outgoing call has been
diverted immediately to another party on the same
destination PBX. The array digits will contain the
number of the party the call has been diverted to.

DIVERTED BSY

DVD_B

Call busy diverted — An outgoing call has been
diverted on busy to another party on the same
destination PBX. The array digits will contain the
number of the party the call has been diverted to.

MAN1140 Revision 6.8.7

PUBLIC Page 9




DR — diversion on no reply

DPNSS identifier and description

Aculab Mnemonic
Message
DIVERT NO REPL |DVT R
Y

Call Divert on no reply— This is received on an
outgoing call following ev_outcorng rINGING and
before connection. The application may choose to
simply ignore this message or divert the outgoing call
to the number given in the array digits.

DIVERTING RNR DVG R

Call diverting on no reply - used to indicate that the
call has been generated following call diversion on no
reply. The array digits will contain the number from
which the calling party has been diverted.

DIVERTED RNR DVD R

Call diverted on no reply— An outgoing call has been
diverted on no reply to another party on the same
destination PBX. The array digits will contain the
number of the party the call has been diverted to.

DV —diversion validation
Aculab Mnemoni

DPNSS identifier and description

Message (o)

DIV _VALIDATION | DIV V

Call Diversion Validation - used for a diversion

validation request. The application should respond to
the request by releasing the call via the function
dpns_disconnect OF dpns_release with

feature info.msg Set to either ACKNOWLEDGE OF REJECT.

MAN1140 Revision 6.8.7

PUBLIC Page 10




HD - call hold
Aculab Message

Mnemoni

C

DPNSS identifier and description

HOLD CALL

HOLD REQ

Call hold request - The application is requested to
place its party on hold (i.e. disconnect the speech
channel). The application must respond via the
function dpns_send feat info With the

feature info msg element set to either
ACKNOWLEDGE Ol REJECT.

HOLD_ACK ACK Hold Acknowledge

HOLD REJECT REJ Hold Reject

HOLD NOT SUPPORTED | SNU Hold not supported
RECONNECT CALL RECON Reconnect held call

EN - enquiry call

Aculab
Message

Mnemonic

DPNSS identifier and description

ENQUIRY ENOQ

Enquiry Call — used to indicate an enquiry call. The
element nhe1d c1c will be set to the calling line category
of the party placed on hold before enquiry call setup.

TR —call transfer

Aculab Message

Mnemonic |

DPNSS identifier and description

TRANSFER_O TRER Transfer call originating
TRANSFER T TRFR Transfer call terminating
TRANSFERRED TRED

Call transferred - the remote party has transferred a
connected call.

TRANSFERRED INFO

Call transfer information — Following the TRANSFERRED
message the Calling Line Identity and Calling Line
Category of the transferred party will be set in the
CLI and CLC elements.

El — executive intrusion

Aculab Message

INTRUSION REQUEST

nic
EI R

Mnemo

DPNSS identifier and description

Intrusion request - Indicates executive intrusion
request generated by remote PBX. The icl
element is set to the Intrusion Capability Level
of the requesting party.

PV_INTRUSION

EI PVR

Intrusion prior validation — Indicates intrusion
prior validation request generated by the remote
PBX. The icl element is set to Intrusion
Capability Level of the requesting

party.

INTRUSION ACK

ACK

Intrusion acknowledge — Used to indicate
acknowledge of intrusion request generated by
the application.

MAN1140 Revision 6.8.7

PUBLIC Page 11



Aculab Message DPNSS identifier and description

INTRUDING BI I Intruding - Used to indicate successful intrusion
on

remote party.

IPL_REQUEST IPL_R Intrusion protection level request - Remote PBX
intrusion protection level request.

IPL_RESPONSE IPL Intrusion protection level response — Remote
PBX intrusion protection level response. The ipl
element is set to the Intrusion Protection Level
of the responding party.

INTRUSION_WITHDRAW EI_W Intrusion withdraw - Remote PBX intrusion
withdraw.

WITHDRAW_ACK ACK Intrusion withdraw acknowledge () - Remote
PBX intrusion withdraw acknowledge.

WITHDRAW_NOT_SUPPORTED | SNU Withdraw not supported — Withdraw not

supported by remote PBX.

AO —add on
Aculab Message Mnemo DPNSS identifier and description
nic

ADD_ON_VALIDATION AD_V Add on validation () - The application is requested
to validate an add-on request. The application
must respond with either app_on_ack or
ADD ON REJ.

ADD_ON_ACK ACK Add on acknowledge ()

ADDED_ON AD_O Added on () - Remote PBX has formed a
conference including the application party.

ADD ON_REJECT REJ Add on reject ()

ADD_ON_NOT_SUPPORTED | SNU Add on not supported () - Indicates that the

remote PBX does not support the add-on feature.
Received in response t0 AbD ON_ VALIDATION

ADD_ON_CLEARDOWN AC_CDC | Add on clear down () - Sent by remote PBX to
instruct application to clear down a conference
(disconnecting all parties)

TWO_PARTY_O we Two party () - Sent by remote PBX to indicate two
party call following add on (application designated
as originating party). The cli and clc parameters
are set to the connected party details.

TWO_PARTY T we Two party () - Sent by remote PBX to indicate two
party call following add on (application designated
as terminating party). The cli and clc parameters
are set to the connected party details.

CBF - call back when free

Aculab Message Mnemonic DPNSS identifier and description
CBWE_REQUEST CBWEF-R Call Back When Free Request

MAN1140 Revision 6.8.7 PUBLIC Page 12



Aculab Message ' Mnemonic DPNSS identifier and description

CBWEF_ CANCEL CBWE-C

CBWE_FREE_NOTIFY CBWF-EFN Call Back When Free - Free Notify

RING OUT RO Ring Out

CALL BACK_COMPLETE CBC Call Back Complete

CBWF_CALL_SETUP_IMMEDIATE | CBWF-CSUI | Call Back When Free Call Setup
Immediate

CBWE_CALL_SETUP_DELAYED CBWE-CSUD | Call Back When Free Call Setup Delayed

CBM - call back messaging

Aculab Message | Mnemonic DPNSS identifier and description
CALL BACK MESSAGE REQ | CBM-R Ca" Back Messaglng Request
CALL BACK MESSAGE CAN | CBM-C Call Back Messaging Cancel

ES — extension status calls

Aculab Message Mnemonic DPNSS identifier and description

EXTENSION STATUS CALL | EST Extension Status Call - indicates that the call
being established is an Extension-Status Call.

CC —call charging

Aculab Message Mnemonic DPNSS identifier and description

CHARGE REQUEST CH-CR Charge reporting — cost request
CHARGE_UNITS_USED CH-UU Charge reporting — units used
CHARGE_ACTIVATE CH-ACT Charge reporting - activate
CHARGE ACCOUNT_ REQUEST | CH-ACR Charge Account Code Request
CHARGE_ACCOUNT_CODE CH-AC Charge Account Code

NPR — number presentation restriction

Aculab Message | Mnemonic | DPNSS identifier and description
NPR_A PARTY SUFFIX B | NPR-A Number presentation restriction - A party
(restriction domain)

LA —loop avoidance

Aculab Message = Mnemonic DPNSS identifier and description |
LOOP_AVOIDANCE LA Used to indicate the number of further transits
or routes are left before a call terminates. The
transits parameter is compulsory and the routes
parameter is optional. Both can be a value from
0 —25. A value of OxFF (255) in the routes
parameter will signal that this parameter is not
to be used.

CBF — call back when next used request

Aculab Message | Mnemonic | DPNSS identifier and description
CBWNU_REQUEST CBWNU-R Call Back When Next Used Request

Other feature messages

MAN1140 Revision 6.8.7 PUBLIC Page 13



Aculab Message ~ Mnemonic DPNSS identifier and description

NO_MSG Default to no instruction

ACKNOWLEDGE ACK Acknowledge - Used to acknowledge a feature
requested by the application.

REJECT REJ Reject (REJ) - Used to reject a feature
requested by the application.

STATE_OF_DEST_FREE SOD_F State of destination free (sop r) - Remote party
is free or in the ringing state.

STATE_OF_DEST_BUSY SOD_B State of destination free (sop B) — used to
indicate that the remote party is busy.

STATE_OF_DEST_REQ SOD_R State of destination free (sop r) — used to find
out if diversion bypass is allowed.

DIV_BYPASS DIV_BY Diversion Bypass (p1v_BY)

RECONNECT Reconnect held party.

NIGHT SERVICE DIVERT |NS-DVT Night Service Divert (ns-pvT)

FEAT NOT SUPPORTED Feature not supported - Feature requested by
the application is not supported by the
destination PBX.

DENSS_RAW Send raw DPNSS message from txt field. - Used
to indicate to the driver, and firmware, that the
txt field contains raw DPNSS information and
should be passed unparsed.

The msg element is an array, which can hold up to max_reaT mMsc feature instructions.
The default setting for msg is no_Msc. When sending a message, the application
should begin with the first nsg element. All remaining elements should be set to

NO MSG.

Later sections of this document refer to sending and receiving feature messages.
Feature messages are sent by the application to the driver and vice versa using
feature xparms.msg.

call type

This element is used to indicate call type (real or virtual). ca11_type is valid for both
incoming and outgoing calls and should always be set to REAL OF VIRTUAL.

realL - Only used if the ts element has been set to -1. The device driver will use
the first available real channel.

VIRTUAL - IS only used if the ts element has been set to -1. The device driver will
use the first available virtual channel.
digits
Is an array of IA5 digits used in conjunction with feature instructions during call
control.

cli
Is an array of I1A5 digits used for Calling/Called Line Identity. It is valid for both
incoming and outgoing calls.

nsi
Is an array of IA5 characters used to send and receive Non-Specified-Information.

txt

MAN1140 Revision 6.8.7 PUBLIC Page 14




Is an array of IA5 characters used to send and receive text. This parameter can be
used to send ‘raw’ DPNSS strings in Initial Service Request Messages.

tid

Is an array of IA5 characters used to send and receive the trunk identity string.

clc

Is used to send and receive Calling/Called Line. category.clc may be set to one of
the following values:

NO_CLC Default value
ORDINARY DPNSS CLC_ORD
DECADIC DPNSS CLC DEC
DASS?2 DPNSS CLC DASS2
PSTN DPNSS CLC_PSTN
MF5 DPNSS CLC MF5
OPERATOR DPNSS CLC_OP
NETWORK DPNSS CLC NET
CONFERENCE DPNSS CLC_CONF

If no CLC is specified, the driver will default to orRDINARY (DPNS CLC ORD).

held clc
Used in conjunction with Enquiry Call to send and receive the Calling Line Category
of a held party. ne1d c1c may be set to one of the following values:

NO_CLC Default value
ORDINARY DPNSS CLC ORD
DECADIC DPNSS CLC_DEC
DASS2 DPNSS CLC DASS2
PSTN DPNSS CLC_PSTN
MF5 DPNSS CLC MF5
OPERATOR DPNSS CLC_OP
NETWORK DPNSS CLC NET
CONFERENCE DPNSS CLC_CONF

ipl

Is used to send and receive Intrusion Protection Levels. Refer to BTNR 188 Section
10 Paragraph 2.2.1 for the valid range of values.

icl

Is used to send and receive Intrusion Capability Levels. Refer to BTNR 188 Section
10 Paragraph 2.2.1 for the valid range of values.

Parameters not used in the feature xparms Structure must be initialised to their
default values.

routes

Is used signal the number of further routes that call is allowed to attempt. Refer to
BTNR 188 Section 38 for more details. Can have a value from 0 — 25. A value of Oxff
(255) means that the parameter will be omitted or has been omitted on receipt. This
parameter is optional for loop avoidance.

Parameters not used in the feature xparms Structure must be initialised to their
default values.

Transits
Is used signal the number of further transits that call is allowed to attempt. Refer to

MAN1140 Revision 6.8.7 PUBLIC Page 15



2.2

BTNR 188 Section 38 for more details. Can have a value from 0 — 25. This parameter
is mandatory for loop avoidance.

