

MAN1210 Revision 6.8.7 PUBLIC Page 1

Aculab digital
telephony software

Switch API guide

MAN1210 Revision 6.8.7

MAN1210 Revision 6.8.7 PUBLIC Page 2

PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab plc and may be the subject of
patents pending or granted, and must not be copied or disclosed without prior written permission. It
should not be used for commercial purposes without prior agreement in writing.

All trademarks recognised and acknowledged.

Aculab plc endeavours to ensure that the information in this document is correct and fairly stated
but does not accept liability for any error or omission.

The development of Aculab’s products and services is continuous and published information may
not be up to date. It is important to check the current position with Aculab plc.

Copyright © Aculab plc. 2002-2023 all rights reserved.

Document Revision

Rev Date By Detail

6.0 06.12.02 DJL Interim release

6.1.0 04.06.03 DJL Evaluation trials

6.1.0 15.01.04 DJL Initial Controlled V6 release

6.2.0 14.07.04 DJL Review updates

6.2.2 07.09.04 DJL Beta release

6.2.2 15.09.04 DJL Full release

6.2.3 02.11.04 DJL Clarification added regarding IP streams and timeslots

6.3.0 08.11.04 DJL Update for new 16 port cPCI card

6.3.1 25.01.05 DJL Additional calls to support new 16 port cPCI features

6.3.2 09.02.05 DJL Notes added for specific 16 port E1/T1 cPCI functions

6.3.3 11.04.05 DJL sw_set_output() update for 16 port card

6.3.4 19.04.05 DJL Updated to reflect latest release

6.4.0 07.10.05 DJL Updates for V6.4 release

6.4.1 03.03.06 DJL Correction to example scripts

6.4.2 07.07.06 DJL Updates following header file review

6.4.3 16.10.06 DJL Addition of stream information for Prosody X cPCI

6.4.4 14.12.06 DJL Addition of new companding APIs and further
ERR_SW_NO_PATH guidance.

6.4.5 17.08.07 PP Addition of Prosody X PCIe card and
sw_abort_api_calls()

6.4.6 19.05.09 PP Note about Prosody X NETREF in section 3.25.
References to "Stratum 4 Enhanced" compatible
changeover in section 5.1.1. Corrections to notes
column in table in A.3 and other minor corrections.

6.5.0 01.02.11 DF/
EBJ/
PP

Removed references to EOL products.
Updated to corporate fonts and removal of hyperlinks.
Description of failsafe mode.

6.5.1 08.02.11 PP Addition of Prosody X rev 3 cards.

MAN1210 Revision 6.8.7 PUBLIC Page 3

Rev Date By Detail

6.5.2 01.11.11 PP Addition of Prosody X 1U. Stream numbers and clock
modes for this product added to Appendix A.

6.6.0 04.12.15 PP Change “Prosody X 1U” to “Prosody X 1U Enterprise”
and add brief reference to Prosody X HA. Remove
references to PX PCI cards, PX cPCI cards, PX PCIe
rev1 cards, H.110 bus, CT_NETREF_2 and hot-swap.

6.7.0 21.09.16 PP sw_reset_switch()- reference to companding added.

6.8.0 07.03.22 DSL Add “Prosody X Evo”. Align with 6.8.0 software release.

6.8.6 24.10.22 DSL Minor corrections.

