

MAN1140 Revision 6.8.6 PUBLIC

Aculab digital
telephony software

DPNSS call control
API guide

MAN1140 Revision 6.8.7

MAN1140 Revision 6.8.7 PUBLIC Page 2

PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab plc and may be the
subject of patents pending or granted, and must not be copied or disclosed without prior
written permission. It should not be used for commercial purposes without prior agreement in
writing.

All trademarks recognised and acknowledged.

Aculab plc endeavours to ensure that the information in this document is correct and fairly
stated but does not accept liability for any error or omission.

The development of Aculab’s products and services is continuous and published information
may not be up to date. It is important to check the current position with Aculab plc.

Copyright © Aculab plc. 1998-2023 all rights reserved.

Document Revision

Rev Date By Detail

5.0 Sep
1998

 For version 5.0.1 DPNSS enhanced call drivers

5.0.1 Oct
2001

DJL API change and review

5.0.2 May
2002

DJL Minor changes to section 3

5.9.1 July
2002

DJL Addition of call back when free appendix

5.10 Mar
2003

DJL Addition of new call-back functions

6.0.0 09.05.05 DJL Updates for V6 software

6.0.1 05.10.05 DJL Additional clarification of feature messages added

6.4.0 02.12.05 DJL Updates for 6.4.0 release

6.4.1 18.01.06 DJL Small changes/typos following header file review

6.4.2 29.11.06 EC Addition of signalling message reference information

6.4.3d1 28.08.08 MF Addition of signalling message reference information

6.4.4 04.10.10 DF Removed references to withdrawn products

6.4.5 20.10.10 EBJ Updated to corporate fonts

6.4.6 11.11.10 DF Updated following QA assessment

6.4.7 16.11.10 EBJ Removal of Hyperlinks.

6.8.0 06.06.22 DSL Update page footers.

6.8.6 25.10.22 DSL Minor corrections.

6.8.7 13.02.23 DSL Update title page

MAN1140 Revision 6.8.7 PUBLIC Page 3

CONTENTS

1 Introduction ... 6
1.1 Scope .. 7

2 Interface Definition (APIs) .. 8
2.1 feature_xparms - DPNSS feature support function library ... 8

2.1.1 DPNSS feature messages .. 9
2.2 dpns_openout() - DPNSS open for outgoing call ... 16
2.3 dpns_send_overlap() - DPNSS sending overlap digits/information 18
2.4 dpns_call_details() - DPNSS get call details .. 19
2.5 dpns_incoming_ringing() - DPNSS incoming ringing ... 21
2.6 dpns_send_feat_info() - DPNSS send feature info .. 22
2.7 dpns_call_accept() - DPNSS accept incoming call ... 24
2.8 dpns_getcause() - DPNSS get idle cause... 26
2.9 dpns_disconnect() - DPNSS disconnect call .. 27
2.10 dpns_release() - DPNSS release call .. 28
2.11 dpns_set_transit() - DPNSS set transit... 29
2.12 dpns_transit_details() - DPNSS transit details .. 30
2.13 dpns_send_transit() - DPNSS send transit .. 31
2.14 dpns_set_l2_ch() - DPNSS set layer 2 channel ... 31
2.15 dpns_l2_state() - DPNSS Layer 2 State .. 33

3 DPNSS feature call control .. 34
3.1 set_feat_msg() - sending and receiving DPNSS feature messages 34
3.2 Call diversion immediate/busy (BTNR 188 section 11) ... 35

3.2.1 Incoming call diversion to another PBX .. 35
3.2.2 Outgoing call diversion to another PBX .. 35
3.2.3 Incoming call diversion on the same PBX ... 35
3.2.4 Outgoing call diversion on the same PBX ... 35
3.2.5 Incoming call diverting .. 36
3.2.6 Outgoing call diverting .. 36

3.3 Call diversion no reply (BTNR 188 section 11) .. 36
3.3.1 Incoming call diversion to another PBX .. 36
3.3.2 Outgoing call diversion to another PBX .. 37
3.3.3 Incoming call diversion on the same PBX ... 37
3.3.4 Outgoing call diversion on the same PBX ... 37
3.3.5 Incoming call diverting .. 37
3.3.6 Outgoing call diverting .. 37

3.4 Diversion validation (BTNR 188 section 11) .. 38
3.4.1 Incoming diversion validation .. 38
3.4.2 Outgoing diversion validation .. 38

3.5 Call hold (BTNR 188 section 12) ... 38
3.5.1 Application initiated call hold ... 38
3.5.2 Remote initiated call hold .. 39

3.6 Enquiry call (BTNR 188 section 13) .. 39
3.6.1 Outgoing enquiry call .. 39
3.6.2 Incoming enquiry call .. 39

3.7 Call transfer (BTNR 188 section 13) ... 39
3.7.1 Application initiated call transfer ... 39
3.7.2 Remote party initiated call transfer ... 40

3.8 DPNSS transit working .. 40
3.9 Call back when free (CBWF) - BTNR 188 section 9 ... 40

MAN1140 Revision 6.8.7 PUBLIC Page 4

3.9.1 Outgoing request .. 41
3.9.2 Incoming request .. 41
3.9.3 Outgoing free notify .. 41
3.9.4 Incoming free notify .. 41
3.9.5 Outgoing cancel .. 41
3.9.6 Incoming cancel .. 42
3.9.7 Outgoing call setup ... 42
3.9.8 Incoming call setup ... 42

3.10 Add on/conference (BTNR 188 section 13) .. 42
3.10.1 Application controlled add on/conference ... 42

3.10.1.1 Conference establishment .. 42
3.10.1.2 Active conference ... 43

3.10.2 Remote add on/conference ... 44
3.10.2.1 Remote conference establishment ... 44
3.10.2.2 Active remote conference ... 44

3.11 Executive intrusion (BTNR 188 section 10) .. 45
3.11.1 Application controlled intrusion without prior validation 45

3.11.1.1 Intrusion request ... 45
3.11.1.2 Intrusion connection ... 46
3.11.1.3 Intrusion active ... 47
3.11.1.4 Intrusion withdraw... 47

3.11.2 Application controlled intrusion with prior validation 48
3.11.2.1 Prior validation intrusion request ... 48
3.11.2.2 Prior validation intrusion establishment 49

3.11.3 Network controlled intrusion without prior validation.............................. 50
3.11.3.1 Remote intrusion request without prior validation 50
3.11.3.2 Intrusion connection ... 51
3.11.3.3 Intrusion active ... 51
3.11.3.4 Intrusion withdraw... 52

3.11.4 Network Controlled Intrusion With Prior Validation 53
3.11.4.1 Intrusion Request ... 53

3.11.5 Incoming protection request .. 53
3.11.6 Outgoing protection request .. 53

3.12 Extension Status Calls ... 55
3.12.1 Application Initiated Extension Status Call .. 55
3.12.2 Remote Initiated Extension Status Call ... 55

3.13 DPNSS Call Back Messaging .. 55
3.13.1 Application Initiated Call Back Request... 55
3.13.2 Application Initiated Call Back Cancel ... 56
3.13.3 Remote Initiated Call Back Request ... 56
3.13.4 Remote Initiated Call Back Cancel .. 56

3.14 Charge Reporting ... 56
3.14.1 Application Initiated Charge Activation .. 56
3.14.2 Remote Initiated Charge Activation ... 57
3.14.3 Application Initiated Account Code Indication 57
3.14.4 Remote Initiated Account Code Indication .. 57
3.14.5 Application Initiated Account Code Request ... 57
3.14.6 Remote Initiated Account Code Request .. 57
3.14.7 Application Initiated Call Cost Details ... 57

3.15 DPNSS layer 2 ... 58
3.16 DPNSS non specified information .. 58
3.17 DPNSS text .. 59
3.18 Trunk ID ... 59
3.19 Sending DPNSS raw messages .. 59
3.20 Charge account codes ... 60

MAN1140 Revision 6.8.7 PUBLIC Page 5

Appendix A: Command Line Switches... 61

Appendix B: Error Codes .. 62

Appendix C: Feature Details Queuing .. 63

MAN1140 Revision 6.8.7 PUBLIC Page 6

1 Introduction
This functional specification describes the interface of a device driver capable of
providing the requirements of a ‘Layer 3’ interface to the signalling code (DPNSS)
when resident on an Aculab card.

The DPNSS driver has been written to support basic call control and the following
extra features:

• Call Diversion Immediate and Busy

• Call Diversion on No Reply

• Diversion validation

• Virtual calls

• Call Hold

• Enquiry Call

• Call Transfer

• Transit working

• Layer 2 channel control

• Non Specified Information (NSI)

• Text

• Trunk Identity

• Conference

• Executive Intrusion

• Sending raw DPNSS SIS messages

• State of destination Enquiry

• Number Presentation Restriction

• Charge Account Codes

• Call back when free

• Call back when next used

• Call back messaging

• Loop Avoidance

• Extension status calls

MAN1140 Revision 6.8.7 PUBLIC Page 7

CAUTION

This document is intended for use in conjunction with the DPNSS
Specification BTNR 188 ISSUE 5 (BT Document - Digital Private Network
Signalling System N01 (DPNSS1)). Before using these features, the user
should be familiar with the Aculab Generic Call Control document (Aculab
Call Control Driver Interface Guide) and BTNR 188. (DPNSS1)).

If compliance with BTNR 188 is to be achieved, it is also recommended that
the compliance tables within BTNR 188 be adhered to, and that the
document BTNR 188T is used as a test specification.

This specification does not presume any particular environment. It is
intended for use under various operating systems. The functions are
defined as library calls where isolation from the operating system is
desired.

1.1 Scope
This functional specification is intended to be of use in the development of
applications that make use of the various DPNSS function calls.

This specification describes the initiation and control of an outgoing call, the reception
and control of an incoming call, and support of various DPNSS features. The control
of timeslots and streams is documented in the switch API guide.

MAN1140 Revision 6.8.7 PUBLIC Page 8

2 Interface Definition (APIs)
The following section describes the interface of the library functions and the device
driver. Each function is described in terms of its calling parameters and the values
that the function will return. No particular operating system is assumed.

Enhancements to the Aculab API often require extension of the structures used as
parameters to Aculab API calls. To eliminate problems associated with this, the
following steps must be performed:

memset(&structure, 0, sizeof(structure));

structure.size = sizeof(structure);

In C and C++ programs, these steps can be replaced with the following macro,
defined in acu_type.h:

INIT_ACU_STRUCT(&structure);

2.1 feature_xparms - DPNSS feature support function library
DPNSS feature support uses a set of library function calls provided in addition to the
generic call control library.

The DPNSS function library enables the application to send and receive
instructions/information required to support the features specified at the start of this
document.

The additional library function calls are shown below:

dpns_openout open for outgoing call

dpns_send_overlap sending overlap digits/information

dpns_incoming_ringing incoming ringing

dpns_call_accept accept incoming call

dpns_call_details get call details

dpns_send_feat_info send feature information

dpns_disconnect disconnect call

dpns_release release call

dpns_getcause get idle cause

dpns_set_transit set transit

dpns_send_transit send transit

dpns_transit_details transit details

dpns_set_l2_ch set layer 2 channel

dpns_set_l2_state set layer 2 state

The DPNSS feature_xparms structure is common to most of the above functions. It is

used in addition to the parameters used for Basic Call Control with the generic call
control library.

typedef struct feature_xparms

{

 ACU_INT msg[MAX_FEAT_MSG]; /* Feature information message */

 ACU_UCHAR call_type; /* Call type - real or virtual */

 ACU_CHAR digits[MAXNUM]; /* Feature digits */

 ACU_CHAR cli[MAXNUM]; /* Called Line Identity */

 ACU_CHAR nsi[MAXNSI]; /* Non Specified Information */

MAN1140 Revision 6.8.7 PUBLIC Page 9

 ACU_CHAR txt[MAXTXT]; /* Text */

 ACU_CHAR tid[MAXTID]; /* Trunk ID */

 ACU_UCHAR clc; /* Call/Called Line category */

 ACU_UCHAR held_clc; /* Held Calling Line Category */

 ACU_UCHAR ipl; /* Intrusion protection level */

 ACU_UCHAR icl; /* Intrusion capability level */

 ACU_UCHAR routes /* Remaining routes */

 ACU_UCHAR transits /* Remaining transits */

} FEATURE_XPARMS;

msg

This parameter is used to send and receive DPNSS feature messages and may be
set to one of the following values, (the corresponding DPNSS identifiers are given in
brackets):

2.1.1 DPNSS feature messages

DIB – diversion immediate and busy

Aculab
Message

Mnemonic DPNSS identifier and description

DIVERT_IMMEDI

ATE

DVT_I Call divert immediate – used to indicate that the call
has been generated following call diversion
immediate. The array digits will contain the number
from which the calling party has been diverted.

DIVERT_BUSY DVT_B Call divert on busy– used to indicate that the call has
been generated following busy call diversion. The
array digits will contain the number from which the
calling party has been diverted

DIVERTING_IMM DVG_I Call diverting immediate - Used to indicate that the
outgoing call has been generated following call
diversion immediate. The array digits must hold the
number from which the calling party has been
diverted.

DIVERTING_BSY DVG_B Call diverting on busy - Used to indicate that the
outgoing call has been generated following busy call
diversion. The array digits must hold the number from
which the calling party has been diverted.

DIVERTED_IMM DVD_I Call diverted immediate - An outgoing call has been
diverted immediately to another party on the same
destination PBX. The array digits will contain the
number of the party the call has been diverted to.

DIVERTED_BSY DVD_B Call busy diverted – An outgoing call has been
diverted on busy to another party on the same
destination PBX. The array digits will contain the
number of the party the call has been diverted to.