Parameters not used in the feature xparms Structure must be initialised to their
default values.

dpns_openout() - DPNSS open for outgoing call

This function allows an application to initiate an outgoing call. The function registers
the outgoing call requirement with the device driver, which if satisfied with the calling
parameters, will return a unique call identifier, the handle. The call handle must be
used in all successive call control related operations on the driver.

Synopsis

ACU ERR dpns_openout (DPNS OUT XPARMS * outdetailsp);

typedef struct dpns out xparms

{

ACU_ULONG size;

ACU CALL HANDLE handle;

ACU_PORT_ID net;

ACU_INT ts;

ACU_INT cnf;

ACU_INT sending complete;
ACU_CHAR destination addr[MAXNUM] ;
ACU_ CHAR originating addr[MAXNUM];
ACU_ACT app_context token;

ACU_EVENT QUEUE
union
FEATURE XPARMS

} DPNS OUT XPARMS;

queue_id;
uniquex unique xparms;

feature info;

typedef struct feature xparms

{

ACU_INT msg[MAX FEAT MSG];
ACU_UCHAR call type;
ACU_CHAR digits[MAXNUM] ;
ACU_CHAR cli[MAXNUM] ;
ACU_CHAR nsi[MAXNSI];
ACU_CHAR txt [MAXTXT] ;
ACU_CHAR tid[MAXTID];
ACU_UCHAR clc;
ACU_UCHAR held clc;
ACU_UCHAR ipl;
ACU_UCHAR icl;

} FEATURE XPARMS;

PUBLIC Page 16

MAN1140 Revision 6.8.7



Call input parameters

The dpns_openout function takes a pointer, outdetailsp, to a structure

dpns_out xparms. dpns_out xparms has the same format as the out xparms Structure
described in the Generic Call Control specifications, but with the addition of the
feature info Structure.

dpns_out_xparms () Must be initialised with the values as defined for ca11 openout ()
in the gGeneric call control API specification.
Feature xparm input parameters

In addition to the Generic Call Control input parameters, the feature info parameters
may be set to the following values when used with dpns_openout ():

Msg
The valid msg parameter values for this call include:

NPR_A PARTY SUFFIX B
NIGHT SERVICE DIVERTING
DIVERTING IMM
DIVERTING BSY
DIVERTING RNR
DIV_BYPASS

ENQUIRY

DIV_VALIDATION
INTRUSION REQUEST
PV_INTRUSION
CALL_BACK_MESSAGE_ REQ
EXTENSION STATUS CALL
CBWF_REQUEST
CBWF_CANCEL

CBWF_FREE NOTIFY
CBWF_CALL_SETUP_IMMEDIATE
CBWF_CALL_SETUP_DELAYED
CALL BACK MESSAGE CAN

DPNSS_ RAW

For descriptions of the feature xparms parameters and values, please refer to section
2.1

Return Values

handle

If successful, this will contain a unique (non zero) call identifier, which must be used
in all successive call related operations on the driver.

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.
Signalling messages transmitted

This will transmit at least an ISRMI or ISRMC. If there is a lot of information to
transmit then this may be followed by one or more SSRMI and optionally an SSRMC.
For further information, refer to BTNR 188.

MAN1140 Revision 6.8.7 PUBLIC Page 17



2.3

dpns_send_overlap() - DPNSS sending overlap digits/information

This function may be used to send the destination address of an outgoing call more
digits or feature information. The function may also be used any time that a valid
outgoing call handle is available and the state of that handle is Ev waTT FOR OUTGOING.
The outgoing call handle would have been obtained with either the ca11 openout or
dpns_openout functions.

Synopsis
ACU _ERR dpns send overlap (DPNS OVERLAP XPARMS *overlapp);
typedef struct dpns overlap xparms

{

ACU_ULONG size;

ACU_CALL HANDLE handle;

ACU_INT sending complete;
ACU_CHAR destination addr[MAXNUM] ;
FEATURE XPARMS feature_info;

} DPNS OVERLAP XPARMS;
typedef struct feature xparms

{

ACU_INT msg[MAX FEAT MSG];
ACU_UCHAR call type;
ACU_CHAR digits[MAXNUM] ;
ACU_CHAR cli[MAXNUM] ;
ACU_CHAR nsi[MAXNSI];
ACU_CHAR txt [MAXTXT] ;
ACU_CHAR tid[MAXTID];
ACU_ UCHAR clc;
ACU_UCHAR held clc;
ACU_UCHAR ipl;
ACU_UCHAR icl;

} FEATURE XPARMS;

Call input parameters

The dpns_send overlap () function takes a pointer; overlap, to a structure of type
dpns_overlap xparms. IN€ dpns overlap xparms Structure has the same format as the
overlap xparms Structure, described in the Generic Call Control specifications, with
the addition of the DPNSS feature info Structure. The dpns overlap xparms () must
be initialised with the values specified for ca11 send overlap () in the Generic Call
Control specifications.

Feature xparm input parameters

In addition to the Generic Call Control input parameters, the feature info parameters
may be set to the following values when used with dpns send overlap():

MAN1140 Revision 6.8.7 PUBLIC Page 18



24

msg
The valid msg parameters for this call include:

DPNSS_ RAW

NIGHT SERVICE DIVERTING

DIVERTING IMM

DIVERTING BSY

DIVERTING_ RNR

ENQUIRY

DIV _VALIDATION

INTRUSION REQUEST

PV_INTRUSION

For descriptions of the feature xparms parameters and values, please refer to
Section 2.1

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

Signalling messages transmitted

This will transmit an SSRMI and/or SSRMC. For further information, refer to BTNR
188.

dpns_call_details() - DPNSS get call details

This function is used to read the details of an incoming/outgoing DPNSS call
connected through the device driver.

Synopsis
ACU ERR dpns _call details (DPNS DETAIL XPARMS * detailsp):;
typedef struct dpns detail xparms

{

ACU_ULONG size;

ACU_CALL HANDLE handle;

ACU_LONG timeout;

ACU_INT valid;

ACU_INT stream;

ACU_INT ts;

ACU_INT calltype;

ACU_INT sending complete;

ACU CHAR destination addr [MAXNUM];
ACU_CHAR originating addr [MAXNUM] ;
ACU CHAR connected addr [MAXNUM] ;
ACU CHAR redirected addr [MAXNUM];
union uniquex unique xparms;

FEATURE XPARMS feature info;

} DPNS DETAIL XPARMS;

typedef struct feature xparms

MAN1140 Revision 6.8.7 PUBLIC Page 19



ACU_INT msg[MAX_FEAT MSG];

ACU_UCHAR call type;
ACU_CHAR digits[MAXNUM] ;
ACU_CHAR cli[MAXNUM] ;
ACU_CHAR nsi[MAXNSI];
ACU_CHAR txt [MAXTXT] ;
ACU_CHAR tid[MAXTID];
ACU UCHAR clc;

ACU_UCHAR held clc;
ACU_UCHAR ipl;

ACU_UCHAR icl;

} FEATURE XPARMS;

Call input parameters

The dpns call details() function takes a pointer, detailsp, to a structure
dpns_detail xparms. The dpns_detail xparms structure has the same format as the
detail xparms Structure, described in the Generic Call Control specifications, with the
addition of the DPNSS feature_info structure. In most instances, the

dpns detail xparms Must be initialised with the values specified for ca11 details() in
the Generic Call Control specifications. The exceptions are feature information and
app_context_token , Which are not used with DPNSS

Return Values

In addition to the information elements described for ca11 details () in the Generic
Call Control Specification, the structure feature info may contain the following
information:

Feature parameters

msg

All nsg parameter are valid for this call. For descriptions of the feature xparms
parameters and values, please refer to section 2.1

Call parameters

redirect_addr —a null terminated string of IA5 digits containing the redirected
number.

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

MAN1140 Revision 6.8.7 PUBLIC Page 20



2.5 dpns_incoming_ringing() - DPNSS incoming ringing
This function may be used to optionally send the ringing message to the network.

The function dpns_incoming ringing may be used after an incoming call has been
detected but before the call has been accepted. Use of the function will stop any
further destination address digits being received.

Synopsis

ACU ERR dpns_incoming ringing (DPNS INCOMING RING XPARMS *inringp);

typedef struct dpns incoming ring xparms

{

ACU_ULONG size;
ACU_CALL HANDLE handle;
FEATURE XPARMS feature info;

} DPNS INCOMING RING XPARMS;

typedef struct feature xparms

{

ACU_INT msg[MAX_FEAT MSG];
ACU UCHAR call type;
ACU_CHAR digits[MAXNUM] ;
ACU_CHAR cli[MAXNUM] ;
ACU_CHAR nsi[MAXNSI];
ACU_CHAR txt [MAXTXT] ;
ACU_CHAR tid[MAXTID];
ACU UCHAR clc;

ACU_UCHAR held clc;

ACU UCHAR ipl;

ACU UCHAR icl;

} FEATURE XPARMS;

Call input parameters

The dpns_incoming ringing () function takes a pointer, inringp, to a structure
dpns_incoming ring xparms. The structure must be initialised with the foIIowing
values before invoking the function.

The input parameter hand1e uniquely identifies the call that will send the incoming
ringing message.

Feature xparm input parameters
The feature info Structure is used to generate feature call information/instructions.

MAN1140 Revision 6.8.7 PUBLIC Page 21



msg
The valid nsg parameter values for this call include:

DPNSS RAW

NIGHT SERVICE DIVERT
NIGHT SERVICE DIVERTED
DIVERT IMMEDIATE
DIVERT BUSY

DIVERTED IMM
DIVERTED BSY

INTRUSION ACK

For descriptions of the feature xparms parameters and values, please refer to section
2.1
Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Signalling messages transmitted
This will transmit a NAM. For further information, refer to BTNR 188.

2.6 dpns_send_feat_info() - DPNSS send feature info

This function is used to send DPNSS feature information to the network following
call incoming ringing() Of dpns incoming ringing () ON aninconﬂng call and
EV_OUTGOING RINGING On an outgoing call.

Synopsis

ACU ERR dpns_send feat info (DPNS FEATURE XPARMS *featurep);

typedef struct dpns feature xparms

{

ACU_ULONG size;
ACU_CALL HANDLE handle;
FEATURE_XPARMS feature_info;

} DPNS FEATURE XPARMS;

typedef struct feature xparms

{

ACU_INT msg[MAX FEAT MSG];
ACU_UCHAR call type;
ACU_CHAR digits[MAXNUM] ;
ACU_CHAR cli[MAXNUM] ;
ACU_CHAR nsi[MAXNSI];
ACU_CHAR txt [MAXTXT];
ACU_CHAR tid[MAXTID];
ACU_UCHAR clc;

ACU_UCHAR held clc;
ACU_UCHAR ipl;

MAN1140 Revision 6.8.7 PUBLIC Page 22



ACU_UCHAR icl;

} FEATURE XPARMS;

Call input parameters

The dpns_send feat info () function takes a pointer, featurep, t0 a structure
dpns_feature xparms. The structure must be initialised with the following values
before invoking the function.

The input parameter hand1e uniquely identifies the call that will send the incoming
ringing message.
Feature xparm input parameters

The feature info Structure is used to generate DPNSS feature
information/instructions.

msg
The valid msg parameter values for this call include:

DPNSS_RAW
ADD ON_CLEARDOWN
ADD ON_VALIDATION
ADD ON_ACK
ADD ON REJECT
ADDED_ON
TWO_PARTY O
TWO_PARTY T
HOLD CALL
HOLD_ACK
HOLD REJECT
TRANSFER_O
TRANSFER T
RECONNECT CALL
CALL BACK_COMPLETE
DIVERT NO_REPLY
DIVERTED RNR
STATE_OF DEST FREE
RING OUT
ACKNOWLEDGE
REJECT
CHARGE_UNITS USED
CHARGE_ACCOUNT REQUEST
CHARGE_ACCOUNT_CODE
CHARGE_ACTIVATE
IPL_REQUEST
IPL RESPONSE
INTRUSION WITHDRAW
INTRUSION REQUEST

INTRUSION ACK

MAN1140 Revision 6.8.7 PUBLIC Page 23



2.7

WITHDRAW ACK

Other feature parameters used by this call, include:
nsi
txt
tid
ipl
icl
digits
For descriptions of the other feature xparms parameters and values, please refer to
section 2.1
Return Values
On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.
Signalling messages transmitted

This will transmit an EEMC or an LLMC (only with CHARGE_UNITS_USED). For
further information, refer to BTNR 188.

dpns_call_accept() - DPNSS accept incoming call

This function is used to send an incoming call connection message to the calling
party.