6.8.7 13.02.23 DSL Update title page

MAN1210 Revision 6.8.7 PUBLIC Page 4

CONTENTS

1 Introduction ... 6
1.1 Terminology .. 6
1.2 Switching .. 7
1.3 Clock control ... 7
1.4 Expansion buses .. 8

1.4.1 H.100 bus .. 8
1.4.2 Monitoring two party conversations - DSP/Prosody required 8

2 API types, header files and libraries .. 9
2.1 Operating systems .. 9

2.1.1 Windows ... 9
2.1.2 Linux ... 9

2.2 Opening cards for use with the switch driver .. 9

3 API call summary and descriptions ... 11
3.1 sw_ver_switch() - Get switch driver version .. 13
3.2 sw_mode_switch() - Get switch driver mode... 15
3.3 sw_card_info() - Retrieve card details ... 16
3.4 sw_set_card_notification_queue() .. 18
3.5 sw_get_card_notification() .. 19
3.6 sw_get_notification_wait_object() ... 20
3.7 sw_set_card_h100_termination() - Enable/disable H-Bus termination 21
3.8 sw_config_timeslot_companding() - A-law/mu-law to mu-law/A-law configuration 22
3.9 sw_query_timeslot_companding() - Query A-law/mu-law to mu-law/A-law conversion .. 23
3.10 sw_config_companding() - A-law/mu-law to mu-law/A-law configuration 24
3.11 sw_query_companding() - Query A-law/mu-law to mu-law/A-law conversion 25
3.12 sw_component_version() – Get switch driver component version 26
3.13 sw_get_dsp_stream_info() .. 28
3.14 sw_abort_api_calls() ... 30
3.15 sw_set_output () - Control switch matrix ... 31
3.16 sw_query_output() - Query switch matrix .. 34
3.17 sw_sample_input(), sw_sample_input0() - Sample timeslot ... 35
3.18 sw_tristate_switch() - Tristate switch matrix .. 36
3.19 sw_reset_switch() - Reset switch matrix ... 37
3.20 sw_clock_control() - Set clock reference .. 38
3.21 sw_query_clock_control() - Query clock reference ... 40
3.22 sw_h100_config_board_clock() - Set up H-Bus clocking .. 41
3.23 sw_h100_config_netref_clock() - Set up H-Bus fallback clock .. 44
3.24 sw_h100_query_board_clock() - Query H-Bus clock mode .. 46
3.25 sw_h100_query_netref_clock() - Query H-Bus fallback clock ... 48
3.26 sw_track_api_calls() - Track API calls .. 49

4 Switching considerations ... 50
4.1 General principles ... 50
4.2 H.100 switching .. 51

5 Clocking considerations .. 52
5.1 Clocking of cards and expansion buses .. 52

MAN1210 Revision 6.8.7 PUBLIC Page 5

5.1.1 Failsafe mode ... 52
5.1.2 H.100 bus clocking .. 53

5.2 Controlling clocking set up during system initialisation ... 58
5.2.1 Editing files used by the automatic configuration mechanism 58

6 Troubleshooting .. 60

Appendix A: Aculab card stream numbering and clock settings .. 62
A.1 Prosody X PCIe rev 3 card stream usage ... 62
A.2 Prosody X PCIe rev 3 card clock settings ... 62
A.3 Prosody X 1U Enterprise stream usage .. 63
A.4 Prosody X 1U Enterprise clock settings .. 63
A.5 Prosody X Evo stream usage ... 64
A.6 Prosody X Evo clock settings .. 64

Appendix B: Sampling bearer channels ... 65

Appendix C: API error codes .. 66

Appendix D: Using swcmd .. 68

MAN1210 Revision 6.8.7 PUBLIC Page 6

1 Introduction
This document describes the generic switching and clock control API presented by the
Aculab driver to application programs, and is applicable for use with the following Aculab
products:

• Prosody X PCIe rev 3 card

• Prosody X 1U Enterprise

• Prosody X 1U High Availability

• Prosody X Evo

The same API is supported across diverse operating systems.

The Prosody X 1U High Availability chassis contains either one or two Prosody X PCIe rev
3 cards. The switching and clocking available on these cards is the same as on standard
Prosody X PCIe rev 3 cards.

The Prosody X Evo chassis contains one or two Prosody T cards presented as a single
multiport (4/8/16) port card. Applications do not normally need to be aware of that 16 port
systems contain two cards

1.1 Terminology
In this document, the generic switching and clock control API presented by the Aculab
switch driver is referred to as the switch API. Reference is also made to idle_net_ts()

and port_init()routines in the Aculab Call Control library. These routines are not formally

part of the switch API but are intimately related to it.

Aculab cards usually have one or more network ports to allow the cards to be connected to
a telecom network, referred to in this document as the network.

A stream refers to a time division multiplexed (TDM) signal consisting of a number of
timeslots. Each timeslot carries a 64Kbps-speech path (also known as a B channel or a
bearer channel), which might carry, for example, speech data relating to a single phone
call.

The term expansion bus is used to refer to the time division multiplexed telecom buses into
which Aculab cards can be integrated. Aculab cards currently support the following
expansion bus:

• H.100 bus (also known as CT Bus or H-Bus) – PCIe rev 3 cards only

The Prosody X 1U Enterprise does not have an expansion bus.

The H.100 bus in the Prosody X 1U High Availability can only be used to connect the two
cards together.

The H.100 bus in the 16 port Prosody X Evo is used internally in order to present the two
Prosody T cards as a single 16 port card.

Each Aculab card is equipped with a digital switch matrix that allows data to be switched
from a timeslot in one stream to another timeslot in the same stream or another stream.

Streams from card network ports, on-card resources such as DSP modules and the
expansion buses, are connected to the digital switch matrix.

Each card is also equipped with a clock generation circuit used to synchronize switching of
data between timeslots on streams, and between the card and the network. The clock
generation circuit is driven from a clock reference source that could be the local oscillator
on the card, a network port or an expansion bus.