MAN1140 Revision 6.8.7 PUBLIC Page 10

DR – diversion on no reply

Aculab
Message

Mnemonic DPNSS identifier and description

DIVERT_NO_REPL

Y

DVT_R Call Divert on no reply– This is received on an
outgoing call following EV_OUTGOING_RINGING and

before connection. The application may choose to
simply ignore this message or divert the outgoing call
to the number given in the array digits.

DIVERTING_RNR DVG_R Call diverting on no reply - used to indicate that the
call has been generated following call diversion on no
reply. The array digits will contain the number from
which the calling party has been diverted.

DIVERTED_RNR DVD_R Call diverted on no reply– An outgoing call has been
diverted on no reply to another party on the same
destination PBX. The array digits will contain the
number of the party the call has been diverted to.

DV – diversion validation

Aculab
Message

Mnemoni
c

DPNSS identifier and description

DIV_VALIDATION DIV_V Call Diversion Validation - used for a diversion
validation request. The application should respond to
the request by releasing the call via the function
dpns_disconnect or dpns_release with

feature_info.msg set to either ACKNOWLEDGE or REJECT.

MAN1140 Revision 6.8.7 PUBLIC Page 11

HD – call hold

Aculab Message Mnemoni
c

DPNSS identifier and description

HOLD_CALL HOLD_REQ Call hold request - The application is requested to
place its party on hold (i.e. disconnect the speech
channel). The application must respond via the
function dpns_send_feat_info with the

feature_info msg element set to either

ACKNOWLEDGE or REJECT.

HOLD_ACK ACK Hold Acknowledge

HOLD_REJECT REJ Hold Reject

HOLD_NOT_SUPPORTED SNU Hold not supported

RECONNECT_CALL RECON Reconnect held call

EN – enquiry call

Aculab
Message

Mnemonic DPNSS identifier and description

ENQUIRY ENQ Enquiry Call – used to indicate an enquiry call. The
element held_clc will be set to the calling line category

of the party placed on hold before enquiry call setup.

TR – call transfer

Aculab Message Mnemonic DPNSS identifier and description
TRANSFER_O TRFR Transfer call originating

TRANSFER_T TRFR Transfer call terminating

TRANSFERRED TRFD Call transferred - the remote party has transferred a
connected call.

TRANSFERRED_INFO Call transfer information – Following the TRANSFERRED

message the Calling Line Identity and Calling Line
Category of the transferred party will be set in the
CLI and CLC elements.

EI – executive intrusion

Aculab Message Mnemo
nic

DPNSS identifier and description

INTRUSION_REQUEST EI_R Intrusion request - Indicates executive intrusion
request generated by remote PBX. The icl
element is set to the Intrusion Capability Level
of the requesting party.

PV_INTRUSION EI_PVR Intrusion prior validation – Indicates intrusion
prior validation request generated by the remote
PBX. The icl element is set to Intrusion
Capability Level of the requesting

party.

INTRUSION_ACK ACK Intrusion acknowledge – Used to indicate
acknowledge of intrusion request generated by
the application.

MAN1140 Revision 6.8.7 PUBLIC Page 12

Aculab Message Mnemo
nic

DPNSS identifier and description

INTRUDING EI_I Intruding - Used to indicate successful intrusion
on

remote party.

IPL_REQUEST IPL_R Intrusion protection level request - Remote PBX
intrusion protection level request.

IPL_RESPONSE IPL Intrusion protection level response – Remote
PBX intrusion protection level response. The ipl
element is set to the Intrusion Protection Level
of the responding party.

INTRUSION_WITHDRAW EI_W Intrusion withdraw - Remote PBX intrusion
withdraw.

WITHDRAW_ACK ACK Intrusion withdraw acknowledge () - Remote
PBX intrusion withdraw acknowledge.

WITHDRAW_NOT_SUPPORTED SNU Withdraw not supported – Withdraw not
supported by remote PBX.

AO – add on

Aculab Message Mnemo
nic

DPNSS identifier and description

ADD_ON_VALIDATION AD_V Add on validation () - The application is requested
to validate an add-on request. The application
must respond with either ADD_ON_ACK or

ADD_ON_REJ.

ADD_ON_ACK ACK Add on acknowledge ()

ADDED_ON AD_O Added on () - Remote PBX has formed a
conference including the application party.

ADD_ON_REJECT REJ Add on reject ()

ADD_ON_NOT_SUPPORTED SNU Add on not supported () - Indicates that the
remote PBX does not support the add-on feature.
Received in response to ADD_ON_VALIDATION

ADD_ON_CLEARDOWN AC_CDC Add on clear down () - Sent by remote PBX to
instruct application to clear down a conference
(disconnecting all parties)

TWO_PARTY_O TWP Two party () - Sent by remote PBX to indicate two
party call following add on (application designated
as originating party). The cli and clc parameters
are set to the connected party details.

TWO_PARTY_T TWP Two party () - Sent by remote PBX to indicate two
party call following add on (application designated
as terminating party). The cli and clc parameters
are set to the connected party details.

CBF – call back when free

Aculab Message Mnemonic DPNSS identifier and description
CBWF_REQUEST CBWF-R Call Back When Free Request

MAN1140 Revision 6.8.7 PUBLIC Page 13

Aculab Message Mnemonic DPNSS identifier and description
CBWF_CANCEL CBWF-C

CBWF_FREE_NOTIFY CBWF-FN Call Back When Free - Free Notify

RING_OUT RO Ring Out

CALL_BACK_COMPLETE CBC Call Back Complete

CBWF_CALL_SETUP_IMMEDIATE CBWF-CSUI Call Back When Free Call Setup
Immediate

CBWF_CALL_SETUP_DELAYED CBWF-CSUD Call Back When Free Call Setup Delayed

CBM – call back messaging

Aculab Message Mnemonic DPNSS identifier and description
CALL_BACK_MESSAGE_REQ CBM-R Call Back Messaging Request

CALL_BACK_MESSAGE_CAN CBM-C Call Back Messaging Cancel

ES – extension status calls

Aculab Message Mnemonic DPNSS identifier and description
EXTENSION_STATUS_CALL EST Extension Status Call - indicates that the call

being established is an Extension-Status Call.

CC – call charging

Aculab Message Mnemonic DPNSS identifier and description
CHARGE_REQUEST CH-CR Charge reporting – cost request

CHARGE_UNITS_USED CH-UU Charge reporting – units used

CHARGE_ACTIVATE CH-ACT Charge reporting - activate

CHARGE_ACCOUNT_REQUEST CH-ACR Charge Account Code Request

CHARGE_ACCOUNT_CODE CH-AC Charge Account Code

NPR – number presentation restriction

Aculab Message Mnemonic DPNSS identifier and description
NPR_A_PARTY_SUFFIX_B NPR-A Number presentation restriction - A party

(restriction domain)

LA – loop avoidance

Aculab Message Mnemonic DPNSS identifier and description
LOOP_AVOIDANCE LA Used to indicate the number of further transits

or routes are left before a call terminates. The
transits parameter is compulsory and the routes
parameter is optional. Both can be a value from
0 –25. A value of 0xFF (255) in the routes
parameter will signal that this parameter is not
to be used.

CBF – call back when next used request

Aculab Message Mnemonic DPNSS identifier and description
CBWNU_REQUEST CBWNU-R Call Back When Next Used Request

Other feature messages

MAN1140 Revision 6.8.7 PUBLIC Page 14

Aculab Message Mnemonic DPNSS identifier and description
NO_MSG Default to no instruction

ACKNOWLEDGE ACK Acknowledge - Used to acknowledge a feature
requested by the application.

REJECT REJ Reject (REJ) - Used to reject a feature
requested by the application.

STATE_OF_DEST_FREE SOD_F State of destination free (SOD_F) - Remote party

is free or in the ringing state.

STATE_OF_DEST_BUSY SOD_B State of destination free (SOD_B) – used to

indicate that the remote party is busy.

STATE_OF_DEST_REQ SOD_R State of destination free (SOD_R) – used to find

out if diversion bypass is allowed.

DIV_BYPASS DIV_BY Diversion Bypass (DIV_BY)

RECONNECT Reconnect held party.

NIGHT_SERVICE_DIVERT NS-DVT Night Service Divert (NS-DVT)

FEAT_NOT_SUPPORTED Feature not supported - Feature requested by
the application is not supported by the
destination PBX.

DPNSS_RAW Send raw DPNSS message from txt field. - Used
to indicate to the driver, and firmware, that the
txt field contains raw DPNSS information and
should be passed unparsed.

The msg element is an array, which can hold up to MAX_FEAT_MSG feature instructions.

The default setting for msg is NO_MSG. When sending a message, the application

should begin with the first msg element. All remaining elements should be set to

NO_MSG.

Later sections of this document refer to sending and receiving feature messages.
Feature messages are sent by the application to the driver and vice versa using
feature_xparms.msg.

call_type

This element is used to indicate call type (real or virtual). call_type is valid for both

incoming and outgoing calls and should always be set to REAL or VIRTUAL.

REAL - Only used if the ts element has been set to -1. The device driver will use

the first available real channel.

VIRTUAL - Is only used if the ts element has been set to -1. The device driver will

use the first available virtual channel.

digits

Is an array of IA5 digits used in conjunction with feature instructions during call
control.

cli

Is an array of IA5 digits used for Calling/Called Line Identity. It is valid for both
incoming and outgoing calls.

nsi

Is an array of IA5 characters used to send and receive Non-Specified-Information.

txt

MAN1140 Revision 6.8.7 PUBLIC Page 15

Is an array of IA5 characters used to send and receive text. This parameter can be
used to send ‘raw’ DPNSS strings in Initial Service Request Messages.

tid

Is an array of IA5 characters used to send and receive the trunk identity string.

clc

Is used to send and receive Calling/Called Line. category.clc may be set to one of

the following values:

NO_CLC Default value

ORDINARY DPNSS CLC_ORD

DECADIC DPNSS CLC_DEC

DASS2 DPNSS CLC_DASS2

PSTN DPNSS CLC_PSTN

MF5 DPNSS CLC_MF5

OPERATOR DPNSS CLC_OP

NETWORK DPNSS CLC_NET

CONFERENCE DPNSS CLC_CONF

If no CLC is specified, the driver will default to ORDINARY (DPNS CLC_ORD).

held_clc

Used in conjunction with Enquiry Call to send and receive the Calling Line Category
of a held party. held_clc may be set to one of the following values:

NO_CLC Default value

ORDINARY DPNSS CLC_ORD

DECADIC DPNSS CLC_DEC

DASS2 DPNSS CLC_DASS2

PSTN DPNSS CLC_PSTN

MF5 DPNSS CLC_MF5

OPERATOR DPNSS CLC_OP

NETWORK DPNSS CLC_NET

CONFERENCE DPNSS CLC_CONF

ipl

Is used to send and receive Intrusion Protection Levels. Refer to BTNR 188 Section
10 Paragraph 2.2.1 for the valid range of values.

icl

Is used to send and receive Intrusion Capability Levels. Refer to BTNR 188 Section
10 Paragraph 2.2.1 for the valid range of values.

Parameters not used in the feature_xparms structure must be initialised to their

default values.

routes

Is used signal the number of further routes that call is allowed to attempt. Refer to
BTNR 188 Section 38 for more details. Can have a value from 0 – 25. A value of 0xff
(255) means that the parameter will be omitted or has been omitted on receipt. This
parameter is optional for loop avoidance.

Parameters not used in the feature_xparms structure must be initialised to their

default values.

Transits

Is used signal the number of further transits that call is allowed to attempt. Refer to

MAN1140 Revision 6.8.7 PUBLIC Page 16

BTNR 188 Section 38 for more details. Can have a value from 0 – 25. This parameter
is mandatory for loop avoidance.

Parameters not used in the feature_xparms structure must be initialised to their

default values.

2.2 dpns_openout() - DPNSS open for outgoing call
This function allows an application to initiate an outgoing call. The function registers
the outgoing call requirement with the device driver, which if satisfied with the calling
parameters, will return a unique call identifier, the handle. The call handle must be

used in all successive call control related operations on the driver.

Synopsis
 ACU_ERR dpns_openout (DPNS_OUT_XPARMS * outdetailsp);

typedef struct dpns_out_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 ACU_PORT_ID net;

 ACU_INT ts;

 ACU_INT cnf;

 ACU_INT sending_complete;

 ACU_CHAR destination_addr[MAXNUM];

 ACU_CHAR originating_addr[MAXNUM];

 ACU_ACT app_context_token;

 ACU_EVENT_QUEUE queue_id;

 union uniquex unique_xparms;

 FEATURE_XPARMS feature_info;

} DPNS_OUT_XPARMS;

 typedef struct feature_xparms

{

 ACU_INT msg[MAX_FEAT_MSG];

 ACU_UCHAR call_type;

 ACU_CHAR digits[MAXNUM];

 ACU_CHAR cli[MAXNUM];

 ACU_CHAR nsi[MAXNSI];

 ACU_CHAR txt[MAXTXT];

 ACU_CHAR tid[MAXTID];

 ACU_UCHAR clc;

 ACU_UCHAR held_clc;

 ACU_UCHAR ipl;

 ACU_UCHAR icl;

} FEATURE_XPARMS;

MAN1140 Revision 6.8.7 PUBLIC Page 17

Call input parameters

The dpns_openout function takes a pointer, outdetailsp, to a structure

dpns_out_xparms. dpns_out_xparms has the same format as the out_xparms structure

described in the Generic Call Control specifications, but with the addition of the
feature_info structure.

dpns_out_xparms() must be initialised with the values as defined for call_openout()

in the gGeneric call control API specification.