Synopsis

ACU _ERR dpns call accept (DPNS CALL ACCEPT XPARMS *call acceptp);

typedef struct dpns call accept xparms
{

ACU_ULONG size;
ACU_CALL_HANDLE handle;
FEATURE_XPARMS feature info;

} DPNS CALL ACCEPT XPARMS;

typedef struct feature xparms

{

ACU_INT msg[MAX FEAT MSG];
ACU_UCHAR call type;
ACU_CHAR digits[MAXNUM] ;
ACU_CHAR cli[MAXNUM] ;
ACU_CHAR nsi[MAXNSI];
ACU_CHAR txt [MAXTXT] ;
ACU_CHAR tid[MAXTID];
ACU_UCHAR clc;

ACU_UCHAR held clc;
ACU_UCHAR ipl;

ACU_UCHAR icl;

MAN1140 Revision 6.8.7 PUBLIC Page 24



} FEATURE XPARMS;

Call input parameters

The dpns_call accept () function takes a pointer, call acceptp, t0 a structure
dpns_call accept xparms. The structure must be initialised with the following values
before invoking the function.

handle
The input parameter hand1e uniquely identifies the connected call.

Feature xparm input parameters

The feature info Structure is used to generate DPNSS feature
instructions/information. The following values can be used by dpns call accept ():

Msg
The valid msg parameter values for this call include:

DPNSS_RAW
CHARGE_ACTIVATE
CHARGE ACCOUNT REQUEST

INTRUDING

Other feature parameters used by this call, include:
nsi
txt
tid
For definitions of the feature xparms parameters and values, please refer to section
2.1
Return Values
On successful completion a value of zero is returned otherwise a negative value will
be returned indicating the type of error.
Signalling messages transmitted

If the application has not sent ringing, then this will first transmit a NAM. Otherwise, it
will send a CCM. For further information, refer to BTNR 188.

MAN1140 Revision 6.8.7 PUBLIC Page 25



2.8 dpns_getcause() - DPNSS get idle cause
This function can be used to read the clearing cause when an incoming or outgoing
call goes to ev_1prE. The returned clearing cause will only be valid at ev_1pLE.
Synopsis
ACU _ERR dpns getcause (DPNS CAUSE XPARMS *causep) ;

typedef struct dpns cause xparms

{

ACU_ULONG size;
ACU_CALL HANDLE handle;
ACU_INT cause;
ACU_INT raw;

FEATURE XPARMS feature info;

} DPNS CAUSE XPARMS;

typedef struct feature xparms

{

ACU_INT msg [MAX FEAT MSG];
ACU_UCHAR call type;
ACU_CHAR digits [MAXNUM] ;
ACU_CHAR cli [MAXNUM] ;
ACU_CHAR nsi [MAXNSI];
ACU_CHAR txt [MAXTXT] ;
ACU_CHAR tid [MAXTID] ;
ACU_UCHAR clc;

ACU_ UCHAR held clc;
ACU_UCHAR ipl;

ACU_ UCHAR icl;

} FEATURE XPARMS;

Input Parameters

The dpns_getcause () function takes a pointer, causep, to a structure

dpns_cause xparms. The structure of dpns_cause_ xparms is the same as the
cause_xparms structure, described in the Generic Call Control specifications, with
the addition of the feature info Structure. dpns cause xparms Mmust be initialised
with the values described for ca11 getcause () in the Generic Call Control
specifications.

Return Values

In addition to the return values described in the Generic Call Control specifications,
the feature info may contain the following:

MAN1140 Revision 6.8.7 PUBLIC Page 26



2.9

Msg
The valid msg parameter values for this call can include:

ACKNOWLEDGE
REJECT

DIVERT IMMEDIATE
DIVERT BUSY

Other feature parameters used by this call, include:
nsi

txt

For definitions of the feature xparms parameters and values, please refer to section
2.1

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

dpns_disconnect() - DPNSS disconnect call

This function can be used to disconnect an incoming or outgoing call currently routed
through the driver. If the dpns disconnect () function is successful, the driver will start
the disconnect procedure and will return immediately to the calling process.

When the call has been disconnected, the event ev_1pre will be generated. The
dpns_release () function must then be used to give back the handle to the driver.
Synopsis

ACU_ERR dpns_disconnect (DPNS CAUSE XPARMS *causep) ;

typedef struct dpns cause xparms

{

ACU_ULONG size;
ACU_CALL_ HANDLE handle;
ACU_INT cause;
ACU_INT raw;

FEATURE XPARMS feat ure_info;

} DPNS CAUSE XPARMS;
typedef struct feature xparms

{

ACU_INT msg[MAX_FEAT MSG];
ACU_UCHAR call type;

ACU_ CHAR digits[MAXNUM] ;
ACU_CHAR cli[MAXNUM] ;
ACU_CHAR nsi[MAXNSI];
ACU_ CHAR txt [MAXTXT] ;
ACU_CHAR tid[MAXTID] ;
ACU UCHAR clc;

ACU_UCHAR held clc;

ACU UCHAR ipl;

ACU_UCHAR icl;

} FEATURE XPARMS;

MAN1140 Revision 6.8.7 PUBLIC Page 27



Input Parameters

The dpns_disconnect function takes a pointer, causep, to a structure

dpns_cause xparms. dpns_cause xparms is the same as the cause xparms Structure,
described in the Generic Call Control specifications, with the addition of the
feature info Structure. dpns cause xparms Must be initialised with the values
described for ca11 _getcause () in the Basic Call Control specifications.

Feature xparm parameters

The following feature info elements may be used by the application:

Msg
The valid msg parameter values for this call include:

DPNSS_ RAW

ACKNOWLEDGE

REJECT

NIGHT SERVICE DIVERTED

DIVERTED IMM

DIVERTED BSY

STATE OF DEST FREE

STATE OF DEST BUSY

CHARGE UNITS USED
Other feature parameters used by this call, include nsi and cxt. or definitions of the
feature xparms parameters and values, please refer to section 2.1
Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

NOTE

If there is a call in progress when dpns_disconnect is invoked, the driver will
initiate the disconnect procedure and will immediately return control to the
calling process.

Signalling messages transmitted
This will transmit a CRM/CIM. For further information, refer to BTNR 188.

210 dpns_release() - DPNSS release call

This function must be used to relinquish ownership of a call handle in response to
call termination £v_1DLE, Or any error condition that may cause the application to
abandon the call. If the dpns_release () function is successful, the driver will
disconnect the call and the call handle will be closed. The handle may no longer be
used by the application.

Synopsis

ACU ERR dpns release (DPNS CAUSE XPARMS * causep);

typedef struct dpns cause xparms

{

ACU_ULONG size;
ACU CALL HANDLE handle;
ACU_INT cause;

MAN1140 Revision 6.8.7 PUBLIC Page 28



ACU_INT raw;
FEATURE XPARMS feature info;
} DPNS CAUSE XPARMS;
typedef struct feature xparms

{

ACU_INT msg[MAX FEAT MSG];
ACU_UCHAR call type;
ACU_CHAR digits[MAXNUM] ;
ACU_CHAR cli[MAXNUM] ;
ACU_CHAR nsi[MAXNSI];
ACU_CHAR txt [MAXTXT] ;
ACU_CHAR tid[MAXTID];
ACU UCHAR clc;

ACU UCHAR held clc;
ACU_UCHAR ipl;

ACU UCHAR icl;

} FEATURE XPARMS;

Input Parameters
The function dpns_release () takes a pointer, causep, to a structure
dpns_cause xparms. dpns_cause_xparms is the same as the cause_xparms Structure
described in the Generic Call Control specifications, with the addition of the
feature info structure. dpns_cause xparms must be initialised with the values
described for ca11 _getcause () in the Generic Call Control specifications.
Feature Xparm parameters
The following feature info elements may be used by the application:

nsi

txt

NOTE

If there is a call in progress when dpns_release is invoked, the calling process
will block in the driver until the driver has disconnected the call. Control
will then be returned to the application. The feature info elements nsi and
txt are only valid if the call is not in idle state

Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Signalling messages transmitted

If the call is still connected this will transmit a CRM. For further information, refer to
BTNR 188.

211 dpns_set_transit() - DPNSS set transit

This function may be used to invoke DPNSS transit working for both incoming and
outgoing calls. Refer to BTNR 188 for further details of Transit functionality.

Synopsis

MAN1140 Revision 6.8.7 PUBLIC Page 29



ACU ERR dpns_set transit (ACU CALL HANDLE handle);

Input Parameters
handle

The input parameter hand1e uniquely identifies the call to be placed in transit state.

Return Values

On successful completion, a value of zero is returned, the event ev_pens TrRaNSIT Will
be raised by the driver. If the call attempt is unsuccessful, a negative value will be
returned indicating the type of error.

212 dpns_transit_details() - DPNSS transit details

This function is used to read a DPNSS transit message received from the network.
dpns_transit details() should onIy be called foIIowing dpns_set transit(), call
transfer, or two party working following conference.

Synopsis

ACU_ERR dpns transit details (DPNS TRANSIT XPARMS *transitp);

typedef struct dpns transit xparms

{

ACU_ULONG size;

ACU CALL_ HANDLE handle;

ACU_LONG timeout;

ACU_INT valid;

ACU CHAR trans msg[TRANSIT MSG LENGTH];

} DPNS TRANSIT XPARMS;

Input Parameters

The dpns_transit details() takes a pointer, transitp, tO a structure
dpns transit xparms. The structure must be initialised with the following values
before invoking the function.

handle

The input parameter nandie is used to uniquely identify the call.

timeout

This parameter is ignored for this call.

MAN1140 Revision 6.8.7 PUBLIC Page 30



213

2.14

Return Values

trans msg

The ASCII string trans_msg contains the DPNSS message, which is to be forwarded
to the destination party. It is important that this string is not modified before
forwarding to the destination party.

valid
The return value valid is a Boolean, which indicates whether the details returned are
valid, or not.

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

dpns_send_transit() - DPNSS send transit

This function is used to send a DPNSS transit message received from the network via
dpns transit details().

Synopsis

ACU_ERR dpns_send transit (DPNS TRANSIT XPARMS *transitp);

typedef struct dpns transit xparms

{

ACU_ULONG size;

ACU_CALL HANDLE handle;

ACU_LONG timeout;

ACU_INT valid;

ACU CHAR trans msg[TRANSIT MSG LENGTH];

} DPNS_ TRANSIT XPARMS;

Input Parameters

The function dpns_send transit () takes a pointer, transitp, tO a structure
dpns_transit xparms. The structure must be initialised with the following values
before invoking the function.

handle

The input parameter handle is used to uniquely identify transit message destination
call.

trans msg

The input parameter trans_msg must contain the unaltered ASCII string received from
dpns _transit details().

timeout & valid

These parameters are no longer used but are retained for backward compatibility.
Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Signalling messages transmitted

This will transmit an EEMC. For further information, refer to BTNR 188.

dpns_set_I2_ch() - DPNSS set layer 2 channel

This function is used to enable and disable a DPNSS channel at Layer 2 (the data
link layer).