MAN1210 Revision 6.8.7 PUBLIC Page 7

1.2 Switching
Aculab cards can switch data between timeslots on network ports, on-card resources, and
associated expansion buses, for example, H.100 (H-Bus).

Each card type supported by the switch driver has a different set of streams connected to
its digital switch matrix according to the number of network ports it has, the expansion bus
types supported, and the on-card resources fitted. Each stream is assigned a logical
stream number. For details of the stream numbers used on each type of card, please refer
to Appendix A.

The switch driver API may be used to control the digital switch matrix in order to allow the
switching of data between timeslots on different streams, this is termed “making a
connection”. For example, a timeslot from a network port stream could be switched to a
timeslot on an H-Bus stream. The digital switch matrix may also be set up to make multiple
connections from a single timeslot to multiple destination timeslots simultaneously.

The switch driver API may be used to set up the digital switch matrix to output constant 8-
bit patterns on timeslots, and sample 8-bit values from timeslots.

When switching data between network ports and/or resources located on the same card, a
single connection may be made between the source of the speech data and its required
destination. This is termed local switching. Alternatively, two connections can be made, the
first in order to switch data from the source up to a free timeslot on a card expansion bus,
and the second to switch the data down from the expansion bus to its required destination.
This is termed “distributed switching”.

The Prosody X Evo also has the ability to output tone pairs (eg DTMF) within the switch
matrix without requiring any additional resources.

1.3 Clock control
Each Aculab card is equipped with a clock generation circuit, which is used to synchronize
the switching of timeslot data between the network, on-card resources such as DSPs, and
the card’s expansion buses.

The clock generation circuit may be set up to obtain clock timing information from a number
of sources including:

• A signal at a network port

• A local oscillator

• An expansion bus primary or secondary clock signal

If data is to be switched between an Aculab card and the network, it is essential that the
clock generation circuit is synchronized to network timing, otherwise “slip” errors may
occur. Exceptionally, rather than derive timing information from the network, a card may be
required to provide timing to the network (from its local oscillator), for example, this would
be the case if a card is running the network end of a signalling protocol in a back to back
test configuration.

A card may be synchronized to the network clock by setting the clock generation circuit to
derive timing from one of the network ports on the card. The card could alternatively
synchronize to network timing from an expansion bus whose clock master is another card
using a network port as reference.

If data is to be switched between two Aculab cards via an expansion bus, it is essential that
their clock generation circuits be synchronized to the expansion bus clock. This is achieved
either through acting as the bus clock master or through ‘clock slaving’ off the bus.

MAN1210 Revision 6.8.7 PUBLIC Page 8

The switch driver API may be used to control the reference source for the clock generation
circuit and control whether the card acts as clock master or clock slave on an expansion
bus.

1.4 Expansion buses

1.4.1 H.100 bus

The H.100 bus, sometimes referred to as the CT Bus, is a time division multiplexed bus
consisting of 32 streams. Each stream carries 128 unidirectional 64Kbps-speech paths
(timeslots).

The 32 streams are named D0, D1, ..., D31, and the timeslots within these streams are
identified using numbers 0 to 127.

Aculab cards attached to the H.100 bus may switch data onto the H.100 bus from network
port timeslots and on-card resources, or vice versa.

Refer to for card specific information.

It is the responsibility of the application to manage the use of the H.100 bus and to assign
H.100 bus timeslots as required. Bus timeslots are used to carry speech data between
cards, or for making distributed switch connections. H.100 bus timeslots are not used when
making local switch connections.

No more than one card at a time may output data onto a particular H.100 bus stream
timeslot. For example, if a card is outputting data to timeslot 6 of stream D0, then no other
card can be permitted to output onto steam D0 timeslot 6. If this were to occur in error, then
it would be referred to as bus contention.

Multiple cards may of course switch data from the same H.100 bus stream timeslot.

In order for data to be switched successfully between cards on the H.100 bus, all the cards
on the bus must be synchronized to the H.100 bus clocks. One card must be set up to be
H.100 primary clock master, a second card may optionally be set up to be a secondary
clock master, all remaining cards must be set up to be H.100 bus clock slaves. See section
5 for more information on H.100 bus clocking.

The first and last cards on an H.100 bus ribbon cable should have H.100 bus terminations
enabled. Bus terminations may be configured using the Aculab Configuration Tool (ACT),
or by manually editing a card’s configuration file (see section 5.2.1), or by using the API call
sw_set_card_h100_termination().

1.4.2 Monitoring two party conversations - DSP/Prosody required

In order for an expansion bus to carry speech data from a two party conversation, two
expansion bus timeslots are required, one each for the signal transmitted to each peer
party.