Feature xparm input parameters

In addition to the Generic Call Control input parameters, the feature_info parameters

may be set to the following values when used with dpns_openout():

Msg

The valid msg parameter values for this call include:

NPR_A_PARTY_SUFFIX_B

NIGHT_SERVICE_DIVERTING

DIVERTING_IMM

DIVERTING_BSY

DIVERTING_RNR

DIV_BYPASS

ENQUIRY

DIV_VALIDATION

INTRUSION_REQUEST

PV_INTRUSION

CALL_BACK_MESSAGE_REQ

EXTENSION_STATUS_CALL

CBWF_REQUEST

CBWF_CANCEL

CBWF_FREE_NOTIFY

CBWF_CALL_SETUP_IMMEDIATE

CBWF_CALL_SETUP_DELAYED

CALL_BACK_MESSAGE_CAN

DPNSS_RAW

For descriptions of the feature_xparms parameters and values, please refer to section

2.1

Return Values
handle

If successful, this will contain a unique (non zero) call identifier, which must be used
in all successive call related operations on the driver.

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Signalling messages transmitted

This will transmit at least an ISRMI or ISRMC. If there is a lot of information to
transmit then this may be followed by one or more SSRMI and optionally an SSRMC.
For further information, refer to BTNR 188.

MAN1140 Revision 6.8.7 PUBLIC Page 18

2.3 dpns_send_overlap() - DPNSS sending overlap digits/information
This function may be used to send the destination address of an outgoing call more
digits or feature information. The function may also be used any time that a valid
outgoing call handle is available and the state of that handle is EV_WAIT_FOR_OUTGOING.

The outgoing call handle would have been obtained with either the call_openout or

dpns_openout functions.

Synopsis
ACU_ERR dpns_send_overlap(DPNS_OVERLAP_XPARMS *overlapp);

typedef struct dpns_overlap_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 ACU_INT sending_complete;

 ACU_CHAR destination_addr[MAXNUM];

 FEATURE_XPARMS feature_info;

} DPNS_OVERLAP_XPARMS;

typedef struct feature_xparms

{

 ACU_INT msg[MAX_FEAT_MSG];

 ACU_UCHAR call_type;

 ACU_CHAR digits[MAXNUM];

 ACU_CHAR cli[MAXNUM];

 ACU_CHAR nsi[MAXNSI];

 ACU_CHAR txt[MAXTXT];

 ACU_CHAR tid[MAXTID];

 ACU_UCHAR clc;

 ACU_UCHAR held_clc;

 ACU_UCHAR ipl;

 ACU_UCHAR icl;

} FEATURE_XPARMS;

Call input parameters

The dpns_send_overlap() function takes a pointer; overlap, to a structure of type

dpns_overlap_xparms. The dpns_overlap_xparms structure has the same format as the

overlap_xparms structure, described in the Generic Call Control specifications, with

the addition of the DPNSS feature_info structure. The dpns_overlap_xparms() must

be initialised with the values specified for call_send_overlap() in the Generic Call

Control specifications.

Feature xparm input parameters

In addition to the Generic Call Control input parameters, the feature_info parameters

may be set to the following values when used with dpns_send_overlap():

MAN1140 Revision 6.8.7 PUBLIC Page 19

msg

The valid msg parameters for this call include:

DPNSS_RAW

NIGHT_SERVICE_DIVERTING

DIVERTING_IMM

DIVERTING_BSY

DIVERTING_RNR

ENQUIRY

DIV_VALIDATION

INTRUSION_REQUEST

PV_INTRUSION

For descriptions of the feature_xparms parameters and values, please refer to

Section 2.1

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

Signalling messages transmitted

This will transmit an SSRMI and/or SSRMC. For further information, refer to BTNR
188.

2.4 dpns_call_details() - DPNSS get call details
This function is used to read the details of an incoming/outgoing DPNSS call
connected through the device driver.

Synopsis
ACU_ERR dpns_call_details (DPNS_DETAIL_XPARMS * detailsp);

typedef struct dpns_detail_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 ACU_LONG timeout;

 ACU_INT valid;

 ACU_INT stream;

 ACU_INT ts;

 ACU_INT calltype;

 ACU_INT sending_complete;

 ACU_CHAR destination_addr[MAXNUM];

 ACU_CHAR originating_addr[MAXNUM];

 ACU_CHAR connected_addr[MAXNUM];

 ACU_CHAR redirected_addr[MAXNUM];

 union uniquex unique_xparms;

 FEATURE_XPARMS feature_info;

} DPNS_DETAIL_XPARMS;

typedef struct feature_xparms

MAN1140 Revision 6.8.7 PUBLIC Page 20

{

 ACU_INT msg[MAX_FEAT_MSG];

 ACU_UCHAR call_type;

 ACU_CHAR digits[MAXNUM];

 ACU_CHAR cli[MAXNUM];

 ACU_CHAR nsi[MAXNSI];

 ACU_CHAR txt[MAXTXT];

 ACU_CHAR tid[MAXTID];

 ACU_UCHAR clc;

 ACU_UCHAR held_clc;

 ACU_UCHAR ipl;

 ACU_UCHAR icl;

} FEATURE_XPARMS;

Call input parameters

The dpns_call_details() function takes a pointer, detailsp, to a structure

dpns_detail_xparms. The dpns_detail_xparms structure has the same format as the

detail_xparms structure, described in the Generic Call Control specifications, with the

addition of the DPNSS feature_info structure. In most instances, the
dpns_detail_xparms must be initialised with the values specified for call_details() in

the Generic Call Control specifications. The exceptions are feature_information and

app_context_token , which are not used with DPNSS

Return Values

In addition to the information elements described for call_details() in the Generic

Call Control Specification, the structure feature_info may contain the following

information:

Feature parameters
msg

All msg parameter are valid for this call. For descriptions of the feature_xparms

parameters and values, please refer to section 2.1

Call parameters

redirect_addr –a null terminated string of IA5 digits containing the redirected

number.

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

MAN1140 Revision 6.8.7 PUBLIC Page 21

2.5 dpns_incoming_ringing() - DPNSS incoming ringing
This function may be used to optionally send the ringing message to the network.

The function dpns_incoming_ringing may be used after an incoming call has been

detected but before the call has been accepted. Use of the function will stop any
further destination address digits being received.

Synopsis
ACU_ERR dpns_incoming_ringing(DPNS_INCOMING_RING_XPARMS *inringp);

typedef struct dpns_incoming_ring_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 FEATURE_XPARMS feature_info;

} DPNS_INCOMING_RING_XPARMS;

typedef struct feature_xparms

{

 ACU_INT msg[MAX_FEAT_MSG];

 ACU_UCHAR call_type;

 ACU_CHAR digits[MAXNUM];

 ACU_CHAR cli[MAXNUM];

 ACU_CHAR nsi[MAXNSI];

 ACU_CHAR txt[MAXTXT];

 ACU_CHAR tid[MAXTID];

 ACU_UCHAR clc;

 ACU_UCHAR held_clc;

 ACU_UCHAR ipl;

 ACU_UCHAR icl;

} FEATURE_XPARMS;

Call input parameters

The dpns_incoming_ringing() function takes a pointer, inringp, to a structure

dpns_incoming_ring_xparms. The structure must be initialised with the following

values before invoking the function.

The input parameter handle uniquely identifies the call that will send the incoming

ringing message.

Feature xparm input parameters

The feature_info structure is used to generate feature call information/instructions.

MAN1140 Revision 6.8.7 PUBLIC Page 22

msg

The valid msg parameter values for this call include:

DPNSS_RAW

NIGHT_SERVICE_DIVERT

NIGHT_SERVICE_DIVERTED

DIVERT_IMMEDIATE

DIVERT_BUSY

DIVERTED_IMM

DIVERTED_BSY

INTRUSION_ACK

For descriptions of the feature_xparms parameters and values, please refer to section

2.1

Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Signalling messages transmitted

This will transmit a NAM. For further information, refer to BTNR 188.

2.6 dpns_send_feat_info() - DPNSS send feature info
This function is used to send DPNSS feature information to the network following
call_incoming_ringing() or dpns_incoming_ringing() on an incoming call and

EV_OUTGOING_RINGING on an outgoing call.

Synopsis
ACU_ERR dpns_send_feat_info(DPNS_FEATURE_XPARMS *featurep);

typedef struct dpns_feature_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 FEATURE_XPARMS feature_info;

} DPNS_FEATURE_XPARMS;

typedef struct feature_xparms

{

 ACU_INT msg[MAX_FEAT_MSG];

 ACU_UCHAR call_type;

 ACU_CHAR digits[MAXNUM];

 ACU_CHAR cli[MAXNUM];

 ACU_CHAR nsi[MAXNSI];

 ACU_CHAR txt[MAXTXT];

 ACU_CHAR tid[MAXTID];

 ACU_UCHAR clc;

 ACU_UCHAR held_clc;

 ACU_UCHAR ipl;

MAN1140 Revision 6.8.7 PUBLIC Page 23

 ACU_UCHAR icl;

} FEATURE_XPARMS;

Call input parameters

The dpns_send_feat_info() function takes a pointer, featurep, to a structure

dpns_feature_xparms. The structure must be initialised with the following values

before invoking the function.

The input parameter handle uniquely identifies the call that will send the incoming

ringing message.

Feature xparm input parameters

The feature_info structure is used to generate DPNSS feature

information/instructions.

msg

The valid msg parameter values for this call include:

DPNSS_RAW

ADD_ON_CLEARDOWN

ADD_ON_VALIDATION

ADD_ON_ACK

ADD_ON_REJECT

ADDED_ON

TWO_PARTY_O

TWO_PARTY_T

HOLD_CALL

HOLD_ACK

HOLD_REJECT

TRANSFER_O

TRANSFER_T

RECONNECT_CALL

CALL_BACK_COMPLETE

DIVERT_NO_REPLY

DIVERTED_RNR

STATE_OF_DEST_FREE

RING_OUT

ACKNOWLEDGE

REJECT

CHARGE_UNITS_USED

CHARGE_ACCOUNT_REQUEST

CHARGE_ACCOUNT_CODE

CHARGE_ACTIVATE

IPL_REQUEST

IPL_RESPONSE

INTRUSION_WITHDRAW

INTRUSION_REQUEST

INTRUSION_ACK

MAN1140 Revision 6.8.7 PUBLIC Page 24

WITHDRAW_ACK

Other feature parameters used by this call, include:

nsi

txt

tid

ipl

icl

digits

For descriptions of the other feature_xparms parameters and values, please refer to

section 2.1

Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Signalling messages transmitted

This will transmit an EEMC or an LLMC (only with CHARGE_UNITS_USED). For
further information, refer to BTNR 188.

2.7 dpns_call_accept() - DPNSS accept incoming call
This function is used to send an incoming call connection message to the calling
party.

Synopsis
ACU_ERR dpns_call_accept(DPNS_CALL_ACCEPT_XPARMS *call_acceptp);

typedef struct dpns_call_accept_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 FEATURE_XPARMS feature_info;

} DPNS_CALL_ACCEPT_XPARMS;

typedef struct feature_xparms

{

 ACU_INT msg[MAX_FEAT_MSG];

 ACU_UCHAR call_type;

 ACU_CHAR digits[MAXNUM];

 ACU_CHAR cli[MAXNUM];

 ACU_CHAR nsi[MAXNSI];

 ACU_CHAR txt[MAXTXT];

 ACU_CHAR tid[MAXTID];

 ACU_UCHAR clc;

 ACU_UCHAR held_clc;

 ACU_UCHAR ipl;

 ACU_UCHAR icl;

MAN1140 Revision 6.8.7 PUBLIC Page 25

} FEATURE_XPARMS;

Call input parameters

The dpns_call_accept() function takes a pointer, call_acceptp, to a structure

dpns_call_accept_xparms. The structure must be initialised with the following values

before invoking the function.

handle

The input parameter handle uniquely identifies the connected call.

Feature xparm input parameters

The feature_info structure is used to generate DPNSS feature

instructions/information. The following values can be used by dpns_call_accept():

Msg

The valid msg parameter values for this call include:

DPNSS_RAW

CHARGE_ACTIVATE

CHARGE_ACCOUNT_REQUEST

INTRUDING

Other feature parameters used by this call, include:

nsi

txt

tid

For definitions of the feature_xparms parameters and values, please refer to section

2.1

Return Values

On successful completion a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Signalling messages transmitted

If the application has not sent ringing, then this will first transmit a NAM. Otherwise, it
will send a CCM. For further information, refer to BTNR 188.

MAN1140 Revision 6.8.7 PUBLIC Page 26

2.8 dpns_getcause() - DPNSS get idle cause
This function can be used to read the clearing cause when an incoming or outgoing
call goes to EV_IDLE. The returned clearing cause will only be valid at EV_IDLE.

Synopsis
ACU_ERR dpns_getcause(DPNS_CAUSE_XPARMS *causep);

typedef struct dpns_cause_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 ACU_INT cause;

 ACU_INT raw;

 FEATURE_XPARMS feature_info;

} DPNS_CAUSE_XPARMS;

typedef struct feature_xparms

{

 ACU_INT msg[MAX_FEAT_MSG];

 ACU_UCHAR call_type;

 ACU_CHAR digits[MAXNUM];

 ACU_CHAR cli[MAXNUM];

 ACU_CHAR nsi[MAXNSI];

 ACU_CHAR txt[MAXTXT];

 ACU_CHAR tid[MAXTID];

 ACU_UCHAR clc;

 ACU_UCHAR held_clc;

 ACU_UCHAR ipl;

 ACU_UCHAR icl;

} FEATURE_XPARMS;

Input Parameters

The dpns_getcause() function takes a pointer, causep, to a structure

dpns_cause_xparms. The structure of dpns_cause_xparms is the same as the

cause_xparms structure, described in the Generic Call Control specifications, with

the addition of the feature_info structure. dpns_cause_xparms must be initialised

with the values described for call_getcause() in the Generic Call Control

specifications.