MAN1140 Revision 6.8.7 PUBLIC Page 31



It is recommended that this function not be used during call processing.
Synopsis
ACU ERR dpns_set 12 ch(DPNS L2 XPARMS *dpns 12 parms);
typedef struct dpns 12 xparms
{

ACU_ULONG size;
ACU_PORT_ ID net;
ACU_INT channel;
ACU_UCHAR state;
ACU_LONG timeout;

} DPNS L2 XPARMS;

Input Parameters

The function dpns_set 12 ch () takes a pointer, 12_parms, to a structure
dpns 12 xparms. The structure must be initialised with the following values before
calling the function. Note that the timeout parameter is not used in this function.

net

The input parameter net must contain the number of the network port on which the
DPNSS layer 2 channel is to be set.

channel

The input parameter channel must contain the number of the DPNSS channel which
is to be set.

state

The state parameter is used to either enable or disable a channel and must be set
to one of the following values:

DPNS 12 ENABLE Enable DPNSS layer 2 channel.
DPNS L2 DISABLE Disable DPNSS layer 2 channel.
timeout

This parameter is no longer used but is retained for backward compatibility.

Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

MAN1140 Revision 6.8.7 PUBLIC Page 32



215 dpns_I2_state() - DPNSS Layer 2 State
This function is used to return the current state of a DPNSS Layer 2 channel.
Synopsis
ACU _ERR dpns 12 state(DPNS L2 XPARMS *dpns 12 parms);
typedef struct dpns 12 xparms
{

ACU_ULONG size;
ACU_PORT 1D net;
ACU_INT channel;
ACU_UCHAR state;
ACU_LONG timeout;

} DPNS L2 XPARMS;

Input Parameter

The dpns 12 state () takes a pointer, 12 _parms, t0 @ Structure dpns_ 12 xparms. The
structure must be initialised with the following values before calling the function.

net

The input parameter net must contain the number of the network port on which the
DPNSS channel is to be examined.

channel

The input parameter channel must contain the number of the DPNSS channel that is
to be examined. It will have a value depending upon the barred channels/time slots in
the output timeslot vector validvector returned by ca11l signal info().

timeout
Is not valid for this call.

Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

state

The return value state, within 12_parms, will contain the current state of the DPNSS
layer 2 channel and will be set to one of the following values:

DPNS_L2 ENABLED DPNSS channel is enabled.

ppNs 12 DIsABLED  DPNSS channel is disabled.

MAN1140 Revision 6.8.7 PUBLIC Page 33



3.1

DPNSS feature call control

Important Notice

It is recommended that the user be familiar with BTNR 188 Issue 5 and the Aculab V6
Call Control API Guide before proceeding to use the DPNSS Call Control API.

The following sections describe the function calls required to support the specified
DPNSS features. When describing the library function calls, only the parameters
required to support a specific feature are given. For a full list of the possible input
parameters for a library function call, refer to section 2 of this document.

Each of the features described in the following sections must be enabled via the
command line parameters detailed in Appendix A.

set_feat_msg() - sending and receiving DPNSS feature messages

DPNSS feature messages are sent and received using the FEATURE xPaARMS Structure
described in section 2 of this document. The FEATURE xPARMS Structure is common to
most of the library functions.

The msg element is an array (within FEaTurRE_xpParMS), Which can hold up to
Max FEAT MsG feature instructions. The default setting for msg is no wmsG.

To send a feature message the application must set the first empty element in the
array msg to the desired value.

The following routine can be used to set the first available msg element within the
FEATURE XPARMS Structure.

int set feat msg (FEATURE XPARMS *feature xparms, ACU INT feat msg)
{

int index;

for (index = 0; index < MAX FEAT MSG; index ++)
{
if (feature xparms->msg[index] == NO_ MSG)
{
feature xparms->msg[index] = feat msg;
return 0;
}
}

return -1;

}

Feature messages can be sent using the following functions:
dpns_openout ()
dpns send overlap ()
dpns_incoming ringing()
dpns call accept()
dpns_send feat info()
dpns_disconnect ()
dpns release()

To send feature information following incoming or outgoing ringing the application
should use the function dpns call accept () on call connection, and
dpns_send feat info() at any other time before call clearing.

The device driver uses the same method for sending feature messages to the

MAN1140 Revision 6.8.7 PUBLIC Page 34



3.2

3.2.1

3.2.2

3.2.3

3.2.4

application. It will always place messages starting at location 0 of the array msg. The
application should read the array msg until an empty element (xo_msc) or end of array
is encountered.

Feature messages are received using the function dpns _call details().

If the event mechanism for call control is used (described in the V6 Call Control API
Guide) the application can call the dpns ca11l details() function when the following
events occur:

EV_INCOMING CALL DET,
EV_INCOMING DETAILS,
EV_OUTGOING RINGING,
EV_CALL CONNECTED

An EV_INCOMING DETAILS €vent may occur at any point between incoming call
detection/ generation, and call clearing.

Call diversion immediate/busy (BTNR 188 section 11)

Call diversion immediate and busy diversion are available for incoming and outgoing
calls.

Incoming call diversion to another PBX

To instruct an incoming call to divert on busy or divert immediate the application must
use the function dpns_incoming ringing () With the feature info Structure msg
element set to DIVERT IMMEDIATE OF DIVERT BUSY. The feature info digits array must
be set to the number of the party the call is to be diverted to.

Following dpns_incoming ringing () the calling party will clear the call. The calling
party may then attempt to establish the diverted call.

Outgoing call diversion to another PBX

After attempting to establish an outgoing call (ca11 openout (), dpns openout ()) the
remote party may initiate call diversion immediate/busy. When remote diversion
occurs the driver will clear the call and generate an ev_1pLE event.

The msqg element of feature info returned by dpns_getcause () will be set to either
DIVERT IMM Of DIVERT BSY. The digits element of feature info Will be set to the
address of the party the call is to be diverted to.

Incoming call diversion on the same PBX

The application may divert an incoming call to another party without the use of
another DPNSS link. The application can inform the calling party of ‘on PBX’
diversion via the function

dpns_incoming ringing().

The msg element of feature info (iN dpns_incoming ring xparms) Should be set to
DIVERTED BSY Or DIVERTED TIMM With the digits array set to the number of the party the
call has been diverted to.

Outgoing call diversion on the same PBX

During outgoing call setup, the destination PBX may divert a call to another party on
the same PBX. If this occurs the driver will set the msg element of feature info to
DIVERTED BSY Of DIVERTED IMM With the array digits set to the number of the party the
call has been diverted to.

This information may be obtained via the library function dpns call details (), which

MAN1140 Revision 6.8.7 PUBLIC Page 35



3.2.5

3.2.6

3.3

3.3.1

should be called following £v_INCOMING DETAILS.

Incoming call diverting

If an incoming call has been diverted from another party, the msg element of
feature info Will be set to DTVERTING TMM OF DIVERTING BSY. The digits array will
contain the number of the party the call has been diverted from.

The application can obtain this information via dpns _call details () following
EV_INCOMING DETAILS OF EV_INCOMING CALL DET.

Outgoing call diverting

If an outgoing call has been established following call diversion, the application can
notify the destination party. When dpns_openout () is called, the nsg element of
feature info MUust be setto DTVERTING TMM OF DIVERTING BSY. The digits element of
feature info Must be set to the number of the party the call has been diverted from.

Call diversion no reply (BTNR 188 section 11)

Ring No Reply (RNR) diversion is available for both incoming and outgoing calls.

Incoming call diversion to another PBX

To instruct an incoming call to RNR divert to another PBX the application must use
the function dpns_send feat info() with the feature info structure msg element set
to DIVERT NO REPLY. The feature info digits array must be set to the number of the
party the call is to be diverted to.

If the calling PBX ignores the diversion request, or call diversion fails, no state
change will occur. If the call diversion request is successful then the calling PBX will
clear the call.

RNR diversion should only take place following ca11 incoming ringing(),
dpns_incoming ringing and before call connection (call_accept (),
dpns call accept ()).

MAN1140 Revision 6.8.7 PUBLIC Page 36



3.3.2

3.3.3

3.34

3.35

3.3.6

Outgoing call diversion to another PBX

After ev_ouTcoInG RINGING the called party may initiate RNR diversion. On receiving
RNR diversion the driver will set the feature info msgelement to pIVERT NO REPLY
and the digits element to the number of the party the call is to be diverted to. The
application may check for RNR diversion information via dpns _call details()
following EV_INCOMING DETAILS.

The application may choose to ignore the diversion information or attempt to establish
a new call to the number supplied in feature info digits. If the diversion is
successful, the application should connect the calling party to the diversion call and
clear the original call (call_disconnect (), dpns_disconnect ()). Refer to BTNR 188
Section 11 for further details.

Incoming call diversion on the same PBX

The application may divert an incoming call to another party without the use of
another DPNSS link. The application can inform the calling party of ‘on PBX’ RNR
diversion via the function

dpns_send_feat info(). The msgelement of feature info should be set to
DIVERTED RNR. The digits array must set to the number of the party the call has been
diverted to.

Outgoing call diversion on the same PBX

EV_OUTGOING RINGING the destination PBX may divert a call to another party on the
same PBX. If this occurs the driver will set the msg element of feature infoto
DIVERTED RNR With the array digits set to the number of the party the call has been
diverted to. This information may be obtained via the library function

dpns call details (), Which should be called following Ev_1NCOMING DETATLS.

Incoming call diverting

If an incoming call has been diverted from another party, the msg element of
feature info Will be setto prverTING RNR. The digits array will contain the number of
the party the call has been diverted from.

The application can obtain this information via dpns _call details () following
EV_INCOMING DETAILS OF EV_INCOMING CALL DET.

Outgoing call diverting

If an outgoing call has been established following call diversion, the application can
notify the destination party. When dpns_openout () is called the msg element of
feature info Must be

set to DIVERTING RNR. The digitselement of feature info must be set to the number
of the party the call has been diverted from.

MAN1140 Revision 6.8.7 PUBLIC Page 37



3.4.1

3.4.2

3.5

3.5.1

Diversion validation (BTNR 188 section 11)

Diversion validation is available for both incoming and outgoing calls. Diversion
validation should only be used with virtual calls.

Incoming diversion validation

When a diversion validation call is detected, the driver will set the feature info msg
element to prv_variparIon. The application must respond to a diversion validation
request by clearing the call. This is done using dpns disconnect () With the msg
element of feature info Set to either ACKNOWLEDGE Of REJECT.

The application may obtain the pTv_varLIpATION MeSsage via dpns call details()
following EvV_INCOMING CALL DET OF EV_INCOMING DETAILS.

Outgoing diversion validation

The application can generate a diversion validation request by setting the msg element
of feature infot0 DIV varLIDATION. The request should be initiated by using library
function dpns_openout ().

The destination PBX will respond by clearing the call. The application can read the
diversion validation response by checking the msg element of feature infoin
dpns_cause xparms after an ev_1pre. The msginformation element should be set to
either ackNnowLEDGE Of REJECT. If the destination PBX did not understand the request,
the msg element will not be set to AcKNOWLEDGE Or REJECT.

Call hold (BTNR 188 section 12)

The application or remote party may initiate call hold.

Application initiated call hold

Call hold may only be initiated following call connection, i.e. after the
EV_CALL CONNECTED event.

To initiate call hold set the feature info element msgto HoLD caiL. The request can
then be sent using the function dpns_send feat info().

The application will receive the response by calling dpns _call details () after an
EV_INCOMING DETATLS event. The msgelement of dpns detail xparms Will be either
HOLD ACK Ofr HOLD REJ. If the hold request has been accepted, an Ev_DpPNS HOLDING
event is raised. The call will remain in this state until either the application requests
reconnection, or the holding or held party clears.

If the application wishes to reconnect the held party, the msg element of feature info
is set to reconNEcT carr, and the request initiated via dpns_send feat info(). The
destination PBX will reconnect its held party. The ev_carr_connecTeD event will now
be raised.

Should either the holding or held party clear during at ev_pens_nHorpIne normal call
clearing applies.

MAN1140 Revision 6.8.7 PUBLIC Page 38



3.5.2

3.6

3.6.1

3.6.2

3.7

3.7.1

Remote initiated call hold
Call hold may only be initiated following call connection ev_caALL CONNECTED.
When a remote call hold request is received, the driver will set the msg element of

feature info t0 HOLD carr. The application can obtain the hold request via
dpns_call details () following EV_INCOMING DETAILS.