It is not possible to combine the two signals (e.g. for monitoring by a 3rd party) merely by
switching both signals to a single expansion bus timeslot. Attempting to do this from a
single card would fail, as the first connection made would be replaced by the second.
Attempting to do this by switching from two or more cards to the same expansion bus
timeslot would result in bus contention.

If an application needs to output the combined input speech path and the output speech
path of a phone call onto a single timeslot, the two signals must be merged using an
algorithm running on an Aculab DSP or Prosody module.

MAN1210 Revision 6.8.7 PUBLIC Page 9

2 API types, header files and libraries
In order that applications using the switch driver API may be compiled with diverse
compilers on different operating systems, the use of some basic C data types such as int

and long are avoided in parameter block structure definitions for the API calls. Instead, a

portable basic integer type is defined in the header “acu_type.h” and this type is used in the

switch driver parameter block definitions (i.e. ACU_INT is used instead of int). When

applications are compiled, it is essential that the size of parameter block structures is the
same as the size that the driver is expecting. This is enforced by the switch library, which
checks the size field in the parameter block structure. The INIT_ACU_STRUCT macro can be

used to initialise the size field. It will also set all the remaining fields in the parameter block

structure to zero.

All applications built to use Aculab drivers must include the header file:

acu_type.h

Applications using the switch driver must also include the following header file:

sw_lib.h

If the application includes call control processing, then the appropriate call control libraries
should also be linked into the application.

For some operating systems or compilers, the header files may need to be edited. Various
other compile time pre-processor definitions and compiler options may be required.

2.1 Operating systems

2.1.1 Windows

Applications that use the Switch API must be linked against the following DLL:

sw_lib.dll

2.1.2 Linux

Applications that use the Switch API must be linked against the following shared library:

libacu_sw.so

2.2 Opening cards for use with the switch driver
Before an application can make Switch API calls to a card, the card must first be opened
for use. To open a card for general use, the acu_open_card() function is used. This

function requires a card serial number to identify the card to open. Card serial numbers
can be obtained from the acu_get_system_snapshot() API call. Once a serial number is

known, it can be used as in the following example:

ACU_CHAR* serial_no = “1234567”;

ACU_OPEN_CARD_PARMS open_card_parms;

ACU_ERR result;

INIT_ACU_STRUCT(&open_card_parms);

strncpy(open_card_parms.serial_no, serial_no, ACU_MAX_SERIAL);

result = acu_open_card(&open_card_parms);

if (result != 0)

{

 printf(“Failed opening card %s with error %d\n", serial_no, result);

}

acu_open_card() returns a unique identifier for the card that can be used in a number of

API calls. The same card id can be used with the Switch, Call, and Prosody APIs. In order

MAN1210 Revision 6.8.7 PUBLIC Page 10

to use the Switch API with the newly opened card, a further API call is used -
acu_open_switch(). This function takes the card ID returned by acu_open_card() and

opens the switch driver for that card. After this, the card ID can be used, as the card_id

parameter in all Switch API calls. The acu_open_switch() function is used as in the

following example:

ACU_CARD_ID card_id; /* a previously opened card */

ACU_OPEN_SWITCH_PARMS open_switch_parms;

ACU_ERR result;

INIT_ACU_STRUCT(&open_switch_parms);

open_switch_parms.card_id = card_id;

result = acu_open_switch(&open_switch_parms);

if (result != 0)

{

 printf(“Error %d opening switch API\n”, result);

 exit(EXIT_FAILURE);

}

When the application has finished using the Switch API with a card, it must close the switch
driver for that card. This is performed using the acu_close_switch() function. As this

function closes the switch driver, subsequent Switch API calls using the same card ID will
fail. This function does not however close the card ID for the purposes of any other Aculab
APIs. The following sample code demonstrates the use of acu_close_switch():

ACU_CARD_ID card_id; /* id of a previously opened card */

ACU_CLOSE_SWITCH_PARMS close_switch_parms;

ACU_ERR result;

INIT_ACU_STRUCT(&close_switch_parms);

close_switch_parms.card_id = card_id;

result = acu_close_switch(&close_switch_parms);

MAN1210 Revision 6.8.7 PUBLIC Page 11

3 API call summary and descriptions
The calls that together make up the switch driver API are listed in the table below:

Switch API call Description
sw_ver_switch() Determines the version of a given switch

driver.

sw_component_version() Determines the version of a given
component.

sw_mode_switch() Determines which expansion buses a
card may switch data onto/off-from.

sw_card_info() Returns card information for the card
whose switching is controlled by the
switch driver card_id.

sw_set_card_notification_queue() Used to register a queue that will receive
switch notification events (such as clock
fallback events) for the specified card.

sw_get_card_notfication() The switch driver queues events such as
clock fallbacks. This function is used to
collect those events.