Return Values

In addition to the return values described in the Generic Call Control specifications,
the feature_info may contain the following:

MAN1140 Revision 6.8.7 PUBLIC Page 27

Msg

The valid msg parameter values for this call can include:

ACKNOWLEDGE

REJECT

DIVERT_IMMEDIATE

DIVERT_BUSY

Other feature parameters used by this call, include:

nsi

txt

For definitions of the feature_xparms parameters and values, please refer to section

2.1

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

2.9 dpns_disconnect() - DPNSS disconnect call
This function can be used to disconnect an incoming or outgoing call currently routed
through the driver. If the dpns_disconnect() function is successful, the driver will start

the disconnect procedure and will return immediately to the calling process.

When the call has been disconnected, the event EV_IDLE will be generated. The

dpns_release() function must then be used to give back the handle to the driver.

Synopsis
ACU_ERR dpns_disconnect(DPNS_CAUSE_XPARMS *causep);

typedef struct dpns_cause_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 ACU_INT cause;

 ACU_INT raw;

 FEATURE_XPARMS feature_info;

} DPNS_CAUSE_XPARMS;

typedef struct feature_xparms

{

 ACU_INT msg[MAX_FEAT_MSG];

 ACU_UCHAR call_type;

 ACU_CHAR digits[MAXNUM];

 ACU_CHAR cli[MAXNUM];

 ACU_CHAR nsi[MAXNSI];

 ACU_CHAR txt[MAXTXT];

 ACU_CHAR tid[MAXTID];

 ACU_UCHAR clc;

 ACU_UCHAR held_clc;

 ACU_UCHAR ipl;

 ACU_UCHAR icl;

} FEATURE_XPARMS;

MAN1140 Revision 6.8.7 PUBLIC Page 28

Input Parameters

The dpns_disconnect function takes a pointer, causep, to a structure

dpns_cause_xparms. dpns_cause_xparms is the same as the cause_xparms structure,

described in the Generic Call Control specifications, with the addition of the
feature_info structure. dpns_cause_xparms must be initialised with the values

described for call_getcause() in the Basic Call Control specifications.

Feature xparm parameters

The following feature_info elements may be used by the application:

Msg

The valid msg parameter values for this call include:

DPNSS_RAW

ACKNOWLEDGE

REJECT

NIGHT_SERVICE_DIVERTED

DIVERTED_IMM

DIVERTED_BSY

STATE_OF_DEST_FREE

STATE_OF_DEST_BUSY

CHARGE_UNITS_USED

Other feature parameters used by this call, include nsi and txt. or definitions of the
feature_xparms parameters and values, please refer to section 2.1

Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

NOTE

If there is a call in progress when dpns_disconnect is invoked, the driver will

initiate the disconnect procedure and will immediately return control to the
calling process.

Signalling messages transmitted

This will transmit a CRM/CIM. For further information, refer to BTNR 188.

2.10 dpns_release() - DPNSS release call
This function must be used to relinquish ownership of a call handle in response to

call termination EV_IDLE, or any error condition that may cause the application to

abandon the call. If the dpns_release() function is successful, the driver will

disconnect the call and the call handle will be closed. The handle may no longer be

used by the application.

Synopsis
ACU_ERR dpns_release (DPNS_CAUSE_XPARMS * causep);

typedef struct dpns_cause_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 ACU_INT cause;

MAN1140 Revision 6.8.7 PUBLIC Page 29

 ACU_INT raw;

 FEATURE_XPARMS feature_info;

} DPNS_CAUSE_XPARMS;

typedef struct feature_xparms

{

 ACU_INT msg[MAX_FEAT_MSG];

 ACU_UCHAR call_type;

 ACU_CHAR digits[MAXNUM];

 ACU_CHAR cli[MAXNUM];

 ACU_CHAR nsi[MAXNSI];

 ACU_CHAR txt[MAXTXT];

 ACU_CHAR tid[MAXTID];

 ACU_UCHAR clc;

 ACU_UCHAR held_clc;

 ACU_UCHAR ipl;

 ACU_UCHAR icl;

} FEATURE_XPARMS;

Input Parameters

The function dpns_release() takes a pointer, causep, to a structure

dpns_cause_xparms. dpns_cause_xparms is the same as the cause_xparms structure

described in the Generic Call Control specifications, with the addition of the
feature_info structure. dpns_cause_xparms must be initialised with the values

described for call_getcause() in the Generic Call Control specifications.

Feature xparm parameters

The following feature_info elements may be used by the application:

nsi

txt

NOTE

If there is a call in progress when dpns_release is invoked, the calling process

will block in the driver until the driver has disconnected the call. Control
will then be returned to the application. The feature_info elements nsi and

txt are only valid if the call is not in idle state

Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Signalling messages transmitted

If the call is still connected this will transmit a CRM. For further information, refer to
BTNR 188.

2.11 dpns_set_transit() - DPNSS set transit
This function may be used to invoke DPNSS transit working for both incoming and
outgoing calls. Refer to BTNR 188 for further details of Transit functionality.

Synopsis

MAN1140 Revision 6.8.7 PUBLIC Page 30

ACU_ERR dpns_set_transit(ACU_CALL_HANDLE handle);

Input Parameters
handle

The input parameter handle uniquely identifies the call to be placed in transit state.

Return Values

On successful completion, a value of zero is returned, the event EV_DPNS_TRANSIT will

be raised by the driver. If the call attempt is unsuccessful, a negative value will be
returned indicating the type of error.

2.12 dpns_transit_details() - DPNSS transit details
This function is used to read a DPNSS transit message received from the network.
dpns_transit_details() should only be called following dpns_set_transit(), call

transfer, or two party working following conference.

Synopsis
ACU_ERR dpns_transit_details(DPNS_TRANSIT_XPARMS *transitp);

typedef struct dpns_transit_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 ACU_LONG timeout;

 ACU_INT valid;

 ACU_CHAR trans_msg[TRANSIT_MSG_LENGTH];

} DPNS_TRANSIT_XPARMS;

Input Parameters

The dpns_transit_details() takes a pointer, transitp, to a structure

dpns_transit_xparms. The structure must be initialised with the following values

before invoking the function.

handle

The input parameter handle is used to uniquely identify the call.

timeout

This parameter is ignored for this call.

MAN1140 Revision 6.8.7 PUBLIC Page 31

Return Values
trans_msg

The ASCII string trans_msg contains the DPNSS message, which is to be forwarded
to the destination party. It is important that this string is not modified before
forwarding to the destination party.

valid

The return value valid is a Boolean, which indicates whether the details returned are

valid, or not.

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

2.13 dpns_send_transit() - DPNSS send transit
This function is used to send a DPNSS transit message received from the network via
dpns_transit_details().

Synopsis
ACU_ERR dpns_send_transit(DPNS_TRANSIT_XPARMS *transitp);

typedef struct dpns_transit_xparms

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle;

 ACU_LONG timeout;

 ACU_INT valid;

 ACU_CHAR trans_msg[TRANSIT_MSG_LENGTH];

} DPNS_TRANSIT_XPARMS;

Input Parameters

The function dpns_send_transit() takes a pointer, transitp, to a structure

dpns_transit_xparms. The structure must be initialised with the following values

before invoking the function.

handle

The input parameter handle is used to uniquely identify transit message destination

call.

trans_msg

The input parameter trans_msg must contain the unaltered ASCII string received from

dpns_transit_details().

timeout & valid

These parameters are no longer used but are retained for backward compatibility.

Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

Signalling messages transmitted

This will transmit an EEMC. For further information, refer to BTNR 188.

2.14 dpns_set_l2_ch() - DPNSS set layer 2 channel
This function is used to enable and disable a DPNSS channel at Layer 2 (the data
link layer).

MAN1140 Revision 6.8.7 PUBLIC Page 32

It is recommended that this function not be used during call processing.

Synopsis
ACU_ERR dpns_set_l2_ch(DPNS_L2_XPARMS *dpns_l2_parms);

typedef struct dpns_l2_xparms

{

 ACU_ULONG size;

 ACU_PORT_ID net;

 ACU_INT channel;

 ACU_UCHAR state;

 ACU_LONG timeout;

} DPNS_L2_XPARMS;

Input Parameters

The function dpns_set_l2_ch() takes a pointer, l2_parms, to a structure

dpns_l2_xparms. The structure must be initialised with the following values before

calling the function. Note that the timeout parameter is not used in this function.

net

The input parameter net must contain the number of the network port on which the

DPNSS layer 2 channel is to be set.

channel

The input parameter channel must contain the number of the DPNSS channel which

is to be set.

state

The state parameter is used to either enable or disable a channel and must be set

to one of the following values:

DPNS_L2_ENABLE Enable DPNSS layer 2 channel.

DPNS_L2_DISABLE Disable DPNSS layer 2 channel.

timeout

This parameter is no longer used but is retained for backward compatibility.

Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

MAN1140 Revision 6.8.7 PUBLIC Page 33

2.15 dpns_l2_state() - DPNSS Layer 2 State
This function is used to return the current state of a DPNSS Layer 2 channel.

Synopsis
ACU_ERR dpns_l2_state(DPNS_L2_XPARMS *dpns_l2_parms);

typedef struct dpns_l2_xparms

{

 ACU_ULONG size;

 ACU_PORT_ID net;

 ACU_INT channel;

 ACU_UCHAR state;

 ACU_LONG timeout;

} DPNS_L2_XPARMS;

Input Parameter

The dpns_l2_state() takes a pointer, l2_parms, to a structure dpns_l2_xparms. The

structure must be initialised with the following values before calling the function.

net

The input parameter net must contain the number of the network port on which the

DPNSS channel is to be examined.

channel

The input parameter channel must contain the number of the DPNSS channel that is

to be examined. It will have a value depending upon the barred channels/time slots in
the output timeslot vector validvector returned by call_signal_info().

timeout

Is not valid for this call.

Return Values

On successful completion, a value of zero is returned otherwise a negative value will
be returned indicating the type of error.

state

The return value state, within l2_parms, will contain the current state of the DPNSS

layer 2 channel and will be set to one of the following values:

DPNS_L2_ENABLED DPNSS channel is enabled.

DPNS_L2_DISABLED DPNSS channel is disabled.

MAN1140 Revision 6.8.7 PUBLIC Page 34

3 DPNSS feature call control

Important Notice

It is recommended that the user be familiar with BTNR 188 Issue 5 and the Aculab V6
Call Control API Guide before proceeding to use the DPNSS Call Control API.

The following sections describe the function calls required to support the specified
DPNSS features. When describing the library function calls, only the parameters
required to support a specific feature are given. For a full list of the possible input
parameters for a library function call, refer to section 2 of this document.

Each of the features described in the following sections must be enabled via the
command line parameters detailed in Appendix A.

3.1 set_feat_msg() - sending and receiving DPNSS feature messages
DPNSS feature messages are sent and received using the FEATURE_XPARMS structure

described in section 2 of this document. The FEATURE_XPARMS structure is common to

most of the library functions.

The msg element is an array (within FEATURE_XPARMS), which can hold up to

MAX_FEAT_MSG feature instructions. The default setting for msg is NO_MSG.

To send a feature message the application must set the first empty element in the
array msg to the desired value.

The following routine can be used to set the first available msg element within the

FEATURE_XPARMS structure.

 int set_feat_msg (FEATURE_XPARMS *feature_xparms, ACU_INT feat_msg)

 {

 int index;

 for (index = 0; index < MAX_FEAT_MSG; index ++)

 {

 if (feature_xparms->msg[index] == NO_MSG)

 {

 feature_xparms->msg[index] = feat_msg;

 return 0;

 }

 }

 return -1;

 }

Feature messages can be sent using the following functions:

dpns_openout()

dpns_send_overlap()

dpns_incoming_ringing()

dpns_call_accept()

dpns_send_feat_info()

dpns_disconnect()

dpns_release()

To send feature information following incoming or outgoing ringing the application
should use the function dpns_call_accept() on call connection, and

dpns_send_feat_info() at any other time before call clearing.

The device driver uses the same method for sending feature messages to the

MAN1140 Revision 6.8.7 PUBLIC Page 35

application. It will always place messages starting at location 0 of the array msg. The

application should read the array msg until an empty element (NO_MSG) or end of array

is encountered.

Feature messages are received using the function dpns_call_details().

If the event mechanism for call control is used (described in the V6 Call Control API
Guide) the application can call the dpns_call_details() function when the following

events occur:

EV_INCOMING_CALL_DET,

EV_INCOMING_DETAILS,

EV_OUTGOING_RINGING,

EV_CALL_CONNECTED

An EV_INCOMING_DETAILS event may occur at any point between incoming call

detection/ generation, and call clearing.

3.2 Call diversion immediate/busy (BTNR 188 section 11)
Call diversion immediate and busy diversion are available for incoming and outgoing
calls.

3.2.1 Incoming call diversion to another PBX

To instruct an incoming call to divert on busy or divert immediate the application must
use the function dpns_incoming_ringing() with the feature_info structure msg

element set to DIVERT_IMMEDIATE or DIVERT_BUSY. The feature_info digits array must

be set to the number of the party the call is to be diverted to.

Following dpns_incoming_ringing() the calling party will clear the call. The calling

party may then attempt to establish the diverted call.

3.2.2 Outgoing call diversion to another PBX

After attempting to establish an outgoing call (call_openout(), dpns_openout()) the

remote party may initiate call diversion immediate/busy. When remote diversion
occurs the driver will clear the call and generate an EV_IDLE event.

The msg element of feature_info returned by dpns_getcause() will be set to either

DIVERT_IMM or DIVERT_BSY. The digits element of feature_info will be set to the

address of the party the call is to be diverted to.