The application must respond to the request with the msg element of feature info Set
to either HOLD ACK OF HOLD REJ.

If the hold request is acknowledged, an ev_pens HELD event will be generated. If the
hold request is rejected no state change will occur.

A call will remain in ev_ppns_ HELD until either party clears or the remote party instructs
the application to reconnect.

If the remote party requests reconnection the driver will set the msg element of
feature info tO RECONNECT CALL. The v cari _conNecTED Will be generated. The
application should reconnect its party to the traffic channel.

If either party clears, normal call clearing applies.

Enquiry call (BTNR 188 section 13)

Enquiry call is supported for both incoming and outgoing calls.

Outgoing enquiry call

Following call hold the application can make an enquiry call. To inform the remote
party of an enquiry call the feature info msgelementis set to enouiry, and the
held clc element set to the calling line category of the held party. An outgoing call
can then be established using the dpns openout function.

Incoming enquiry call

If an incoming call is an enquiry call, the msg element of feature info Will be set to
ENQUIRY, and neld clc will be set to the calling line category of the held party. This
information can be obtained via dpns call details() following Ev_INCOMING DETAILS
Or EV_INCOMING CALL DET.

Call transfer (BTNR 188 section 13)

Application controlled Call Transfer uses two DPNSS channels. It can be initiated
after the application has placed a call on hold and established an enquiry call. The
enquiry call may be in ringing or connected state.

The remote party in a call may transfer a call to the application.

Application initiated call transfer
The application may transfer (connect) an enquiry call and a held call (each using a
separate channel). To initiate call transfer the application must set the msg element of

feature infolO

TRANSFER_O OF TRANSFER T. TRANSFER 0 iS used to designate a party as the new
originating party and TransreRr T IS used to designate a party as the new terminating
party. For further details on call transfer, refer to BTNR 188 Section 13.

The transfer request is sent via dpns_send feat info (), and is required for both the
enquiry, and held calls.

Following call transfer, the enquiry Call and the held Call will be get the
EV_DPNS_TRANSIT event. The application then operates as a transit PBX for the
remainder of the call. Refer to section 3.8 for Transit working details.

MAN1140 Revision 6.8.7 PUBLIC Page 39



3.7.2 Remote party initiated call transfer

3.8

3.9

A remote party may transfer a call to the application. When remote transfer occurs
the driver sets the feature info element, msg, to TRANSFERRED. The application can
obtain this information via dpns call details () following £v_INCOMING DETAILS.

Following the TransFERRED Message the driver may send the feature info msg
TRANSFERRED INFO. The feature info clc element will be set to the calling line
category of the transferred party and the c1: element will be set to the calling line
identity of the transferred party.

DPNSS transit working

Transit working is a requirement of BTNR 188.

Following certain call scenarios; the application may no longer be directly in control of
a call. For example if the application receives an incoming call, and makes an
outgoing call, it can transfer the two parties (refer to section 3.6). The application has
“dropped out” of the call giving control to the transferred parties.

Following this event the application need only act as a Transit PBX. Transit working
changes the syntax analysis and processing required by the DPNSS signalling
software on the Aculab card. The application need only pass the messages from one
party to another without recognising or acting on the message contents.

The device driver enters a Transit working state when the application is required to
work as a Transit PBX. This may be following call transfer, or by the application
directly making a transit-working request.

Once Transit working has been established, all messages received must be passed
transparently between the source and destination links via the application.

When a call receives the event ev_ppns TranstT, it will remain in Transit State until
either the application, or one of the parties connected in Transit, clears the call.
Normal call clearing applies thereafter.

When a Transit message is received from the network, the driver will generate an
EV_DPNS_IN TRANSIT event. This Transit message can be collected using the
dpns_transit details() function.

The application can send a Transit message using the dpns_send transit () function.

Returning to the Call Transfer example described at the start of this section. When
two parties are transferred, both calls will get the ev_prns TranstT event. The
application is then required to read Transit messages (using

dpns_transit details()) from one party and pass them unchanged to the other, and
vice versa. The structure dpns transit xparms, read using dpns transit details(),
is transmitted using dpns_send_transit (). The only parameter within

dpns_transit xparms, Which requires changing, is the nandie, which must be changed
from the receiving call handle to the transmitting call handle. The contents of the
message trans_msg remain unchanged.

Call back when free (CBWF) - BTNR 188 section 9

CBWEF offers a user who meets a busy extension the possibility of having the call
completed automatically when the called extension and a transmission path across
the network become free. CBWF is available for both incoming and outgoing calls.

CBWEF request, cancel, and free notifications should only be used with virtual calls.
To use this functionality the firmware switch (-£csr) should be applied.

MAN1140 Revision 6.8.7 PUBLIC Page 40



3.9.2

3.9.3

3.94

3.9.5

Outgoing request

The application may generate a CBWF request by setting the msg element of
feature info tO cBWF REQUEST. The request should be initiated by using the library
function dpns_openout () to make a virtual call.

The destination PBX will respond by clearing the call. The application can check the
response by checking the clearing cause and feature info.msg. The clearing cause
will indicate whether the request has been acknowledged (0x14) or rejected (0x19).
Any other clearing cause denotes failure. The feature info.msg field will contain the
current state of the called extension. Depending whether the called extension is free
or busy, feature info.msg Will be set to either sTaTe or DEST FREE OF
STATE _OF DEST BUSY.

The application may obtain this information via dpns call details () following
EV_REMOTE DISCONNECT or EV_DETAILS.

Incoming request

An incoming virtual call may contain the cewr reguesT. This would normally follow an
unsuccessful call attempt. The application must respond to a cewr REQUEST by
clearing the call (dpns_disconnect ()) with the raw clearing cause set to either Ox14
(acx) or 0x19 (reJ). In addition, feature info.msg Must be set to either
STATE OF DEST FREE Of STATE OF DEST BUsY depending on the state of dialled
extension.

The application may obtain this information via dpns call details () following
EV_INCOMING CALL DET or EV_INCOMING DETATILS.

Outgoing free notify

A cBWF FREE NOTIFY iS Sent to indicate that the called party is now available to
proceed with the call back. Of course, this should only be sent if there is a CBWF
request registered against this extension.

This is done by setting feature info.msg t0 cBWr FREE NOTIFY and making a virtual
call to the party that requested the call back. The far end will disconnect the call with
either a clearing cause of 0x14 (ACK) or 0x18 (FNR). In addition, the

feature info.msg Will contain either sTATE oF DEST FREE OF STATE OF DEST BUSY
depending on the state of the requesting extension.

The application may obtain this information via dpns call details () following
EV_REMOTE DISCONNECT or EV_DETATILS.

Incoming free notify

Once the called extension is ready to complete the call back, it will send a
CBWF_FREE_NOTIFY. The application will receive this notification via a virtual call
containing the cewr FREE NOTIFY MeSSage in feature info.msg. The application may
obtain this information via dpns call details () following Ev_INCOMING CALL DET OF
EV_INCOMING DETATLS.

The application must respond to the free notify by disconnecting the call with clearing
cause 0x14 or 0x18 and including the state of destination in feature info.msg. If the
Free Notify was acknowledged, the application should proceed with the call setup
sequence.

Outgoing cancel

The application may generate a request to cancel an existing CBWF instruction.
Again this is done by setting feature info.msgt0 cBwr cancer, and making a virtual

MAN1140 Revision 6.8.7 PUBLIC Page 41



3.9.6

3.9.7

3.9.8

3.10

call using dpns_openout ().

The destination PBX will respond by clearing the call. The application can determine
the response by looking at the clearing cause. If the call was cleared with ACK (0x14)
then the cewr_reQuEsT has been cleared from the PBX. If there was no such

cewr_ REQUEST registered at the PBX then the clearing cause will be “Facility Not
Registered” (0x18). Any other clearing cause denotes failure.

The application may obtain this information via dpns call details () following
EV_REMOTE DISCONNECT or EV _DETAILS.

Incoming cancel

An incoming virtual call may contain the cewr_canceL request in feature info.msg if
so then the application should check to see if it has a cewr rEQUEST registered against
that extension. If there is a request, then disconnect the call with clearing cause
(Ox14) and delete the cewr reQuUEST from its records. If there is no such cewr REQUEST
registered at that extension then clear the call with cause (0x18).

The application may obtain this information via dpns call details () following
EV_INCOMING CALL DET Of EV_INCOMING DETAILS.

Outgoing call setup

Once the rree_noTIFY has been received and the requesting extension is free the
application should initiate the call setup sequence. An outgoing call containing either
CBWF CALL_SETUP TIMMEDTIATE Of CBWF CALI SETUP DELAYED IS made to the requesting
extension. Once the application receives ev_ouTcoING RINGING then the riNG ouT
feature info.msg Needs to be sent using dpns_send feat info (). In response the
application will receive an ev_peTatrs event and feature info.msg Will have been set
to carn_Back compLETE. This signifies that the call back has been completed and the
call can be treated as a simple call from this point on.

Incoming call setup

To complete the call back an incoming call will be received by the application. At
EV_INCOMING CALL DET USE dpns call details() tO €xamine feature info.msg this
will contain either cBwr CALL SETUP IMMEDIATE Of CBWF CALL SETUP DELAYED. In
response the application should call dpns_incoming ringing(); the far end will then
send a rRING_ouT message, which can be obtained via dpns call details () following
an ev_peTATLS event. At this point, the application must use dpns send feat info() tO
transmit the feature info.msg CALL BACK COMPLETE.

Now accept the call using and treat the call as a normal call from this point on.

Add on/conference (BTNR 188 section 13)

Unless stated otherwise:
e All feature information messages are sent in feature_info.msg using
dpns_send_feat_info() (Refer to section 2.5). All responses are received via

dpns_call_details() following EV_INCOMING_DETAILS. Feature messages are
received in feature_info.msg (refer to section 2.3).

e Call clearing is processed as Basic Call clearing.

3.10.1 Application controlled add on/conference

3.10.1.1 Conference establishment
Refer to BTNR 188 section 13 subsection 2.3.9

Following establishment of an enquiry call the application may form a conference. A

MAN1140 Revision 6.8.7 PUBLIC Page 42



conference is established using an Add On request for both the Enquiry (refer to
section 3.4) and Held (refer to section 3.5) calls. The application initiates an Add On
request with the feature message app_on_varipatron. The driver will respond with the
following:

e ADD ON ACK - Application can proceed with conference establishment. The c1: and
clcinformation elements of feature info contain the crzr and crc of the remote
party. The application may proceed to form a three party conference. The Enquiry
and Held parties are informed of Conference establishment by sending the
feature message appep on. The call enters state £v_DPNS CONFERENCE.

e aADD ON REJECT - Remote PBX has rejected the Add On request. The application
must abandon conference establishment.

e ADD ON NOT SUPPORTED - Remote PBX does not support call conference. The
application must abandon conference establishment.

* Noresponse - If no response is received within a given time (suggested 5
seconds) the application should abandon conference establishment. Timer
maintenance is the responsibility of the application.

NOTE

It is the application’s responsibility to provide the relevant voice channel
switching during call conference.

3.10.1.2 Active conference
Once a conference is established, the following feature messages may be received:

aDpD ON_cLEARDOWN - Application should clear both DPNSS conference parties using
Basic Call clearing.

Refer to BTNR 188 Section 13 Subsection 2.3.12.
The application may send the following feature messages:

e Two PARTY 0/TWO_PARTY T - If, following conference establishment, either of the
two remote parties clears, the conference shall be cleared. The application may
either clear or stay connected to the remaining call. If the application is to remain
connected, Two PARTY O Or Two PARTY T Must be sent to the remaining party.
™Wo_PARTY o indicates a return to two party call with the remaining party
designated as the originating party. Two_party T indicates a return to two party
call with the remaining party designated as the terminating party. The call will
return to ev_cari_connecTeD. If Two parTy o/T is sent following Call Hold the call
will remain in EV_DPNS_HOLDING.

Refer to BTNR 188 Section 13 Subsection 2.3.13.