sw_get_card_notfication_wait_object() This function retrieves an operating
system specific wait event that can be
used to wait for switch driver events.

sw_config_timeslot_companding() A-law/mu-law to mu-law/A-law
configuration, used to select A-law/mu-
law to mu-law/A-law conversion on
network timeslot streams.

sw_query_timeslot_companding() Query A-law/mu-law to mu-law/A-law
conversion, determines the companding
conversion settings of a given card
timeslot.

sw_config_companding() A-law/mu-law to mu-law/A-law
configuration, used to select A-law/mu-
law to mu-law/A-law conversion on
network port streams.

sw_query_companding() Query A-law/mu-law to mu-law/A-law
conversion, determines the companding
conversion settings of a given card.

sw_get_dsp_stream_info() Maps DSP position and port indexes to
TDM streams and timeslots.

sw_set_card_h100_termination() Enables or disables the H-Bus bus
termination.

sw_set_output() Make a connection; break a connection
or output pattern on timeslot.

sw_query_output() Determine the source of switch
connection.

MAN1210 Revision 6.8.7 PUBLIC Page 12

Switch API call Description
sw_sample_input()

sw_sample_input0()
Obtain 8-bit sample from given timeslot.

sw_reset_switch() Reset card switch devices to disable all
current connections.

sw_tristate_switch() Tri-state card from expansion bus.

sw_clock_control() Change clock generation circuit
reference source and/or expansion bus
clock master/slave mode.

sw_query_clock_control() Determine last clock mode set for card.

sw_h100_config_board_clock() Change clock generation circuit
reference source and/or H-Bus bus clock
master/slave mode.

sw_h100_config_netref_clock() Configure fallback reference clock for H-
Bus bus.

sw_h100_query_board_clock() Determine last H-Bus clock mode set for
card and status of H-Bus bus clocks.

sw_h100_query_netref_clock() Determine fallback reference clock for H-
Bus bus.

sw_track_api_calls() This function may be used to track API
calls made to a switch driver.

sw_abort_api_calls() Abort pending API calls.

Routines that are implemented in the call library and referenced in this document are:

Call API routine Description
port_init() Used to write an idle pattern onto all timeslots on a port.

For CAS protocols will also connect each timeslot to the
signalling DSP.

idle_net_ts() Output signalling specific signal to exchange when network
port timeslot is idle.

The individual switch driver API calls are now specified in more detail:

Most calls take a card ID, which is returned by the acu_open_card() function. Before the

switch API can be used with a card, the Switch driver must be opened using the
acu_open_switch() function.

MAN1210 Revision 6.8.7 PUBLIC Page 13

Miscellaneous functions

3.1 sw_ver_switch() - Get switch driver version
This function will return version information for the switch driver indicated by card_id.

Synopsis
int sw_ver_switch(ACU_CARD_ID card_id, struct swver_parms* vparms);

typedef struct swver_parms

{

 ACU_INT size; /* IN */

 ACU_INT major; /* OUT */

 ACU_INT minor; /* OUT */

 ACU_INT step; /* OUT */

 ACU_INT custom; /* OUT */

 ACU_INT quality; /* OUT */

 ACU_INT buildno0; /* OUT */

 ACU_INT buildno1; /* OUT */

} SWVER_PARMS;

The sw_ver_switch() function takes a pointer vparms , to a structure SWVER_PARMS. The

structure must be initialised before invoking the function (see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

Return values

major, minor and step

On return, the parameters major, minor and step will be set to the values X, Y, and Z

respectively of the three-element version number for the driver X.Y.Z. For example, 6.2.11

custom

The custom parameter will be set to a non-zero value if the driver build is a custom special

build of the driver for a specific customer.

quality

The quality parameter will be set to one of the following character values:

Character Release quality

‘I’ Released version

‘F’ Field trial version

‘S’ Customer special version

‘B’ Beta quality version

‘D’ Development (or alpha
quality) version

buildno0 and buildno1

The buildno0 and buildno1 parameters are for Aculab use only.

On successful completion a value of zero is returned; otherwise one of the following

MAN1210 Revision 6.8.7 PUBLIC Page 14

negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation

failed or device I/O error occurred

ERR_SW_COMPONENT_MISMATCH version number mismatch between software

components.

MAN1210 Revision 6.8.7 PUBLIC Page 15

3.2 sw_mode_switch() - Get switch driver mode
This function will return expansion bus capability information for the switch driver indicated
by card_id.