3.2.3 Incoming call diversion on the same PBX

The application may divert an incoming call to another party without the use of
another DPNSS link. The application can inform the calling party of ‘on PBX’
diversion via the function

dpns_incoming_ringing().

The msg element of feature_info (in dpns_incoming_ring_xparms) should be set to

DIVERTED_BSY or DIVERTED_IMM with the digits array set to the number of the party the

call has been diverted to.

3.2.4 Outgoing call diversion on the same PBX

During outgoing call setup, the destination PBX may divert a call to another party on
the same PBX. If this occurs the driver will set the msg element of feature_info to

DIVERTED_BSY or DIVERTED_IMM with the array digits set to the number of the party the

call has been diverted to.

This information may be obtained via the library function dpns_call_details(), which

MAN1140 Revision 6.8.7 PUBLIC Page 36

should be called following EV_INCOMING_DETAILS.

3.2.5 Incoming call diverting

If an incoming call has been diverted from another party, the msg element of

feature_info will be set to DIVERTING_IMM or DIVERTING_BSY. The digits array will

contain the number of the party the call has been diverted from.

The application can obtain this information via dpns_call_details() following

EV_INCOMING_DETAILS or EV_INCOMING_CALL_DET.

3.2.6 Outgoing call diverting

If an outgoing call has been established following call diversion, the application can
notify the destination party. When dpns_openout() is called, the msg element of

feature_info must be set to DIVERTING_IMM or DIVERTING_BSY. The digits element of

feature_info must be set to the number of the party the call has been diverted from.

3.3 Call diversion no reply (BTNR 188 section 11)
Ring No Reply (RNR) diversion is available for both incoming and outgoing calls.

3.3.1 Incoming call diversion to another PBX

To instruct an incoming call to RNR divert to another PBX the application must use
the function dpns_send_feat_info() with the feature_info structure msg element set

to DIVERT_NO_REPLY. The feature_info digits array must be set to the number of the

party the call is to be diverted to.

If the calling PBX ignores the diversion request, or call diversion fails, no state
change will occur. If the call diversion request is successful then the calling PBX will
clear the call.

RNR diversion should only take place following call_incoming_ringing(),

dpns_incoming_ringing and before call connection (call_accept(),

dpns_call_accept()).

MAN1140 Revision 6.8.7 PUBLIC Page 37

3.3.2 Outgoing call diversion to another PBX

After EV_OUTGOING_RINGING the called party may initiate RNR diversion. On receiving

RNR diversion the driver will set the feature_info msg element to DIVERT_NO_REPLY

and the digits element to the number of the party the call is to be diverted to. The

application may check for RNR diversion information via dpns_call_details()

following EV_INCOMING_DETAILS.

The application may choose to ignore the diversion information or attempt to establish
a new call to the number supplied in feature_info digits. If the diversion is

successful, the application should connect the calling party to the diversion call and
clear the original call (call_disconnect(), dpns_disconnect()). Refer to BTNR 188

Section 11 for further details.

3.3.3 Incoming call diversion on the same PBX

The application may divert an incoming call to another party without the use of
another DPNSS link. The application can inform the calling party of ‘on PBX’ RNR
diversion via the function

dpns_send_feat_info(). The msg element of feature_info should be set to

DIVERTED_RNR. The digits array must set to the number of the party the call has been

diverted to.

3.3.4 Outgoing call diversion on the same PBX

EV_OUTGOING_RINGING the destination PBX may divert a call to another party on the

same PBX. If this occurs the driver will set the msg element of feature_info to

DIVERTED_RNR with the array digits set to the number of the party the call has been

diverted to. This information may be obtained via the library function
dpns_call_details(), which should be called following EV_INCOMING_DETAILS.

3.3.5 Incoming call diverting

If an incoming call has been diverted from another party, the msg element of

feature_info will be set to DIVERTING_RNR. The digits array will contain the number of

the party the call has been diverted from.

The application can obtain this information via dpns_call_details() following

EV_INCOMING_DETAILS or EV_INCOMING_CALL_DET.

3.3.6 Outgoing call diverting

If an outgoing call has been established following call diversion, the application can
notify the destination party. When dpns_openout() is called the msg element of

feature_info must be

set to DIVERTING_RNR. The digits element of feature_info must be set to the number

of the party the call has been diverted from.

MAN1140 Revision 6.8.7 PUBLIC Page 38

3.4 Diversion validation (BTNR 188 section 11)
Diversion validation is available for both incoming and outgoing calls. Diversion
validation should only be used with virtual calls.

3.4.1 Incoming diversion validation

When a diversion validation call is detected, the driver will set the feature_info msg

element to DIV_VALIDATION. The application must respond to a diversion validation

request by clearing the call. This is done using dpns_disconnect() with the msg

element of feature_info set to either ACKNOWLEDGE or REJECT.

The application may obtain the DIV_VALIDATION message via dpns_call_details()

following EV_INCOMING_CALL_DET or EV_INCOMING_DETAILS.

3.4.2 Outgoing diversion validation

The application can generate a diversion validation request by setting the msg element

of feature_info to DIV_VALIDATION. The request should be initiated by using library

function dpns_openout().

The destination PBX will respond by clearing the call. The application can read the
diversion validation response by checking the msg element of feature_info in

dpns_cause_xparms after an EV_IDLE. The msg information element should be set to

either ACKNOWLEDGE or REJECT. If the destination PBX did not understand the request,

the msg element will not be set to ACKNOWLEDGE or REJECT.

3.5 Call hold (BTNR 188 section 12)
The application or remote party may initiate call hold.

3.5.1 Application initiated call hold

Call hold may only be initiated following call connection, i.e. after the
EV_CALL_CONNECTED event.

To initiate call hold set the feature_info element msg to HOLD_CALL. The request can

then be sent using the function dpns_send_feat_info().

The application will receive the response by calling dpns_call_details() after an

EV_INCOMING_DETAILS event. The msg element of dpns_detail_xparms will be either

HOLD_ACK or HOLD_REJ. If the hold request has been accepted, an EV_DPNS_HOLDING

event is raised. The call will remain in this state until either the application requests
reconnection, or the holding or held party clears.

If the application wishes to reconnect the held party, the msg element of feature_info

is set to RECONNECT_CALL, and the request initiated via dpns_send_feat_info(). The

destination PBX will reconnect its held party. The EV_CALL_CONNECTED event will now

be raised.

Should either the holding or held party clear during at EV_DPNS_HOLDING normal call

clearing applies.

MAN1140 Revision 6.8.7 PUBLIC Page 39

3.5.2 Remote initiated call hold

Call hold may only be initiated following call connection EV_CALL_CONNECTED.

When a remote call hold request is received, the driver will set the msg element of

feature_info to HOLD_CALL. The application can obtain the hold request via

dpns_call_details() following EV_INCOMING_DETAILS.

The application must respond to the request with the msg element of feature_info set

to either HOLD_ACK or HOLD_REJ.

If the hold request is acknowledged, an EV_DPNS_HELD event will be generated. If the

hold request is rejected no state change will occur.

A call will remain in EV_DPNS_HELD until either party clears or the remote party instructs

the application to reconnect.

If the remote party requests reconnection the driver will set the msg element of

feature_info to RECONNECT_CALL. The EV_CALL_CONNECTED will be generated. The

application should reconnect its party to the traffic channel.

If either party clears, normal call clearing applies.

3.6 Enquiry call (BTNR 188 section 13)
Enquiry call is supported for both incoming and outgoing calls.

3.6.1 Outgoing enquiry call

Following call hold the application can make an enquiry call. To inform the remote
party of an enquiry call the feature_info msg element is set to ENQUIRY, and the

held_clc element set to the calling line category of the held party. An outgoing call

can then be established using the dpns_openout function.

3.6.2 Incoming enquiry call

If an incoming call is an enquiry call, the msg element of feature_info will be set to

ENQUIRY, and held_clc will be set to the calling line category of the held party. This

information can be obtained via dpns_call_details() following EV_INCOMING_DETAILS

or EV_INCOMING_CALL_DET.

3.7 Call transfer (BTNR 188 section 13)
Application controlled Call Transfer uses two DPNSS channels. It can be initiated
after the application has placed a call on hold and established an enquiry call. The
enquiry call may be in ringing or connected state.

The remote party in a call may transfer a call to the application.

3.7.1 Application initiated call transfer

The application may transfer (connect) an enquiry call and a held call (each using a
separate channel). To initiate call transfer the application must set the msg element of

feature_info to

TRANSFER_O or TRANSFER_T. TRANSFER_O is used to designate a party as the new

originating party and TRANSFER_T is used to designate a party as the new terminating

party. For further details on call transfer, refer to BTNR 188 Section 13.

The transfer request is sent via dpns_send_feat_info(), and is required for both the

enquiry, and held calls.

Following call transfer, the enquiry Call and the held Call will be get the
EV_DPNS_TRANSIT event. The application then operates as a transit PBX for the

remainder of the call. Refer to section 3.8 for Transit working details.

MAN1140 Revision 6.8.7 PUBLIC Page 40

3.7.2 Remote party initiated call transfer

A remote party may transfer a call to the application. When remote transfer occurs
the driver sets the feature_info element, msg, to TRANSFERRED. The application can

obtain this information via dpns_call_details() following EV_INCOMING_DETAILS.

Following the TRANSFERRED message the driver may send the feature_info msg

TRANSFERRED_INFO. The feature_info clc element will be set to the calling line

category of the transferred party and the cli element will be set to the calling line

identity of the transferred party.

3.8 DPNSS transit working
Transit working is a requirement of BTNR 188.

Following certain call scenarios; the application may no longer be directly in control of
a call. For example if the application receives an incoming call, and makes an
outgoing call, it can transfer the two parties (refer to section 3.6). The application has
“dropped out” of the call giving control to the transferred parties.

Following this event the application need only act as a Transit PBX. Transit working
changes the syntax analysis and processing required by the DPNSS signalling
software on the Aculab card. The application need only pass the messages from one
party to another without recognising or acting on the message contents.

The device driver enters a Transit working state when the application is required to
work as a Transit PBX. This may be following call transfer, or by the application
directly making a transit-working request.

Once Transit working has been established, all messages received must be passed
transparently between the source and destination links via the application.

When a call receives the event EV_DPNS_TRANSIT, it will remain in Transit State until

either the application, or one of the parties connected in Transit, clears the call.
Normal call clearing applies thereafter.

When a Transit message is received from the network, the driver will generate an
EV_DPNS_IN_TRANSIT event. This Transit message can be collected using the

dpns_transit_details() function.

The application can send a Transit message using the dpns_send_transit() function.

Returning to the Call Transfer example described at the start of this section. When
two parties are transferred, both calls will get the EV_DPNS_TRANSIT event. The

application is then required to read Transit messages (using
dpns_transit_details()) from one party and pass them unchanged to the other, and

vice versa. The structure dpns_transit_xparms, read using dpns_transit_details(),

is transmitted using dpns_send_transit(). The only parameter within

dpns_transit_xparms, which requires changing, is the handle, which must be changed

from the receiving call handle to the transmitting call handle. The contents of the
message trans_msg remain unchanged.

3.9 Call back when free (CBWF) - BTNR 188 section 9
CBWF offers a user who meets a busy extension the possibility of having the call
completed automatically when the called extension and a transmission path across
the network become free. CBWF is available for both incoming and outgoing calls.

CBWF request, cancel, and free notifications should only be used with virtual calls.
To use this functionality the firmware switch (-fCBF) should be applied.

MAN1140 Revision 6.8.7 PUBLIC Page 41

3.9.1 Outgoing request

The application may generate a CBWF request by setting the msg element of

feature_info to CBWF_REQUEST. The request should be initiated by using the library

function dpns_openout() to make a virtual call.

The destination PBX will respond by clearing the call. The application can check the
response by checking the clearing cause and feature_info.msg. The clearing cause

will indicate whether the request has been acknowledged (0x14) or rejected (0x19).
Any other clearing cause denotes failure. The feature_info.msg field will contain the

current state of the called extension. Depending whether the called extension is free
or busy, feature_info.msg will be set to either STATE_OF_DEST_FREE or

STATE_OF_DEST_BUSY.

The application may obtain this information via dpns_call_details() following

EV_REMOTE_DISCONNECT or EV_DETAILS.

3.9.2 Incoming request

An incoming virtual call may contain the CBWF_REQUEST. This would normally follow an

unsuccessful call attempt. The application must respond to a CBWF_REQUEST by

clearing the call (dpns_disconnect()) with the raw clearing cause set to either 0x14

(ACK) or 0x19 (REJ). In addition, feature_info.msg must be set to either

STATE_OF_DEST_FREE or STATE_OF_DEST_BUSY depending on the state of dialled

extension.

The application may obtain this information via dpns_call_details() following

EV_INCOMING_CALL_DET or EV_INCOMING_DETAILS.

3.9.3 Outgoing free notify

A CBWF_FREE_NOTIFY is sent to indicate that the called party is now available to

proceed with the call back. Of course, this should only be sent if there is a CBWF
request registered against this extension.

This is done by setting feature_info.msg to CBWF_FREE_NOTIFY and making a virtual

call to the party that requested the call back. The far end will disconnect the call with
either a clearing cause of 0x14 (ACK) or 0x18 (FNR). In addition, the
feature_info.msg will contain either STATE_OF_DEST_FREE or STATE_OF_DEST_BUSY

depending on the state of the requesting extension.

The application may obtain this information via dpns_call_details() following

EV_REMOTE_DISCONNECT or EV_DETAILS.

3.9.4 Incoming free notify

Once the called extension is ready to complete the call back, it will send a
CBWF_FREE_NOTIFY. The application will receive this notification via a virtual call

containing the CBWF_FREE_NOTIFY message in feature_info.msg. The application may

obtain this information via dpns_call_details() following EV_INCOMING_CALL_DET or

EV_INCOMING_DETAILS.