* TRANSFER O/TRANSFER T - The application may “drop out” of a conference and
transfer the Held and Enquiry calls. Call transfer following conference is initiated
by sending the feature message TrRaNSFER O OF TRANSFER T tO the two remaining
DPNSS parties. TransreR 0 iS used to designate a party as the new originating
party and TransreER_T iS used to designate a party as the new terminating party.
Following call transfer the state of the remaining calls will change to
EV_DPNS _TRANSIT. The application will work as a transit PBX for the remainder of
the call. Refer to section 3.7 for transit working details.

Refer to BTNR 188 Section 13 Subsection 2.3.11.

MAN1140 Revision 6.8.7 PUBLIC Page 43



e HOLD caLL - The application may split an established conference. Conference
split enables the application to remain connected to one of the remote parties
whilst the other is placed on hold. To initiate conference split the application must
first place one of the parties on hold. Call hold is initiated by sending the feature
message HOLD CALL.

If the driver acknowledges the hold request with Horp ack the application may
proceed and send feature message two parTy T to both the held and connected
parties. The held call will get an ev_carr_senp event and the connected call will
get Ev_CALL CONNECTED.

If the noLp carr request is rejected (feature message rorp ReEJECT) the
conference split must be abandoned. If the ca11 hold feature is not supported by
the remote PBX (feature message sorp NoT supporTED) the conference split may
proceed. The remote party will not be given any indication of call hold.

Refer to BTNR 188 Section 13 Subsection 2.3.13.

3.10.2 Remote add on/conference
The remote party in an established call may include the application party in a

conference. The application may receive an add on request in call events
EV_CALL CONNECTED and EV_DPNS_HELD.

3.10.2.1 Remote conference establishment

When the driver receives an add on request from the network the apbp on varIpaTION
feature message is sent to the application. The application may respond with the
following:

e aADD ON ACK - If the application responds with app on ack the remote PBX will
proceed with conference establishment. When all three (conference) parties are
connected the application is sent the appep ow feature message. The call will get
the Ev_DPNS CONFERENCE event.

e ADD ON REJECT - Application has rejected the conference request.
Refer to BTNR 188 Section 13 Subsection 2.3.9.

3.10.2.2 Active remote conference

After ev_DPNS CcONFERENCE, the application may receive the following feature
messages:

e HOLD REQ- Remote PBX has requested call hold. The application must respond
with feature message sorLp REJECT, OF HOLD AcK. If hold request is acknowledged
the application will get £v_pens_rerD. If the hold request is rejected the call will
remain in EV_DPNS_ CONFERENCE.

If the Hold Request is acknowledged the application will get the ev_ppns HELD
event. The application may then receive the two parTy o/T feature message
(refer to next paragraph).

Refer to BTNR 188 Section 13 Subsection 2.3.13.

* TWO PARTY O - The remote PBX has returned to a two party call following
conference. The application is designated as the originating end. The remote
party details are given in the c1i and cic fields of feature _info when the
wo_PARTY o feature message is received. If the call is held it will not change from
EV_DPNS_HELD Otherwise it will receive Ev_CALL CONNECTED.

Refer to BTNR 188 section 13 subsection 2.3.13.

MAN1140 Revision 6.8.7 PUBLIC Page 44



3.1

e 1O PARTY T- AS Two PARTY o With the application designated as the terminating
end.

The application may generate the following feature message:

ADD ON_CLEARDOWN - Once a remote party has established a conference the
application may clear down all parties involved. To do this the application must
send the feature msg ADD ON_cLEARDOWN. On receiving the adda on Cleardown
request the remote PBX will initiate call clearing.

Refer to BTNR 188 section 13 subsection 2.3.12.
If the application wishes to clear from conference, Basic Call clearing applies.

Executive intrusion (BTNR 188 section 10)

Unless stated otherwise, all feature information messages are sent in

feature info.msg USING dpns send feat info() (Refer to section 2.5). All responses
will generate an £v_1ncoMING DETATLS, after which, the details can be collected using
dpns_call details (). Feature messages are received in feature info.msg.

Call clearing is processed as Basic Call clearing.

3.11.1 Application controlled intrusion without prior validation

Refer to BTNR 188 Section 10 Subsection 2.3.1.

3.11.1.1 Intrusion request

If a busy remote party is encountered (on establishing an outgoing call) the
application can request Executive Intrusion. The application initiates an Intrusion
Request using dpns_openout () with the msg element of dpns_out xparms.feature info
set to 1NTRUSTON REQUEST. The ici field of dpns_out xparms.feature info Must be set
to the Intrusion Capability Level of the Intruding party. The destination addr Of
dpns_out_ xparms Must be set to the address of the wanted party. The c1: field of
dpns_out_xparms MUst be set to the address of the requesting party.

In response to the Intrusion Request, the application will receive one of the following:

* OUTGOING RINGING - If EVv ouTGoING RINGING iS encountered the application can
determine the result of the Intrusion Request by calling dpns call details(). If
the feature message 1NTRUSTON ACK iS present the application can proceed and
wait for Intrusion connection. If tNTRUSTON ACK iS nOt present the application must
assume that the wanted party has become free and has been called by the
remote PBX. The call will proceed as Basic Call (wait for connection).

e IDLE / REMOTE DISCONNECT - If the remote party clears with cause .c_nuMBER BUSY
the Intrusion Request is not allowed. Receipt of any of clearing cause indicates
that the Intrusion Request has failed.

The following diagram summarises the sequence of events:

MAN1140 Revision 6.8.7 PUBLIC Page 45



Busy Party Encountered

v

>>App to Driver>>

INTRUSION REQ and

Generate Intrusion Request Call
dpns_openout with feature msg

feature info.icl setto the
application's Intrusion Capacity Level

v

>>Driver to App>>

Wanted Party Clears

v

>>Driver to App>>

Call State:
Outgoing Ringing

v

v

Clearing Cause Busy

Any Other Cause

v

v

v

feature msg:
INTRSUSION ACK

Nog‘—YES

v Ly

Intrusion Rejected

Intrusion Failed

Continue as
Basic Call

Wait for Intrusion
Connection Section
3.1.9.2

3.11.1.2

Intrusion connection
As stated in the previous section, receipt of feature message 1nTrusION Ack indicates

success of the Intrusion Request. Subsequently one of the following events may

occur:

e INTRUDING - If EV_DPNS INTRUDING iS encountered the application is intruding on

the wanted party. The application can confirm this by calling dpns ca11 details ()

(feature_info.msg iS Set {0 INTRUDING).

e sTATE OF DEST FREE - If the wanted party has cleared and is called by the remote
PBX the driver will generate feature message state or pesT FrREE. The call
continues as Basic Call (wait for call connection).

MAN1140 Revision 6.8.7

PUBLIC

Page 46



The following diagram summarises the sequence of events:

>>Driver to App>>

Intrusion
Acknowledged

|
y v

>>Driver to App>> >>Driver to App>>

Call State: Feature msg:
CS_DPNSS_INTRUDING STATE_OF DEST_ FREE

v v

Continue as
Basic Call. Wait
for Connection

Intrusion Active
Section 3.9.1.3

3.11.1.3 Intrusion active

Once Intrusion is active, the Intruding party may withdraw (refer to section 3.9.1.4) or
the wanted party may clear. If the wanted party clears and is subsequently called by
the remote PBX, the application is sent feature message sTATE OF DEST FREE. The
call continues as Basic Call (wait for remote party to answer).

The diagram below summarises the sequence of events:

Intrusion

Active
>>App to Driver>> >>Driver to App>>
Intrusion Withdraw Feature msg:
Section 3.9.1.4 STATE OF DEST FREE

v

Continue as Basic Call.
Wait for Connection

3.11.1.4 Intrusion withdraw
The application may temporarily withdraw from Intrusion without clearing the call.

Refer to BTNR 188 section 10 subsection 2.3.3.

To invoke Intrusion Withdraw the application must send the feature message
INTRUSION wITHDRAW. The driver will respond with one of the following feature
messages:

e WITHDRAW ACK - The application’s party is no longer intruding. The application may
re-enter Intrusion by sending the feature message INTRUSTON REQUEST (Via
dpns_send feat info()). The icl1 must again be set to the Intrusion Capability
Level of the Intruding party. The Intrusion Request responses are described in
section 3.9.2.2.

e WITHDRAW NOT SUPPORTED - Executive Intrusion Withdraw is not supported. The
application remains Intruding.

e STATE OF DEST FREE - If the wanted party has cleared and is called by the remote
PBX the driver will generate feature message staTte_or DEST FREE. The call
continues as Basic Call.

MAN1140 Revision 6.8.7 PUBLIC Page 47



The following diagram summarises the sequence of events:

>>App to Driver>>

Intrusion Withdraw

v / v
>>Driver to App>> >>Driver to App>> >>Driver to App>>
Feature msg: Feature msg: Feature msg:
WITHDRAW ACK? WITHDRAW NOT SUPPORTED STATE OF DEST FREE
Intrusion Request Intrusion Active Continue as Basic Call.

q Section 3.9.1.3 Wait for Connection

v

>>App to Driver>>

Generate Intrusion Request using:
DPNSS SEND FEAT INFO

v

Wait for Intrusion Response using:
DPNSS CALL DETAILS
Refer to section 3.9.2.2

3.11.2 Application controlled intrusion with prior validation
Refer to BTNR 188 section 10 subsection 2.3.2.

Executive Intrusion with prior validation can be used on every Basic Call setup. This
facility enables the remote PBX to validate Intrusion levels during call setup if the
remote party is busy.

3.11.2.1 Prior validation intrusion request

The application initiates a Prior Validation Intrusion Request using dpns_openout
with the feature message pv 1NTRUSTON and feature info.icl Setto the Intrusion
Capability Level of the application’s party. All other parameters within
dpns_out_xparms are set as they would be for Basic Call setup.

The application may receive the following responses:

* EV OUTGOING RINGING - If the call attempt is successful the driver will respond with
EV_OUTGOING RINGING. The application should establish the status of the called
party by examining the feature message obtained via dpns call details(). The
feature message 1nTrUsTON Ack indicates that the called party is busy and
Intrusion can be established. If tnTrRUSTON ACK iS not present the wanted is
currently free and ringing (the call continues as Basic Call).

e IDLE / REMOTE DISCONNECT - If the remote party clears with cause 1.c NUMBER BUSY
the called party is busy and Intrusion not allowed.

MAN1140 Revision 6.8.7 PUBLIC Page 48



The diagram below summarises the sequence of events:

Basic Call Setup

v

>>App to Driver>>

set feature msg
PV_INTRUSION
Set Intrusion Capability. Set
destination address etc as Busy Call

v v

>>Driver to App>> >>Driver to App>>

Call State:
Outgoing Ringing

| v
¢ # feature msg:

Wanted Party Clears

INTRSUSION ACK
Clearing Cause Busy Any Other Cause
+ * r NO YEST
Intrusion Rejected Intrusion Failed Conn_nue as Wa|t folr application
Basic Call intrusion request

3.11.2.2 Prior validation intrusion establishment

Following receipt of INTRUSTON ACK ON EV_OUTGOING RINGING the application can
request Intrusion.

Intrusion is requested by sending the feature message 1nTRUSTON REQUEST. The
feature info icl element must be set to the Intrusion Capability Level of the
Intruding party.

In response to the Intrusion Request, the application will receive one of the following
responses:

e INTRUSION AcK - If the feature message 1nTrUsTON ACK iS received the application
waits for Intrusion connection.

e STATE OF DEST FREE - If the wanted party has cleared and is called by the remote
PBX the driver will generate feature message STATE OF DEST FREE. The
application can return to Basic Call and wait for call connection.

e IDLE / REMOTE DISCONNECT - If the remote party clears with cause .c_nuMBER BUSY
the Intrusion Request is not allowed. Receipt of any other clearing cause
indicates that the Intrusion Request has failed.