Synopsis
int sw_mode_switch (ACU_CARD_ID card_id, struct swmode_parms* mparms);

typedef struct swmode_parms

{

 ACU_INT size; /* IN */

 ACU_INT ct_buses; /* OUT */

} SWMODE_PARMS;

The sw_mode_switch() function takes a pointer mparms , to a structure SWMODE_PARMS. The

structure must be initialised before invoking the function (see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

Return values
ct_buses

On return, the parameter ct_buses will be set to a value, which has bits set according to

which expansion buses are supported by the driver for the card corresponding to indicated
switch driver. The following bits are defined:

Bit Expansion bus
SWMODE_CTBUS_H100 H.100 Bus

SWMODE_CTBUS_H100_TERM H.100 Bus with terminated bus.

SWMODE_CTBUS_NONE No CT bus available

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 16

3.3 sw_card_info() - Retrieve card details
This function will return card information for the card_id whose switching is controlled by

the switch driver.

Synopsis
int sw_card_info (ACU_CARD_ID card_id, struct swcard_info_parms* iparms);

typedef struct swcard_info_parms

{

 ACU_INT size; /* IN */

 ACU_INT card_type; /* OUT */

 ACU_INT card_present; /* OUT */

 ACU_INT max_capacity; /* OUT */

 ACU_INT additional_data[4]; /* OUT */

 ACU_ULONG physical_address; /* OUT */

 ACU_ULONG io_address_or_pcidev; /* OUT */

 ACU_ULONG physical_irq; /* OUT */

 char serial_no[kSWMaxSerialNoText]; /* OUT */

} SWCARD_INFO_PARMS;

The sw_card_info() function takes a pointer iparms , to a structure SWCARD_INFO_PARMS. The

structure must be initialised before invoking the function (see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

Return values
card_type

This parameter indicates the type of card:

Card type value Description
SW_PROSODY_X_PCIE_R3_CARD Prosody X PCIe rev 3 card

SW_PROSODY_X_1U_CARD Prosody X 1U Enterprise

SW_PROSODY_T_CARD Prosody X Evo chassis

card_present

This parameter is set to 1 for all cards.

max_capacity

This parameter indicates the maximum full duplex switching capacity of the card from on-
card resources to the expansion bus in its configured mode.

additional_data

This parameter is reserved for future use.

physical_address , io_address_or_pcidev , physical_irq

These parameters are obsolete.

serial_no

This parameter is a zero terminated ASCII string indicating the card serial number.

MAN1210 Revision 6.8.7 PUBLIC Page 17

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id.

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred.

MAN1210 Revision 6.8.7 PUBLIC Page 18

3.4 sw_set_card_notification_queue()
This function is used to register a queue that will receive switch notification events, for
example, clock fallback events, for the specified card.

Synopsis
ACU_ERR sw_set_card_notification_queue(ACU_QUEUE_PARMS* queue_parms);

typedef struct tACU_QUEUE_PARMS

{

 ACU_ULONG size; /* IN */

 ACU_RESOURCE_ID resource_id; /* IN */

 ACU_EVENT_QUEUE queue_id; /* IN */

} ACU_QUEUE_PARMS;

The sw_set_card_notification_queue() function takes a pointer queue_parms , to a

structure ACU_QUEUE_PARMS. The structure must be initialised before invoking the function

(see section 2).

The ACU_QUEUE_PARMS structure is defined in header file acu_type.h.

Input parameters
size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

resource_id

This field must be set to the card ID of the card.

queue_id

Set this field to the ID of the queue that is to be used for this card's switch notifications.
This ID must have previously been allocated using acu_allocate_event_queue().

Return values

On successful completion a value of zero is returned; otherwise a negative values is
returned indicating the type of error.

MAN1210 Revision 6.8.7 PUBLIC Page 19

3.5 sw_get_card_notification()
The switch driver queues events such as clock fallbacks. This function is used to collect
such events.

Synopsis
ACU_INT sw_get_card_notification(ACU_CARD_ID card_id, struct

sw_card_notification_parms* notifyp);

typedef struct sw_card_notification_parms

{

 ACU_ULONG size; /* IN */

 ACU_INT event; /* OUT */

} SW_CARD_NOTIFICATION_PARMS;

The sw_get_card_notification() function takes a pointer notifyp, to a structure

SW_CARD_NOTIFICATION_PARMS. The structure must be initialised before invoking the function

(see section 2).

Input parameters
card_id

Is the ID of the card to check for events, which must be a valid card ID as returned by
acu_open_card().

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

Return values
event

Will be one of the following values:

#define Description
SW_EV_NO_EVENT No event

SW_EV_PRIMARY_REF_NETWORK_PORT

Primary network port change of
state. Reported by an H-Bus
primary clock master only

SW_EV_CTBUS_PRIMARY_LOS

H-Bus primary clock lost. Reported
only by an H-Bus clock slave with
fallback enabled.