The application must respond to the free notify by disconnecting the call with clearing
cause 0x14 or 0x18 and including the state of destination in feature_info.msg. If the

Free Notify was acknowledged, the application should proceed with the call setup
sequence.

3.9.5 Outgoing cancel

The application may generate a request to cancel an existing CBWF instruction.
Again this is done by setting feature_info.msg to CBWF_CANCEL and making a virtual

MAN1140 Revision 6.8.7 PUBLIC Page 42

call using dpns_openout().

The destination PBX will respond by clearing the call. The application can determine
the response by looking at the clearing cause. If the call was cleared with ACK (0x14)
then the CBWF_REQUEST has been cleared from the PBX. If there was no such

CBWF_REQUEST registered at the PBX then the clearing cause will be “Facility Not

Registered” (0x18). Any other clearing cause denotes failure.

The application may obtain this information via dpns_call_details() following

EV_REMOTE_DISCONNECT or EV_DETAILS.

3.9.6 Incoming cancel

An incoming virtual call may contain the CBWF_CANCEL request in feature_info.msg if

so then the application should check to see if it has a CBWF_REQUEST registered against

that extension. If there is a request, then disconnect the call with clearing cause
(0x14) and delete the CBWF_REQUEST from its records. If there is no such CBWF_REQUEST

registered at that extension then clear the call with cause (0x18).

The application may obtain this information via dpns_call_details() following

EV_INCOMING_CALL_DET or EV_INCOMING_DETAILS.

3.9.7 Outgoing call setup

Once the FREE_NOTIFY has been received and the requesting extension is free the

application should initiate the call setup sequence. An outgoing call containing either
CBWF_CALL_SETUP_IMMEDIATE or CBWF_CALL_SETUP_DELAYED is made to the requesting

extension. Once the application receives EV_OUTGOING_RINGING then the RING_OUT

feature_info.msg needs to be sent using dpns_send_feat_info(). In response the

application will receive an EV_DETAILS event and feature_info.msg will have been set

to CALL_BACK_COMPLETE. This signifies that the call back has been completed and the

call can be treated as a simple call from this point on.

3.9.8 Incoming call setup

To complete the call back an incoming call will be received by the application. At
EV_INCOMING_CALL_DET use dpns_call_details() to examine feature_info.msg this

will contain either CBWF_CALL_SETUP_IMMEDIATE or CBWF_CALL_SETUP_DELAYED. In

response the application should call dpns_incoming_ringing(); the far end will then

send a RING_OUT message, which can be obtained via dpns_call_details() following

an EV_DETAILS event. At this point, the application must use dpns_send_feat_info() to

transmit the feature_info.msg CALL_BACK_COMPLETE.

Now accept the call using and treat the call as a normal call from this point on.

3.10 Add on/conference (BTNR 188 section 13)
Unless stated otherwise:

• All feature information messages are sent in feature_info.msg using
dpns_send_feat_info() (Refer to section 2.5). All responses are received via
dpns_call_details() following EV_INCOMING_DETAILS. Feature messages are
received in feature_info.msg (refer to section 2.3).

• Call clearing is processed as Basic Call clearing.

3.10.1 Application controlled add on/conference

3.10.1.1 Conference establishment

Refer to BTNR 188 section 13 subsection 2.3.9

Following establishment of an enquiry call the application may form a conference. A

MAN1140 Revision 6.8.7 PUBLIC Page 43

conference is established using an Add On request for both the Enquiry (refer to
section 3.4) and Held (refer to section 3.5) calls. The application initiates an Add On
request with the feature message ADD_ON_VALIDATION. The driver will respond with the

following:

• ADD_ON_ACK - Application can proceed with conference establishment. The cli and

clc information elements of feature_info contain the CLI and CLC of the remote

party. The application may proceed to form a three party conference. The Enquiry
and Held parties are informed of Conference establishment by sending the
feature message ADDED_ON. The call enters state EV_DPNS_CONFERENCE.

• ADD_ON_REJECT - Remote PBX has rejected the Add On request. The application

must abandon conference establishment.

• ADD_ON_NOT_SUPPORTED - Remote PBX does not support call conference. The

application must abandon conference establishment.

• No response - If no response is received within a given time (suggested 5
seconds) the application should abandon conference establishment. Timer
maintenance is the responsibility of the application.

NOTE

It is the application’s responsibility to provide the relevant voice channel
switching during call conference.

3.10.1.2 Active conference

Once a conference is established, the following feature messages may be received:

ADD_ON_CLEARDOWN - Application should clear both DPNSS conference parties using

Basic Call clearing.

Refer to BTNR 188 Section 13 Subsection 2.3.12.

The application may send the following feature messages:

• TWO_PARTY_O/TWO_PARTY_T - If, following conference establishment, either of the

two remote parties clears, the conference shall be cleared. The application may
either clear or stay connected to the remaining call. If the application is to remain
connected, TWO_PARTY_O or TWO_PARTY_T must be sent to the remaining party.

TWO_PARTY_O indicates a return to two party call with the remaining party

designated as the originating party. TWO_PARTY_T indicates a return to two party

call with the remaining party designated as the terminating party. The call will
return to EV_CALL_CONNECTED. If TWO_PARTY_O/T is sent following Call Hold the call

will remain in EV_DPNS_HOLDING.

Refer to BTNR 188 Section 13 Subsection 2.3.13.

• TRANSFER_O/TRANSFER_T - The application may “drop out” of a conference and

transfer the Held and Enquiry calls. Call transfer following conference is initiated
by sending the feature message TRANSFER_O or TRANSFER_T to the two remaining

DPNSS parties. TRANSFER_O is used to designate a party as the new originating

party and TRANSFER_T is used to designate a party as the new terminating party.

Following call transfer the state of the remaining calls will change to
EV_DPNS_TRANSIT. The application will work as a transit PBX for the remainder of

the call. Refer to section 3.7 for transit working details.

Refer to BTNR 188 Section 13 Subsection 2.3.11.

MAN1140 Revision 6.8.7 PUBLIC Page 44

• HOLD_CALL - The application may split an established conference. Conference

split enables the application to remain connected to one of the remote parties
whilst the other is placed on hold. To initiate conference split the application must
first place one of the parties on hold. Call hold is initiated by sending the feature
message HOLD_CALL.

If the driver acknowledges the hold request with HOLD_ACK the application may

proceed and send feature message TWO_PARTY_T to both the held and connected

parties. The held call will get an EV_CALL_HELD event and the connected call will

get EV_CALL_CONNECTED.

If the HOLD_CALL request is rejected (feature message HOLD_REJECT) the

conference split must be abandoned. If the call_hold feature is not supported by

the remote PBX (feature message HOLD_NOT_SUPPORTED) the conference split may

proceed. The remote party will not be given any indication of call hold.

Refer to BTNR 188 Section 13 Subsection 2.3.13.

3.10.2 Remote add on/conference

The remote party in an established call may include the application party in a
conference. The application may receive an Add On request in call events

EV_CALL_CONNECTED and EV_DPNS_HELD.

3.10.2.1 Remote conference establishment

When the driver receives an Add On request from the network the ADD_ON_VALIDATION

feature message is sent to the application. The application may respond with the
following:

• ADD_ON_ACK - If the application responds with ADD_ON_ACK the remote PBX will

proceed with conference establishment. When all three (conference) parties are
connected the application is sent the ADDED_ON feature message. The call will get

the EV_DPNS_CONFERENCE event.

• ADD_ON_REJECT - Application has rejected the conference request.

Refer to BTNR 188 Section 13 Subsection 2.3.9.

3.10.2.2 Active remote conference

After EV_DPNS_CONFERENCE, the application may receive the following feature

messages:

• HOLD_REQ - Remote PBX has requested call hold. The application must respond

with feature message HOLD_REJECT, or HOLD_ACK. If hold request is acknowledged

the application will get EV_DPNS_HELD. If the hold request is rejected the call will

remain in EV_DPNS_CONFERENCE.

If the Hold Request is acknowledged the application will get the EV_DPNS_HELD

event. The application may then receive the TWO_PARTY_O/T feature message

(refer to next paragraph).

Refer to BTNR 188 Section 13 Subsection 2.3.13.

• TWO_PARTY_O - The remote PBX has returned to a two party call following

conference. The application is designated as the originating end. The remote
party details are given in the cli and clc fields of feature_info when the

TWO_PARTY_O feature message is received. If the call is held it will not change from

EV_DPNS_HELD otherwise it will receive EV_CALL_CONNECTED.

Refer to BTNR 188 section 13 subsection 2.3.13.

MAN1140 Revision 6.8.7 PUBLIC Page 45

• TWO_PARTY_T - As TWO_PARTY_O with the application designated as the terminating

end.

The application may generate the following feature message:

ADD_ON_CLEARDOWN - Once a remote party has established a conference the

application may clear down all parties involved. To do this the application must
send the feature msg ADD_ON_CLEARDOWN. On receiving the Add On Cleardown

request the remote PBX will initiate call clearing.

Refer to BTNR 188 section 13 subsection 2.3.12.

If the application wishes to clear from conference, Basic Call clearing applies.

3.11 Executive intrusion (BTNR 188 section 10)
Unless stated otherwise, all feature information messages are sent in
feature_info.msg using dpns_send_feat_info() (Refer to section 2.5). All responses

will generate an EV_INCOMING_DETAILS, after which, the details can be collected using

dpns_call_details(). Feature messages are received in feature_info.msg.

Call clearing is processed as Basic Call clearing.

3.11.1 Application controlled intrusion without prior validation

Refer to BTNR 188 Section 10 Subsection 2.3.1.

3.11.1.1 Intrusion request

If a busy remote party is encountered (on establishing an outgoing call) the
application can request Executive Intrusion. The application initiates an Intrusion
Request using dpns_openout() with the msg element of dpns_out_xparms.feature_info

set to INTRUSION_REQUEST. The icl field of dpns_out_xparms.feature_info must be set

to the Intrusion Capability Level of the Intruding party. The destination_addr of

dpns_out_xparms must be set to the address of the wanted party. The cli field of

dpns_out_xparms must be set to the address of the requesting party.

In response to the Intrusion Request, the application will receive one of the following:

• OUTGOING_RINGING - If EV_OUTGOING_RINGING is encountered the application can

determine the result of the Intrusion Request by calling dpns_call_details(). If

the feature message INTRUSION_ACK is present the application can proceed and

wait for Intrusion connection. If INTRUSION_ACK is not present the application must

assume that the wanted party has become free and has been called by the
remote PBX. The call will proceed as Basic Call (wait for connection).

• IDLE / REMOTE_DISCONNECT - If the remote party clears with cause LC_NUMBER_BUSY

the Intrusion Request is not allowed. Receipt of any of clearing cause indicates
that the Intrusion Request has failed.

The following diagram summarises the sequence of events:

MAN1140 Revision 6.8.7 PUBLIC Page 46

Busy Party Encountered

Continue as

Basic Call

Generate Intrusion Request Call

dpns_openout with feature msg

INTRUSION_REQ and

feature_info.icl set to the

application's Intrusion Capacity Level

Intrusion Rejected Intrusion Failed

YES

>>Driver to App>> >>Driver to App>>

NO

Wait for Intrusion

Connection Section

3.1.9.2

>>App to Driver>>

Clearing Cause Busy

Call State:

Outgoing Ringing
Wanted Party Clears

Any Other Cause

feature msg:

INTRSUSION_ACK

3.11.1.2 Intrusion connection

As stated in the previous section, receipt of feature message INTRUSION_ACK indicates

success of the Intrusion Request. Subsequently one of the following events may
occur:

• INTRUDING - If EV_DPNS_INTRUDING is encountered the application is intruding on

the wanted party. The application can confirm this by calling dpns_call_details()

(feature_info.msg is set to INTRUDING).

• STATE_OF_DEST_FREE - If the wanted party has cleared and is called by the remote

PBX the driver will generate feature message STATE_OF_DEST_FREE. The call

continues as Basic Call (wait for call connection).

MAN1140 Revision 6.8.7 PUBLIC Page 47

The following diagram summarises the sequence of events:

3.11.1.3 Intrusion active

Once Intrusion is active, the Intruding party may withdraw (refer to section 3.9.1.4) or
the wanted party may clear. If the wanted party clears and is subsequently called by
the remote PBX, the application is sent feature message STATE_OF_DEST_FREE. The

call continues as Basic Call (wait for remote party to answer).

The diagram below summarises the sequence of events:

3.11.1.4 Intrusion withdraw

The application may temporarily withdraw from Intrusion without clearing the call.

Refer to BTNR 188 section 10 subsection 2.3.3.

To invoke Intrusion Withdraw the application must send the feature message
INTRUSION_WITHDRAW. The driver will respond with one of the following feature

messages:

• WITHDRAW_ACK - The application’s party is no longer intruding. The application may

re-enter Intrusion by sending the feature message INTRUSION_REQUEST (via

dpns_send_feat_info()). The icl must again be set to the Intrusion Capability

Level of the Intruding party. The Intrusion Request responses are described in
section 3.9.2.2.

• WITHDRAW_NOT_SUPPORTED - Executive Intrusion Withdraw is not supported. The

application remains Intruding.

• STATE_OF_DEST_FREE - If the wanted party has cleared and is called by the remote

PBX the driver will generate feature message STATE_OF_DEST_FREE. The call

continues as Basic Call.

>>Driver to App>>

Intrusion

Acknowledged

>>Driver to App>>

Call State:

CS_DPNSS_INTRUDING

>>Driver to App>>

Feature msg:

STATE_OF_DEST_FREE

Intrusion Active

Section 3.9.1.3

Continue as

Basic Call. Wait

for Connection

>>App to Driver>>

Intrusion Withdraw

Section 3.9.1.4

>>Driver to App>>

Feature msg:

STATE_OF_DEST_FREE

Continue as Basic Call.