MAN1140 Revision 6.8.7 PUBLIC Page 49



The following diagram summarises the sequence of events:

>>App to Driver>>
Generate Intrusion
Request

v

>>App to Driver>>

Wanted Party Clears

Clearing Any Other
Cause
Cause
Busy
Intrusion Intrusion
Rejected Failed

\ J

L

>>Driver to App>>

>>Driver to App>>

feature msg:
INTRUSION_ACK?

STATE OF DEST FREE

Feature msg:

v

v

Wait for Intrusion
Connection
Section 3.9.1.2

Continue as Basic Call.

Wait for Connection

3.11.3 Network controlled intrusion without prior validation
Refer to BTNR 188 section 10 subsection 2.3.1.

A remote party may Intrude on an application-controlled party.

3.11.3.1

Capability Level of the Intruding party.

Remote intrusion request without prior validation

When a remote party requests Executive Intrusion the feature message
INTRUSION REQUEST IS Sent to the application. feature info.icl IS Set to the Intrusion

The application may respond to the Intrusion Request with one of the following:

* dpns incoming ringing() - TO acknowledge the Intrusion Request the
application must use dpns_incoming ringing() with feature info.msg set to
INTRUSTION AcK. If the application’s party has become free, inTrRusTON ACK must
not be set (the call will then continue as Basic Call).

° call disconnect()\call release() - To reject the Intrusion request the
application releases the call using call disconnect() Of call release() With
clearing cause 1L.c NUMBER BUSY.

The following diagram summarises the sequence of events:

>>App to Driver>>

Incomming Call Detected with
feature message:
INTRUSION REQUEST

\

Applications's Party Busy

A\

Y

Applications Party Free

v

A

>>App to Driver>>

Intrusion Accepted

Intrusion Rejected

v

v

dpns_incomming ringing
Continue as Basic call

>>App to Driver>>

>>App to Driver>>

dpns_incomming ringing
with feature message

INTRUSION ACK Intrusion
connect section 3.9.3.2

Clear call with cause
LC_NUMBER BUSY

MAN1140 Revision 6.8.7

PUBLIC

Page 50




3.11.3.2 Intrusion connection
After Intrusion acknowledge, the application may use the following:

* dpns call accept () - On Intrusion accept the application must connect the
wanted party to the intruding party. The application informs the intruding party of
Intrusion connection by sending feature message INTRUDING Via
dpns call accept().

e dpns send feat info() - The application may ring the wanted party if it becomes
free before intrusion connection. The application informs the intruding party of call
ringing by sending feature message sTATE OF DEST FREE Via
dpns_send_feat info (). The call continues as Basic Call (wait for call
connection).

The following diagram summarises the sequence of events:

>>App to Driver>>

Intrusion Acknowledged

v L

Intuding Party connected Wanted Party has
to Wanted Party become free

v v

>>App to Driver>>

dpns_call accept
with feature msg:
INTRUDING

>>App to Driver>>

v

dpns_send feat info
with feature message
STATE _OF DEST FREE

Intrusion Active
Section 3.9.3.3

v

Continue as Basic Call.
Wait for Connection

3.11.3.3 Intrusion active

Once the intruding party is connected to the wanted party, the intruding party may
request withdraw, or the wanted may hang up.

The application may send the following feature message:

e STATE OF DEST FREE - The wanted party is called by the application on call
clearing. The application informs the intruding party of wanted party ringing with
feature message STATE OF DEST FREE sent via dpns_send feat info().

The application may receive the following feature message:
e INTRUSION WITHDRAW - The application may respond with feature message
WITHDRAW ACK OF STATE OF DEST FREE. STATE OF DEST FREE IS used to indicate

wanted party ringing following call clearing (the call continues as Basic Call).
Section 3.9.3.4 describes the actions taken following wiTeEDRAW ACK.

Refer to BTNR 188 section 10 subsection 2.3.3.

The following diagram summarises the sequence of events:

MAN1140 Revision 6.8.7 PUBLIC Page 51



3.11.3.4

Intrusion Active M

v

>>App to Driver>>

Feature msg:
INTRUSION WITHDRAW

v

Wanted Party Busy

v

A

Wanted Party Free

v

>>App to Driver>>

>>App to Driver>>

dpns_send_feat_info
with feature message
WITHDRAW_ACK
Section 3.9.3.4

dpns_send_feat_info

with feature message
STATE_OF_DEST_FREE

Continue as basic call

Intrusion withdraw

The application may receive a further Intrusion Request feature message
INTRUSION REQ Vid dpns call details (). The application responds with one of the

following:

* dpns send feat info() - TO acknowledge the Intrusion Request the application
MUust USe dpns send feat info() With feature info.msg Setto INTRUSTON ACK. If
the application’s party has become free sTate or pEsT FREE Must be sentin
place of inTrustON Ack (the call will then continue as Basic Call).

® call disconnect{}\call release{} - T0 rejectthe Intrusion requestthe
application releases the call using ca11 disconnect () Of call release{} With
clearing cause 1L.c NUMBER BUSY.

The following diagram summarises the sequence of events:

>>App to Driver>>

Feature msg:
INTRUSION WITHDRAW

A

Application's Party Busy

Y

Intrusion Accepted

v

A

Intrusion Rejected

|

Y

Applications's Party Free

/

>>App to Driver>>

>>App to Driver>>

>>App to Driver>>

feature msg:
INTRUSION_AC

Section 3.9.3.2

Intrusion Connect

K

Clear Call with cause
LC_NUMBER_BUSY

feature msg:
STATE_OF DEST_FREE
Call continues as basic call

MAN1140 Revision 6.8.7

PUBLIC

Page 52



3.11.4 Network Controlled Intrusion With Prior Validation

The application may receive an Intrusion Prior Validation and remote party’s Intrusion
Capability Level during incoming call setup. The Intrusion Capability Level is used by
the application if the wanted party is found to be busy.

3.114.1 Intrusion Request

When an Intrusion Request with Prior Validation, is received (during incoming call
setup) the application is sent feature message pv_1nTRUsTION. The application may
respond with the following:

* dpns incoming ringing() - If the wanted party is busy the application may
respond with dpns_incoming ringing () With feature message 1NTrRUSTON ACK. If
the wanted party is free the call continues as Basic Call (feature message
INTRUSION ACK IS not sent).

® call disconnect()/call release() - Ifthe wanted party is busy and Intrusion is
not possible the application clears the call with cause 1.c_nNUMBER BUSY.

The following diagram summarises the sequence of events:

>>App to Driver>>

Feature msg:
PV_INTRUSION

h J \
Wanted Party Busy Wanted Party Free
A 4
Intrusion Accepted Intrusion Rejected
v I w
>>App to Driver>> >>App to Driver>> >>App to Driver>>
dpns_incoming_ringing

Clear Call with cause

feature msg: LC_NUMBER_BUSY

INTRUSION_ACK
Section 3.9.3.4

DPNS_INCOMING_RINGING
Call continues as basic call

3.11.5 Incoming protection request
If a third party wishes to intrude on a remote party connected to the application via
DPNSS, the application will be requested to provide its Intrusion Protection Level.
The application’s Intrusion Protection Level is used by the remote PBX to determine if
Intrusion can proceed. An Intrusion Protection Level Request will only be received
when an application controlled call is connected to a remote party.

When an Intrusion Protection Level request is received the driver sends feature
message 1r1, REQUEST (received via dpns call details). The application must
respond with its Intrusion Protection Level. This is sent via feature message

IPL RESPONSE with feature info.ipl Set to the protection level of the application’s
party. The Intrusion Protection Level response is sent via dpns_send feat info.

The application may simply choose to ignore feature message 1r1,_reQuEST. In this
case, the remote Intrusion request is abandoned.

3.11.6 Outgoing protection request
If remote party requests Intrusion on an application party that is busy on another call

MAN1140 Revision 6.8.7 PUBLIC Page 53



the Intrusion Protection Level of the party currently connected to the application must
be determined.

To request the Intrusion Protection Level the application must send the feature
message 1P, REQUEST Via dpns send feat info. The protection level request is only
valid on call connection. The application may receive the following responses:

1PL_RESPONSE - If the feature message 1r1_respoNSE iS received, the ip1 element of
feature_info IS set to the Intrusion Protection Level of the party currently connected.
The application uses the received Intrusion Protection Level of the remote party with
that of the Intruding and its own party to determine if Intrusion can proceed.

MAN1140 Revision 6.8.7 PUBLIC Page 54



3.12

Extension Status Calls
Refer to BTNR 188 Section 20

The Extension Status Call supplementary service offers the capability of determining,
on request, the status of an extension.

Extension Status Call is available for both incoming and outgoing calls. Just one
message is used in this supplementary service: EXTENSION STATUS CALL.

To use this functionality the firmware switch (-££s) should be applied.

3.12.1 Application Initiated Extension Status Call

An application may request the status of another extension by setting a
feature info.msg {0 EXTENSION sTATUS caALL and making a virtual call to that
extension.

If the called extension is free then it will disconnect the call with raw clearing cause
0x14 (ACK). If the called extension is busy then the clearing cause will be 0x08 (BY).
If the called extension has diversion enabled then the relevant diversion information
will be included when the call gets disconnected. Any other clearing cause denotes
failure.

This information can be obtained after an £v_ReEMOTE DISCONNECT OF EV_IDLE by using
dpns_call details().

3.12.2 Remote Initiated Extension Status Call

3.13

An incoming virtual call may contain the feature info.msg EXTENSION STATUS CALL.
The application must respond to this request by clearing the call.

If the called extension is free, it must use dpns_disconnect With a raw clearing cause
of 0x14 (acx), if the called extension is busy then it should send 0x08 (8Y). The
extension has diversion enabled then the application should include the relevant
diversion information when clearing the call.

This information can be obtained after an ev_INcoMING CALL DET Of EV_DETAILS event
by using dpns_call details().

DPNSS Call Back Messaging
Refer to BTNR 188 Section 36

The Call Back Messaging supplementary service allows a caller to indicate to the
called party that the calling party wishes to be called back.

Call Back Messaging is available for both incoming and outgoing calls.

Two messages are used in this supplementary service, cALL,_BACK MESSAGE REQ and
CALL BACK MESSAGE CAN. TO use this functionality the firmware switch (-£czwv) should
be applied.

3.13.1 Application Initiated Call Back Request

Requesting a call back would normally take place after encountering a busy
extension, no reply or by a message centre wishing to contact the called party.

In order to register a request for Call Back Messaging the application must set a
feature info.msg tO CALL BACK MESSAGE REQ and make a virtual call to that
extension. Of course, the application needs to include the relevant c.r when making
the call.

If the request is successful then the far end will disconnect the call with clearing
cause 0x14 (ack). Any other clearing cause denotes failure. This information can be

MAN1140 Revision 6.8.7 PUBLIC Page 55



obtained after an £v_REMOTE DISCONNECT OF EV_IDLE DY USING dpns call details().

3.13.2 Application Initiated Call Back Cancel

In order to cancel a previously registered Call Back Message Request the application
must set a feature info.msg {0 CALL BACK MESSAGE cAN and make a virtual call to
that extension.

If the request is successful then the far end will disconnect the call with clearing
cause 0x14 (ack). Any other clearing cause denotes failure. This information can be
obtained after an Ev_REMOTE DISCONNECT OF EV_IDLE by USINQ dpns call details().

3.13.3 Remote Initiated Call Back Request

An incoming virtual call may contain the feature info.msg CALL BACK MESSAGE REQ.
The application must respond to this request by clearing the call. If the application
wishes to accept the request then it must use dpns_disconnect () With a raw clearing
cause of 0x14 (ack), if the request is to be rejected then it should send 0x19 (reJ).

If the application has accepted the Call Back Message request then it needs to store
the cr1 of the requesting party.

This information can be obtained after an ev_1NCcOMING CALL DET Of EV DETAILS event
by using dpns_call details().

3.13.4 Remote Initiated Call Back Cancel

3.14

An incoming virtual call may contain the feature info.msg CALL BACK MESSAGE CAN.
The application must respond to this request by clearing the call. If the application
wishes to accept the request then it must use dpns disconnect () With a raw clearing
cause of 0x14 (ack), if the request is to be rejected then it should send 0x19 (reJ).