SW_EV_SECONDARY_REF_NETWORK_PORT
Change in state on a network port
driving CT_NETREF1

On successful completion a value of zero is returned; otherwise a negative values is
returned indicating the type of error.

Example usage

See the example shown in sw_get_notification_wait_object() below.

MAN1210 Revision 6.8.7 PUBLIC Page 20

3.6 sw_get_notification_wait_object()
This function retrieves an operating system specific wait event that can be used to wait for
switch driver events.

Synopsis
ACU_INT sw_get_notification_wait_object(ACU_CARD_ID card_id, SW_WAIT_OBJECT_PARMS*

wo_parms);

typedef struct sw_wait_object_parms

{

 ACU_ULONG size; /* IN */

 ACU_WAIT_OBJECT wait_object; /* OUT */

} SW_WAIT_OBJECT_PARMS;

The sw_get_notification_wait_object() function takes a pointer wo_parms, to a structure

SW_WAIT_OBJECT_PARMS. The structure must be initialised before invoking the function (see

section 2).

Input parameters
card_id

Is the ID of the card the event will apply to, which must be a valid card ID as returned by
acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

Return values
wait_object

Will contain a platform specific wait event that can be used with functions such as poll() or
WaitForMultipleObjects().

On successful completion a value of zero is returned; otherwise a negative values is
returned indicating the type of error.

Example usage
ACU_CARD_ID card_id; /* the id of a card obtained previously */

SW_CARD_NOTIFICATION_PARMS event_parms;

SW_WAIT_OBJECT_PARMS wo_parms;

ACU_ERR error;

INIT_ACU_STRUCT(&wo_parms);

INIT_ACU_STRUCT(&event_parms);

error = sw_get_notification_wait_object(card_id, &wo_parms);

if (error != 0)

{

 printf(“Failed getting wait event with error %d\n”, error);

 exit(-1);

}

if (WaitForSingleObject(wo_parms.wait_object, INFINITE) == WAIT_OBJECT_0)

{

 error = sw_get_card_notification(card_id, &event_parms);

}

MAN1210 Revision 6.8.7 PUBLIC Page 21

3.7 sw_set_card_h100_termination() - Enable/disable H-Bus termination
Enables or disables the H-Bus termination on Prosody X PCIe rev 3 cards.

Synopsis
int sw_set_card_h100_info(ACU_CARD_ID card_id, int h100termination);

Input parameters
card_id

Selects the required switch driver and must be a valid card id returned by acu_open_card().

h100termination

Enables or disables the H-Bus termination for the specified card ID.

h100termination

Value Description

0 H-Bus termination disabled (default)

1 H-Bus termination enabled

Return values

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH No switch driver corresponding to card_id.

ERR_SW_DEVICE_ERROR An error was returned from a device driver called by this

driver.

MAN1210 Revision 6.8.7 PUBLIC Page 22

3.8 sw_config_timeslot_companding() - A-law/mu-law to mu-law/A-law configuration
This function is used to select A-law to mu-law or mu-law to A-law conversion on individual
timeslots on network port streams. By default companding conversion is disabled.

Synopsis
int sw_config_timeslot_companding(ACU_CARD_ID card_id,

timeslot_companding_parms* compandp);

typedef struct timeslot_companding_parms

{

 ACU_INT size; /* IN */

 ACU_INT stream; /* IN */

 ACU_INT timeslot; /* IN */

 ACU_INT rx_mode; /* IN */

 ACU_INT tx_mode; /* IN */

} TIMESLOT_COMPANDING_PARMS;

The sw_config_timeslot_companding() function takes a pointer compandp, to a structure

TIMESLOT_COMPANDING_PARMS. The structure must be initialised before invoking the function

(see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

stream

Set to the value for the required stream, this can be any stream number between 32 and
47.

timeslot

Set to the value of the required timeslot (0-31).

tx_mode and rx_mode

rx_mode selects the conversion mode of a network port receive stream.

tx_mode selects the conversion mode of a network port transmit stream.

tx_mode and rx_mode should each be set to one of the following values:

COMPANDING_DISABLED 0

COMPANDING_A_TO_MU_LAW 2

COMPANDING_MU_TO_A_LAW 3

Return values

On successful completion a value of zero is returned; otherwise a negative values is
returned indicating the type of error.

MAN1210 Revision 6.8.7 PUBLIC Page 23

3.9 sw_query_timeslot_companding() - Query A-law/mu-law to mu-law/A-law
conversion
This function is used to determine the companding conversion settings of a given port.