Wait for Connection

Intrusion

Active

MAN1140 Revision 6.8.7 PUBLIC Page 48

The following diagram summarises the sequence of events:

3.11.2 Application controlled intrusion with prior validation

Refer to BTNR 188 section 10 subsection 2.3.2.

Executive Intrusion with prior validation can be used on every Basic Call setup. This
facility enables the remote PBX to validate Intrusion levels during call setup if the
remote party is busy.

3.11.2.1 Prior validation intrusion request

The application initiates a Prior Validation Intrusion Request using dpns_openout

with the feature message PV_INTRUSION and feature_info.icl set to the Intrusion

Capability Level of the application’s party. All other parameters within
dpns_out_xparms are set as they would be for Basic Call setup.

The application may receive the following responses:

• EV_OUTGOING_RINGING - If the call attempt is successful the driver will respond with

EV_OUTGOING_RINGING. The application should establish the status of the called

party by examining the feature message obtained via dpns_call_details(). The

feature message INTRUSION_ACK indicates that the called party is busy and

Intrusion can be established. If INTRUSION_ACK is not present the wanted is

currently free and ringing (the call continues as Basic Call).

• IDLE / REMOTE_DISCONNECT - If the remote party clears with cause LC_NUMBER_BUSY

the called party is busy and Intrusion not allowed.

Feature msg:

WITHDRAW_NOT_SUPPORTED

>>Driver to App>>

Intrusion Active

Section 3.9.1.3

Continue as Basic Call.

Wait for Connection

>>App to Driver>>

Intrusion Withdraw

>>Driver to App>>

Feature msg:

STATE_OF_DEST_FREE

Intrusion Request

Feature msg:

WITHDRAW_ACK?

>>Driver to App>>

>>App to Driver>>

Generate Intrusion Request using:

DPNSS_SEND_FEAT_INFO

Wait for Intrusion Response using:

DPNSS_CALL_DETAILS

Refer to section 3.9.2.2

MAN1140 Revision 6.8.7 PUBLIC Page 49

The diagram below summarises the sequence of events:

Basic Call Setup

Continue as

Basic Call

set feature msg

PV_INTRUSION

Set Intrusion Capability. Set

destination address etc as Busy Call

Intrusion Rejected Intrusion Failed

YES

>>Driver to App>> >>Driver to App>>

NO

Wait for application

intrusion request

>>App to Driver>>

Clearing Cause Busy

Call State:

Outgoing Ringing
Wanted Party Clears

Any Other Cause

feature msg:

INTRSUSION_ACK

3.11.2.2 Prior validation intrusion establishment

Following receipt of INTRUSION_ACK on EV_OUTGOING_RINGING the application can

request Intrusion.

Intrusion is requested by sending the feature message INTRUSION_REQUEST. The

feature info icl element must be set to the Intrusion Capability Level of the

Intruding party.

In response to the Intrusion Request, the application will receive one of the following
responses:

• INTRUSION_ACK - If the feature message INTRUSION_ACK is received the application

waits for Intrusion connection.

• STATE_OF_DEST_FREE - If the wanted party has cleared and is called by the remote

PBX the driver will generate feature message STATE_OF_DEST_FREE. The

application can return to Basic Call and wait for call connection.

• IDLE / REMOTE_DISCONNECT - If the remote party clears with cause LC_NUMBER_BUSY

the Intrusion Request is not allowed. Receipt of any other clearing cause
indicates that the Intrusion Request has failed.

MAN1140 Revision 6.8.7 PUBLIC Page 50

The following diagram summarises the sequence of events:

3.11.3 Network controlled intrusion without prior validation

Refer to BTNR 188 section 10 subsection 2.3.1.

A remote party may Intrude on an application-controlled party.

3.11.3.1 Remote intrusion request without prior validation

When a remote party requests Executive Intrusion the feature message
INTRUSION_REQUEST is sent to the application. feature_info.icl is set to the Intrusion

Capability Level of the Intruding party.

The application may respond to the Intrusion Request with one of the following:

• dpns_incoming_ringing() - To acknowledge the Intrusion Request the

application must use dpns_incoming_ringing() with feature_info.msg set to

INTRUSION_ACK. If the application’s party has become free, INTRUSION_ACK must

not be set (the call will then continue as Basic Call).

• call_disconnect()\call_release() - To reject the Intrusion request the

application releases the call using call_disconnect() or call_release() with

clearing cause LC_NUMBER_BUSY.

The following diagram summarises the sequence of events:

>>App to Driver>>
Generate Intrusion

Request

>>App to Driver>>

Wanted Party Clears

Wait for Intrusion

Connection

Section 3.9.1.2

Clearing

Cause

Busy

Any Other

Cause

Intrusion

Failed

Intrusion

Rejected

>>Driver to App>>>>Driver to App>>

Feature msg:

STATE_OF_DEST_FREE

Continue as Basic Call.

Wait for Connection

feature msg:

INTRUSION_ACK?

>>App to Driver>>

dpns_incomming_ringing

with feature message

INTRUSION_ACK Intrusion

connect section 3.9.3.2

Intrusion Accepted

Applications's Party Busy

>>App to Driver>>

Applications Party Free

Incomming Call Detected with

feature message:

INTRUSION_REQUEST

Intrusion Rejected

>>App to Driver>>

Clear call with cause

LC_NUMBER_BUSY

>>App to Driver>>

dpns_incomming_ringing

Continue as Basic call

MAN1140 Revision 6.8.7 PUBLIC Page 51

3.11.3.2 Intrusion connection

After Intrusion acknowledge, the application may use the following:

• dpns_call_accept() - On Intrusion accept the application must connect the

wanted party to the intruding party. The application informs the intruding party of
Intrusion connection by sending feature message INTRUDING via

dpns_call_accept().

• dpns_send_feat_info() - The application may ring the wanted party if it becomes

free before intrusion connection. The application informs the intruding party of call
ringing by sending feature message STATE_OF_DEST_FREE via

dpns_send_feat_info(). The call continues as Basic Call (wait for call

connection).

The following diagram summarises the sequence of events:

3.11.3.3 Intrusion active

Once the intruding party is connected to the wanted party, the intruding party may
request withdraw, or the wanted may hang up.

The application may send the following feature message:

• STATE_OF_DEST_FREE - The wanted party is called by the application on call

clearing. The application informs the intruding party of wanted party ringing with
feature message STATE_OF_DEST_FREE sent via dpns_send_feat_info().

The application may receive the following feature message:

• INTRUSION_WITHDRAW - The application may respond with feature message

WITHDRAW_ACK or STATE_OF_DEST_FREE. STATE_OF_DEST_FREE is used to indicate

wanted party ringing following call clearing (the call continues as Basic Call).
Section 3.9.3.4 describes the actions taken following WITHDRAW_ACK.

Refer to BTNR 188 section 10 subsection 2.3.3.

The following diagram summarises the sequence of events:

Intrusion Active

Section 3.9.3.3

Intuding Party connected

to Wanted Party

>>App to Driver>>

Wanted Party has

become free

Continue as Basic Call.

Wait for Connection

Intrusion Acknowledged

>>App to Driver>>

dpns_call_accept

with feature msg:

INTRUDING

>>App to Driver>>

dpns_send_feat_info

with feature message

STATE_OF_DEST_FREE

MAN1140 Revision 6.8.7 PUBLIC Page 52

Feature msg:

INTRUSION_WITHDRAW

>>App to Driver>>

Intrusion Active

Wanted Party Free

>>App to Driver>>

dpns_send_feat_info

with feature message

STATE_OF_DEST_FREE

Continue as basic call

Wanted Party Busy

>>App to Driver>>

dpns_send_feat_info

with feature message

WITHDRAW_ACK

Section 3.9.3.4

3.11.3.4 Intrusion withdraw

The application may receive a further Intrusion Request feature message
INTRUSION_REQ via dpns_call_details(). The application responds with one of the

following:

• dpns_send_feat_info() - To acknowledge the Intrusion Request the application

must use dpns_send_feat_info() with feature_info.msg set to INTRUSION_ACK. If

the application’s party has become free STATE_OF_DEST_FREE must be sent in

place of INTRUSION_ACK (the call will then continue as Basic Call).

• call_disconnect{}\call_release{} - To reject the Intrusion request the

application releases the call using call_disconnect()or call_release{} with

clearing cause LC_NUMBER_BUSY.

The following diagram summarises the sequence of events:

Feature msg:

INTRUSION_WITHDRAW

feature msg:

INTRUSION_ACK

Intrusion Connect

Section 3.9.3.2

>>App to Driver>>

Intrusion Accepted

Applications's Party Free

>>App to Driver>>

Clear Call with cause

LC_NUMBER_BUSY

Application's Party Busy

>>App to Driver>>

Intrusion Rejected

feature msg:

STATE_OF_DEST_FREE

Call continues as basic call

>>App to Driver>>

MAN1140 Revision 6.8.7 PUBLIC Page 53

3.11.4 Network Controlled Intrusion With Prior Validation

The application may receive an Intrusion Prior Validation and remote party’s Intrusion
Capability Level during incoming call setup. The Intrusion Capability Level is used by
the application if the wanted party is found to be busy.

3.11.4.1 Intrusion Request

When an Intrusion Request with Prior Validation, is received (during incoming call
setup) the application is sent feature message PV_INTRUSION. The application may

respond with the following:

• dpns_incoming_ringing() - If the wanted party is busy the application may

respond with dpns_incoming_ringing() with feature message INTRUSION_ACK. If

the wanted party is free the call continues as Basic Call (feature message
INTRUSION_ACK is not sent).

• call_disconnect()/call_release() - If the wanted party is busy and Intrusion is

not possible the application clears the call with cause LC_NUMBER_BUSY.

The following diagram summarises the sequence of events:

Feature msg:

PV_INTRUSION

dpns_incoming_ringing

feature msg:

INTRUSION_ACK

Section 3.9.3.4

>>App to Driver>>

Intrusion Accepted

Wanted Party Free

>>App to Driver>>

Clear Call with cause

LC_NUMBER_BUSY

Wanted Party Busy

>>App to Driver>>

Intrusion Rejected

DPNS_INCOMING_RINGING

Call continues as basic call

>>App to Driver>>

3.11.5 Incoming protection request

If a third party wishes to intrude on a remote party connected to the application via
DPNSS, the application will be requested to provide its Intrusion Protection Level.
The application’s Intrusion Protection Level is used by the remote PBX to determine if
Intrusion can proceed. An Intrusion Protection Level Request will only be received
when an application controlled call is connected to a remote party.

When an Intrusion Protection Level request is received the driver sends feature
message IPL_REQUEST (received via dpns_call_details). The application must

respond with its Intrusion Protection Level. This is sent via feature message
IPL_RESPONSE with feature_info.ipl set to the protection level of the application’s

party. The Intrusion Protection Level response is sent via dpns_send_feat_info.

The application may simply choose to ignore feature message IPL_REQUEST. In this

case, the remote Intrusion request is abandoned.

3.11.6 Outgoing protection request

If remote party requests Intrusion on an application party that is busy on another call

MAN1140 Revision 6.8.7 PUBLIC Page 54

the Intrusion Protection Level of the party currently connected to the application must
be determined.

To request the Intrusion Protection Level the application must send the feature
message IPL_REQUEST via dpns_send_feat_info. The protection level request is only

valid on call connection. The application may receive the following responses:

IPL_RESPONSE - If the feature message IPL_RESPONSE is received, the ipl element of

feature_info is set to the Intrusion Protection Level of the party currently connected.

The application uses the received Intrusion Protection Level of the remote party with
that of the Intruding and its own party to determine if Intrusion can proceed.

MAN1140 Revision 6.8.7 PUBLIC Page 55

3.12 Extension Status Calls
Refer to BTNR 188 Section 20

The Extension Status Call supplementary service offers the capability of determining,
on request, the status of an extension.

Extension Status Call is available for both incoming and outgoing calls. Just one
message is used in this supplementary service: EXTENSION_STATUS_CALL.

To use this functionality the firmware switch (-fES) should be applied.

3.12.1 Application Initiated Extension Status Call

An application may request the status of another extension by setting a
feature_info.msg to EXTENSION_STATUS_CALL and making a virtual call to that

extension.

If the called extension is free then it will disconnect the call with raw clearing cause
0x14 (ACK). If the called extension is busy then the clearing cause will be 0x08 (BY).
If the called extension has diversion enabled then the relevant diversion information
will be included when the call gets disconnected. Any other clearing cause denotes
failure.

This information can be obtained after an EV_REMOTE_DISCONNECT or EV_IDLE by using

dpns_call_details().

3.12.2 Remote Initiated Extension Status Call

An incoming virtual call may contain the feature_info.msg EXTENSION_STATUS_CALL.

The application must respond to this request by clearing the call.

If the called extension is free, it must use dpns_disconnect with a raw clearing cause

of 0x14 (ACK), if the called extension is busy then it should send 0x08 (BY). The

extension has diversion enabled then the application should include the relevant
diversion information when clearing the call.

This information can be obtained after an EV_INCOMING_CALL_DET or EV_DETAILS event

by using dpns_call_details().

3.13 DPNSS Call Back Messaging
Refer to BTNR 188 Section 36

The Call Back Messaging supplementary service allows a caller to indicate to the
called party that the calling party wishes to be called back.

Call Back Messaging is available for both incoming and outgoing calls.

Two messages are used in this supplementary service, CALL_BACK_MESSAGE_REQ and

CALL_BACK_MESSAGE_CAN. To use this functionality the firmware switch (-fCBM) should

be applied.