This information can be obtained after an Ev_1NCOMING CALL, DET Or EV_DETAILS event
by using dpns_call details().

Charge Reporting
Refer to BTNR 188 Section 40

The Charge Reporting supplementary service allows details of call cost and
associated information to be passed between the parties involved in a call.

Charge Reporting is available for both incoming and outgoing calls.

To use all of this functionality the firmware switch (-fcc) should be applied.

3.14.1 Application Initiated Charge Activation

An application may activate call charging when accepting a call by setting a

feature info.msg O CHARGE ACTIVATE and caIIing dpns call accept(). Alternatively,
the application may choose to activate charging after the call has been connected. In
this case, the application must call dpns_send feat info() With & feature info.msg
field set to CHARGE ACTIVATE.

MAN1140 Revision 6.8.7 PUBLIC Page 56



3.14.2 Remote Initiated Charge Activation
When an outgoing call is accepted the far end may activate charging. Here the
feature info.msg field will contain caarce activaTe. Alternatively, the far end may
activate charging after connection; again, the feature info.msg field will contain
CHARGE ACTIVATE.

This information can be obtained after an £v_carL connNecTED Or EV_DETAILS event by
using dpns_call details().

3.14.3 Application Initiated Account Code Indication

The application can send Account code details after the call has been connected.
Usually account code details would be sent in response to an account code request.

To send an account code the application must set feature info.msgto
CHARGE_ACCOUNT copk and copy the account code string into feature info.digits and
US€e dpns_send feat info().

3.14.4 Remote Initiated Account Code Indication
The application may receive account code details from the far end during an
established call. The feature info.msg Will include caarce account cope and the
feature info.digits field will contain the account code.

This information can be obtained after an ev_peTa1Lns event by using
dpns call details().

3.14.5 Application Initiated Account Code Request

The application can request an account code at two points. This can be either when
an incoming call is accepted with dpns call accept Or during an established call
using dpns_send feat info.

The feature info.msg element needs to be set to CHARGE_ACCOUNT_ REQUEST. When
making one of these calls.

The far end should now respond with an account code.

3.14.6 Remote Initiated Account Code Request

An account code can be requested by the far end either at call connect or during an
established call. If the far end has requested an account code one of the
feature info.msg elements will be set to CHARGE ACCOUNT REQUEST.

This information can be obtained after either an £v_DETAILS Or EV_CALL CONNECTED
event by using dpns_call details (). Once obtained, the application should respond
to this request by sending an account code.

3.14.7 Application Initiated Call Cost Details

The application can send unsolicited call cost details when it is disconnecting a call.
To do this the feature info.msg field should be set to cuarce uniTs usep and a
string containing the number of units used should be copied into
feature_info.digits. Once this is done, the application makes a call to
dpns_disconnect t0 disconnect the call.

MAN1140 Revision 6.8.7 PUBLIC Page 57



3.15

3.16

DPNSS layer 2
The application has the ability to enable or disable DPNSS channels at Layer 2 (the
data link layer). This is done using the dpns_set 12 ch () function (see Section 2.13).

The application can also read a channel’s Layer 2 state using the dpns 12 state
function (see Section 2.14).

DPNSS non specified information
Refer to BTNR 188 section 15

At any point during a call, the application or remote party may generate Non Specified
Information (NSI) as defined in BTNR 188 Section 15.

NSI is sent and received via the nsi array located within the feature info Structure.

The nsi structure element is an array of IA5 characters with the following format:

Supplementary String Suffix*NSI Id*NSI String

The supplementary string suffix is used to determine if the NSI string is informative,
optional, or mandatory. It should be set to a value as defined in BTNR 188 Section 5
Table 1. The NSI Id is the manufacturers identifier and should be set to one of the
values specified in BTNR 188 Section 15.

Example of sending an NSI string:
mitel 1d = c (Specified in BTNR 188 Section 15)

string suffix = z Mandatory for branching, transit and end PBX (BTNR 188 Section 5
Table 1)

NSI String = “NSI STRING”
The application should copy z*c*NsT STRING IntO the feature info.nsi field.

There are two different modes of operation for passing incoming NSI strings to the
application:

The default behaviour is to remove the leading *+/, SIS suffix (if one is present), and
trailing *#’ from the string. When there are multiple NSI strings present in one
message, the driver will concatenate them together.

The same DPNSS message “*58z*Cc*NsT STRING#” IS received by the application as
~c*NsT sTRING”. Here the first *” and SIS suffix *z+ have been removed, as has the
trailing “#-.

The -s3,1 command line option allows the application to collect the complete NSI
string. With this enabled the leading **+ and any SIS suffix present will be passed to
the application. Also the trailing *#+ on each NSI string will be included, allowing the
application to easily parse a message containing multiple NSI strings.

So the string from our example would be received as “*z*C*NSI STRING#”.

The -fns* command line option allows the receipt of NSI strings bearing any
manufacturer code.

The -s4,1 command line options allows the application to receive messages which
contain multiple identical SIS strings in the same protocol message.

With both these options enabled, the application would now be able to receive a
DPNSS message containing two NSI strings each bearing a different manufacturer
code.

MAN1140 Revision 6.8.7 PUBLIC Page 58



3.17

3.18

3.19

DPNSS text
Refer to BTNR 188 section 16

Text may be sent and received at any point during a call. Text is sent and received
via the IA5 txt array located within the feature info Structure.

The Text Type parameter is appended to the end of the string.

For example to send the text message “acu1ab” as a name the string “aculap*1” is
copied into the txt array. This is valid for both incoming and outgoing text
messages.

Trunk ID
Refer to BTNR 188 section 16

This string is used in conjunction with a CLC to identify a trunk.

Trunk Identity is sent and received via the IA5 tiq array within the feature info
structure.

To send PBX identifier “1”, trunk group identifier “2”, and trunk member “3” the tidis
set to “1*2*3”. This is valid for both incoming and outgoing calls.

Sending DPNSS raw messages

This feature has been added to allow the application writer to use facilities not
provided by the Aculab API but that are available by sending messages to the switch.
Please note that the Aculab API will not provide any means of retrieving any non-
supported responses that the switch makes.

The feature can only be accessed when using the following functions:

dpns_openout

dpns call accept
dpns_send overlap
dpns_incoming ringing
dpns_send feat info
dpns_disconnect

By setting one of the message fields to penss raw, whatever is in the text field will be
sent out as part of the DPNSS Layer 3 message.

Example
DPNS OUT XPARMS outdetails;
INIT ACU STRUCT (&outdetails);

strcpy (outdetails.destination addr, “12345”);
strcpy (outdetails.originating addr, “54321");
strcpy (outdetails.feature info.txt, “*19*L#);

outdetail.ts = -1;
outdetails.feature info.msg[0] = DPNSS_RAW;

dpns_openout (&outdetails) ;

This will result in the DPNSS Loop Avoidance message (LA *19*L#) being sent in the
initial setup message. Hence, the loop avoidance message can now be supported,
although no addition for this has been made to the Aculab API.

CAUTION

As this feature bypasses all Aculab parsing of messages the application
should take the utmost care when using this facility. Also it is the

MAN1140 Revision 6.8.7 PUBLIC Page 59



3.20

responsibility of the user to ensure that any features invoked through this
facility exist and are supported through the PBX to which the Aculab
equipment is to be interfaced.

Charge account codes

This feature has been added to enable an application to send and receive Charge
Account code requests and information. Requests for an Account Code may be sent
in a call connect message via the dpns ca11 accept API call or the
dpns_send_feat info Message after reaching the connected state. This is achieved
by setting a feature message element to cHARGE ACCOUNT REQUEST. TO Send an
Account Code in response to a message then the message should be set to
CHARGE_AccouNT copk and the actual Account Code should be placed into the feature
digits field. A call to dpns call details Will reveal whether an Account Code or
Account Code request has been received. The message will be contained in one of
the feature message fields and the Account Code will be contained within the digits
field.

Example 1
DPNS CALL ACCEPT XPARMS accept parms;

INIT ACU STRUCT (&accept parms) ;

the handle;
CHARGE ACCOUNT_ REQUEST;

accept parms.handle
accept parms.feature info.msg[0]

dpns call accept (&accept parms);
Example 2

DPNS FEATURE XPARMS feature;

INIT ACU STRUCT (&feature) ;

feature.handle = the handle;
feature.feature info.msg[0] = CHARGE ACCOUNT_CODE;
strcpy (feature.feature info.digits, “1968”);

dpns_send feat info(&feature);

MAN1140 Revision 6.8.7 PUBLIC Page 60



Q)

Appendix A: Command Line Switches
DPNSS features are enabled when the device driver is loaded during system
initialisation.
Feature switches available are:

-fpIB - Enable immediate and busy diversion*

-fDR - Enable diversion on no reply*
-fpv - Enable diversion validation*
-fgp - Enable call hold*

-fNsx - Enable Non Specified Information. Where ‘X’ is the PBX manufacturer’s
identity as

defined in BTNR 188 section 15
-fns* - Enable receipt of NSI messages from any PBX manufacturer

-fEN - Enable enquiry call*

-fTR - Enable call transfer*

-fEI - Enable executive intrusion*
-fao - Enable add on*

-fcer - Enable call back when free*

-fcen - Enable call back when next used*

-fcam - Enable call back messaging*

-fEs - Enable extension status calls*

-fceM - Enables Call Back Messaging

-fEs - Enables support for Extension Status Call's

-fcc - Enables support for Call Charging*

-fNPR - Enables protocol support for Number Presentation Restriction*
-frg - Enables driver feature queue mechanism

See the notes distributed with the Aculab DPNSS firmware for more detalils.

* DPNSS feature messages are detailed in section 2.1.1

MAN1140 Revision 6.8.7 PUBLIC Page 61



Appendix B: Error Codes

The following lists the error codes returned by the call control system. Some errors
are internal to the driver occurring only during initialisation and will never be seen by

the application.
ERR HANDLE
ERR_COMMAND
ERR NET

ERR PARM
ERR_RESPONSE
ERR _NOCALLIP

ERR _CFAIL

ERR_TSBAR

ERR_TSBUSY

ERR_SERVICE

ERR BUFF FAIL

MAN1140 Revision 6.8.7

-The handle supplied is invalid

-The command specified is invalid or was not expected
-The network outLET humber specified is invalid
-Inconsistency in the call parameters

-Application failed to respond within response time
-call details issued with no call in progress

-Command failed. Error detected during the execution of the
current command

-The specified timeslot is barred from use or an illegal timeslot
number has been specified

-The specified timeslot is in use or there are no free timeslots.

-The specified service octet or associated additional information
octet is unsupported or is invalid

-The driver has run out of data buffer resources. This error
should never be seen during normal operation

PUBLIC Page 62



Appendix C: Feature Details Queuing

V6 now provides the option of having the driver queue all feature details before they
are passed to the application. Without this is was possible for the application to miss
some information if it did not collect the details quickly enough.

With this option enabled, the driver will store a set of feature details with every event.
The application must use dpns call details() to collect these details after every call
control event, except Ev_IDLE, EV_WAIT FOR INCOMING, @nd EV_DPNS IN TRANSIT.

If dpns call details() IS not used at these times then details may appear
uncoordinated with the latest call control events. This slight change in APl semantics
is due to fact that details, which, in the past, could have been overwritten, will still be
waiting for collection.

At the ev_1pLE event, details should be collected using the dpns getcause () function.

This functionality is enabled with the addition of the -FFQ command line switch.

MAN1140 Revision 6.8.7 PUBLIC Page 63



Contact us
Phone

+44 (0)1908 273800 (UK)
+1(781) 352 3550 (USA)

Email
Info@aculab.com
Sales@aculab.com
Support@aculab.com

Socials

vlinlflo,

bs

ok

v

UKAS

MANAGEMENT
SYSTEMS

Q003

Certificate number IS 722024
ISO 27001:2013

bsi

ok

v

UKAS

MANAGEMENT
SYSTEMS

0003

Certificate number FS722030

I1SO 9001:2015