3.13.1 Application Initiated Call Back Request

Requesting a call back would normally take place after encountering a busy
extension, no reply or by a message centre wishing to contact the called party.

In order to register a request for Call Back Messaging the application must set a
feature_info.msg to CALL_BACK_MESSAGE_REQ and make a virtual call to that

extension. Of course, the application needs to include the relevant CLI when making

the call.

If the request is successful then the far end will disconnect the call with clearing
cause 0x14 (ACK). Any other clearing cause denotes failure. This information can be

MAN1140 Revision 6.8.7 PUBLIC Page 56

obtained after an EV_REMOTE_DISCONNECT or EV_IDLE by using dpns_call_details().

3.13.2 Application Initiated Call Back Cancel

In order to cancel a previously registered Call Back Message Request the application
must set a feature_info.msg to CALL_BACK_MESSAGE_CAN and make a virtual call to

that extension.

If the request is successful then the far end will disconnect the call with clearing
cause 0x14 (ACK). Any other clearing cause denotes failure. This information can be

obtained after an EV_REMOTE_DISCONNECT or EV_IDLE by using dpns_call_details().

3.13.3 Remote Initiated Call Back Request

An incoming virtual call may contain the feature_info.msg CALL_BACK_MESSAGE_REQ.

The application must respond to this request by clearing the call. If the application
wishes to accept the request then it must use dpns_disconnect() with a raw clearing

cause of 0x14 (ACK), if the request is to be rejected then it should send 0x19 (REJ).

If the application has accepted the Call Back Message request then it needs to store
the CLI of the requesting party.

This information can be obtained after an EV_INCOMING_CALL_DET or EV_DETAILS event

by using dpns_call_details().

3.13.4 Remote Initiated Call Back Cancel

An incoming virtual call may contain the feature_info.msg CALL_BACK_MESSAGE_CAN.

The application must respond to this request by clearing the call. If the application
wishes to accept the request then it must use dpns_disconnect() with a raw clearing

cause of 0x14 (ACK), if the request is to be rejected then it should send 0x19 (REJ).

This information can be obtained after an EV_INCOMING_CALL_DET or EV_DETAILS event

by using dpns_call_details().

3.14 Charge Reporting
Refer to BTNR 188 Section 40

The Charge Reporting supplementary service allows details of call cost and
associated information to be passed between the parties involved in a call.

Charge Reporting is available for both incoming and outgoing calls.

To use all of this functionality the firmware switch (-fCC) should be applied.

3.14.1 Application Initiated Charge Activation

An application may activate call charging when accepting a call by setting a
feature_info.msg to CHARGE_ACTIVATE and calling dpns_call_accept(). Alternatively,

the application may choose to activate charging after the call has been connected. In
this case, the application must call dpns_send_feat_info() with a feature_info.msg

field set to CHARGE_ACTIVATE.

MAN1140 Revision 6.8.7 PUBLIC Page 57

3.14.2 Remote Initiated Charge Activation

When an outgoing call is accepted the far end may activate charging. Here the
feature_info.msg field will contain CHARGE_ACTIVATE. Alternatively, the far end may

activate charging after connection; again, the feature_info.msg field will contain

CHARGE_ACTIVATE.

This information can be obtained after an EV_CALL_CONNECTED or EV_DETAILS event by

using dpns_call_details().

3.14.3 Application Initiated Account Code Indication

The application can send Account code details after the call has been connected.
Usually account code details would be sent in response to an account code request.

To send an account code the application must set feature_info.msg to

CHARGE_ACCOUNT_CODE and copy the account code string into feature_info.digits and

use dpns_send_feat_info().

3.14.4 Remote Initiated Account Code Indication

The application may receive account code details from the far end during an
established call. The feature_info.msg will include CHARGE_ACCOUNT_CODE and the

feature_info.digits field will contain the account code.

This information can be obtained after an EV_DETAILS event by using

dpns_call_details().

3.14.5 Application Initiated Account Code Request

The application can request an account code at two points. This can be either when
an incoming call is accepted with dpns_call_accept or during an established call

using dpns_send_feat_info.

The feature_info.msg element needs to be set to CHARGE_ACCOUNT_REQUEST. When

making one of these calls.

The far end should now respond with an account code.

3.14.6 Remote Initiated Account Code Request

An account code can be requested by the far end either at call connect or during an
established call. If the far end has requested an account code one of the
feature_info.msg elements will be set to CHARGE_ACCOUNT_REQUEST.

This information can be obtained after either an EV_DETAILS or EV_CALL_CONNECTED

event by using dpns_call_details(). Once obtained, the application should respond

to this request by sending an account code.

3.14.7 Application Initiated Call Cost Details

The application can send unsolicited call cost details when it is disconnecting a call.
To do this the feature_info.msg field should be set to CHARGE_UNITS_USED and a

string containing the number of units used should be copied into
feature_info.digits. Once this is done, the application makes a call to

dpns_disconnect to disconnect the call.

MAN1140 Revision 6.8.7 PUBLIC Page 58

3.15 DPNSS layer 2
The application has the ability to enable or disable DPNSS channels at Layer 2 (the
data link layer). This is done using the dpns_set_l2_ch() function (see Section 2.13).

The application can also read a channel’s Layer 2 state using the dpns_l2_state

function (see Section 2.14).

3.16 DPNSS non specified information
Refer to BTNR 188 section 15

At any point during a call, the application or remote party may generate Non Specified
Information (NSI) as defined in BTNR 188 Section 15.

NSI is sent and received via the nsi array located within the feature_info structure.

The nsi structure element is an array of IA5 characters with the following format:

Supplementary String Suffix*NSI Id*NSI String

The supplementary string suffix is used to determine if the NSI string is informative,
optional, or mandatory. It should be set to a value as defined in BTNR 188 Section 5
Table 1. The NSI Id is the manufacturers identifier and should be set to one of the
values specified in BTNR 188 Section 15.

Example of sending an NSI string:

Mitel Id = C (Specified in BTNR 188 Section 15)

String Suffix = Z Mandatory for branching, transit and end PBX (BTNR 188 Section 5
Table 1)

NSI String = “NSI STRING”

The application should copy Z*C*NSI STRING into the feature_info.nsi field.

There are two different modes of operation for passing incoming NSI strings to the
application:

The default behaviour is to remove the leading ‘*’, SIS suffix (if one is present), and

trailing ‘#’ from the string. When there are multiple NSI strings present in one

message, the driver will concatenate them together.

The same DPNSS message “*58Z*C*NSI STRING#” is received by the application as

“C*NSI STRING”. Here the first ‘*’ and SIS suffix ‘Z’ have been removed, as has the

trailing ‘#’.

The –s3,1 command line option allows the application to collect the complete NSI

string. With this enabled the leading ‘*’ and any SIS suffix present will be passed to

the application. Also the trailing ‘#’ on each NSI string will be included, allowing the

application to easily parse a message containing multiple NSI strings.

So the string from our example would be received as “*Z*C*NSI STRING#”.

The –fNS* command line option allows the receipt of NSI strings bearing any

manufacturer code.

The –s4,1 command line options allows the application to receive messages which

contain multiple identical SIS strings in the same protocol message.

With both these options enabled, the application would now be able to receive a
DPNSS message containing two NSI strings each bearing a different manufacturer
code.

MAN1140 Revision 6.8.7 PUBLIC Page 59

3.17 DPNSS text
Refer to BTNR 188 section 16

Text may be sent and received at any point during a call. Text is sent and received
via the IA5 txt array located within the feature_info structure.

The Text Type parameter is appended to the end of the string.

For example to send the text message “Aculab” as a name the string “Aculab*1” is

copied into the txt array. This is valid for both incoming and outgoing text

messages.

3.18 Trunk ID
Refer to BTNR 188 section 16

This string is used in conjunction with a CLC to identify a trunk.

Trunk Identity is sent and received via the IA5 tid array within the feature_info

structure.

To send PBX identifier “1”, trunk group identifier “2”, and trunk member “3” the tid is

set to “1*2*3”. This is valid for both incoming and outgoing calls.

3.19 Sending DPNSS raw messages
This feature has been added to allow the application writer to use facilities not
provided by the Aculab API but that are available by sending messages to the switch.
Please note that the Aculab API will not provide any means of retrieving any non-
supported responses that the switch makes.

The feature can only be accessed when using the following functions:

dpns_openout
dpns_call_accept

dpns_send_overlap

dpns_incoming_ringing

dpns_send_feat_info

dpns_disconnect

By setting one of the message fields to DPNSS_RAW, whatever is in the text field will be

sent out as part of the DPNSS Layer 3 message.

Example
DPNS_OUT_XPARMS outdetails;

INIT_ACU_STRUCT(&outdetails);

strcpy(outdetails.destination_addr, “12345”);

strcpy(outdetails.originating_addr, “54321”);

strcpy(outdetails.feature_info.txt, “*19*L#);

outdetail.ts = -1;

outdetails.feature_info.msg[0] = DPNSS_RAW;

dpns_openout(&outdetails);

This will result in the DPNSS Loop Avoidance message (LA *19*L#) being sent in the
initial setup message. Hence, the loop avoidance message can now be supported,
although no addition for this has been made to the Aculab API.

CAUTION

As this feature bypasses all Aculab parsing of messages the application
should take the utmost care when using this facility. Also it is the

MAN1140 Revision 6.8.7 PUBLIC Page 60

responsibility of the user to ensure that any features invoked through this
facility exist and are supported through the PBX to which the Aculab
equipment is to be interfaced.

3.20 Charge account codes
This feature has been added to enable an application to send and receive Charge
Account code requests and information. Requests for an Account Code may be sent
in a call connect message via the dpns_call_accept API call or the

dpns_send_feat_info message after reaching the connected state. This is achieved

by setting a feature message element to CHARGE_ACCOUNT_REQUEST. To send an

Account Code in response to a message then the message should be set to
CHARGE_ACCOUNT_CODE and the actual Account Code should be placed into the feature

digits field. A call to dpns_call_details will reveal whether an Account Code or

Account Code request has been received. The message will be contained in one of
the feature message fields and the Account Code will be contained within the digits
field.

Example 1
DPNS_CALL_ACCEPT_XPARMS accept_parms;

INIT_ACU_STRUCT(&accept_parms);

accept_parms.handle = the_handle;

accept_parms.feature_info.msg[0] = CHARGE_ACCOUNT_REQUEST;

dpns_call_accept(&accept_parms);

Example 2
DPNS_FEATURE_XPARMS feature;

INIT_ACU_STRUCT(&feature);

feature.handle = the_handle;

feature.feature_info.msg[0] = CHARGE_ACCOUNT_CODE;

strcpy(feature.feature_info.digits, “1968”);

dpns_send_feat_info(&feature);

MAN1140 Revision 6.8.7 PUBLIC Page 61

Appendix A: Command Line Switches
DPNSS features are enabled when the device driver is loaded during system
initialisation.

Feature switches available are:

-fDIB - Enable immediate and busy diversion*

-fDR - Enable diversion on no reply*

-fDV - Enable diversion validation*

-fHD - Enable call hold*

-fNSx - Enable Non Specified Information. Where ‘x’ is the PBX manufacturer’s

identity as

 defined in BTNR 188 section 15

-fNS* - Enable receipt of NSI messages from any PBX manufacturer

-fEN - Enable enquiry call*

-fTR - Enable call transfer*

-fEI - Enable executive intrusion*

-fAO - Enable add on*

-fCBF - Enable call back when free*

-fCBN - Enable call back when next used*

-fCBM - Enable call back messaging*

-fES - Enable extension status calls*

-fCBM - Enables Call Back Messaging

-fES - Enables support for Extension Status Call's

-fCC - Enables support for Call Charging*

-fNPR - Enables protocol support for Number Presentation Restriction*

-fFQ - Enables driver feature queue mechanism

See the notes distributed with the Aculab DPNSS firmware for more details.

* DPNSS feature messages are detailed in section 2.1.1

MAN1140 Revision 6.8.7 PUBLIC Page 62

Appendix B: Error Codes
The following lists the error codes returned by the call control system. Some errors
are internal to the driver occurring only during initialisation and will never be seen by
the application.

ERR_HANDLE -The handle supplied is invalid

ERR_COMMAND -The command specified is invalid or was not expected

ERR_NET -The network OUTLET number specified is invalid

ERR_PARM -Inconsistency in the call parameters

ERR_RESPONSE -Application failed to respond within response time

ERR_NOCALLIP -call_details issued with no call in progress

ERR_CFAIL -Command failed. Error detected during the execution of the

current command

ERR_TSBAR -The specified timeslot is barred from use or an illegal timeslot

number has been specified

ERR_TSBUSY -The specified timeslot is in use or there are no free timeslots.

ERR_SERVICE -The specified service octet or associated additional information

octet is unsupported or is invalid

ERR_BUFF_FAIL -The driver has run out of data buffer resources. This error

should never be seen during normal operation

MAN1140 Revision 6.8.7 PUBLIC Page 63

Appendix C: Feature Details Queuing
V6 now provides the option of having the driver queue all feature details before they
are passed to the application. Without this is was possible for the application to miss
some information if it did not collect the details quickly enough.

With this option enabled, the driver will store a set of feature details with every event.
The application must use dpns_call_details() to collect these details after every call

control event, except EV_IDLE, EV_WAIT_FOR_INCOMING, and EV_DPNS_IN_TRANSIT.

If dpns_call_details() is not used at these times then details may appear

uncoordinated with the latest call control events. This slight change in API semantics
is due to fact that details, which, in the past, could have been overwritten, will still be
waiting for collection.

At the EV_IDLE event, details should be collected using the dpns_getcause() function.

This functionality is enabled with the addition of the –FFQ command line switch.

MAN1140 Revision 6.8.7 PUBLIC Page 64