Synopsis
int sw_query_timeslot_companding(ACU_CARD_ID card_id, timeslot_companding_parms*

compandp);

typedef struct timeslot_companding_parms

{

 ACU_INT size; /* IN */

 ACU_INT stream; /* IN */

 ACU_INT timeslot; /* IN */

 ACU_INT rx_mode; /* OUT */

 ACU_INT tx_mode; /* OUT */

} TIMESLOT_COMPANDING_PARMS;

The sw_query_timeslot_companding() function takes a pointer compandp, to a structure

TIMESLOT_COMPANDING_PARMS. The structure must be initialised before invoking the function

(see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

stream

Set to the value for the required stream, this can be any stream number between 32 and
47.

timeslot

Set to the value of the required timeslot (0-31).

Return values

tx_mode and rx_mode

On return, these parameters will be set to values indicating the conversion modes
operating on the requested network port. These may be one of the following values:

COMPANDING_DISABLED 0

COMPANDING_A_TO_MU_LAW 2

COMPANDING_MU_TO_A_LAW 3

On successful completion, a value of zero is returned; otherwise, a negative value is
returned indicating the type of error.

MAN1210 Revision 6.8.7 PUBLIC Page 24

3.10 sw_config_companding() - A-law/mu-law to mu-law/A-law configuration
This function is used to select A-law to mu-law or mu-law to A-law conversion on network
port streams. By default the companding conversion is disabled.

Synopsis
int sw_config_companding(ACU_CARD_ID card_id, companding_parms* compandp);

typedef struct companding_parms

{

 ACU_INT size; /* IN */

 ACU_INT stream; /* IN */

 ACU_INT rx_mode; /* IN */

 ACU_INT tx_mode; /* IN */

} COMPANDING_PARMS;

The sw_config_companding() function takes a pointer compandp, to a structure

COMPANDING_PARMS. The structure must be initialised before invoking the function (see

section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

stream

Set to the value for the required stream, this can be any stream number between 32 and
47.

tx_mode and rx_mode

rx_mode selects the conversion mode of a network port receive stream.

tx_mode selects the conversion mode of a network port transmit stream.

tx_mode and rx_mode should be set to one of the following values:

COMPANDING_DISABLED 0

COMPANDING_A_TO_MU_LAW 2

COMPANDING_MU_TO_A_LAW 3

Return values

On successful completion a value of zero is returned; otherwise a negative values is
returned indicating the type of error.

MAN1210 Revision 6.8.7 PUBLIC Page 25

3.11 sw_query_companding() - Query A-law/mu-law to mu-law/A-law conversion
This function is used to determine the companding conversion settings of a given port.

Synopsis
int sw_query_companding(ACU_CARD_ID card_id, companding_parms* compandp);

typedef struct companding_parms

{

 ACU_INT size; /* IN */

 ACU_INT stream; /* IN */

 ACU_INT rx_mode; /* OUT */

 ACU_INT tx_mode; /* OUT */

} COMPANDING_PARMS;

The sw_query_companding() function takes a pointer compandp, to a structure

COMPANDING_PARMS. The structure must be initialised before invoking the function (see

section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

stream

Set to the value for the required stream, this can be any stream number between 32 and
47.

Return values

tx_mode and rx_mode

On return, these parameters will be set to values indicating the conversion modes
operating on the requested network port. These may be one of the following values:

COMPANDING_DISABLED 0

COMPANDING_A_TO_MU_LAW 2

COMPANDING_MU_TO_A_LAW 3

COMPANDING_MIXED_MODES 16 /* Not all timeslots set to the same value. */

On successful completion a value of zero is returned; otherwise a negative values is
returned indicating the type of error.

MAN1210 Revision 6.8.7 PUBLIC Page 26

3.12 sw_component_version() – Get switch driver component version
This function will return version information for the switch driver component as indicated by
component_id.

Synopsis
int sw_component_version(ACU_CARD_ID card_id, struct component_version_parms*

vparms);

typedef struct component_version_parms

{

 ACU_INT size; /* IN */

 ACU_INT component_id; /* IN */

 ACU_INT major; /* OUT */

 ACU_INT minor; /* OUT */

 ACU_INT step; /* OUT */

 ACU_INT custom; /* OUT */

 ACU_INT quality; /* OUT */

 ACU_INT reserved0; /* OUT */

 ACU_INT reserved1; /* OUT */

} COMPONENT_VERSION_PARMS;

sw_component_version() takes a pointer vparms, to a structure COMPONENT_VERSION_PARMS.

The structure must be initialised before invoking the function (see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

component_id

The switch driver component version information to be returned:

0 – will return the version of either the t8110.ko or tdmsw.ko component

1 – will return the version of the PXSCS component

Return values

major, minor and step

On return, the parameters major, minor and step will be set to the values X, Y, and Z

respectively of the three-element version number for the driver X.Y.Z. For example, 6.2.11

custom

The custom parameter will be set to a non-zero value if the driver build is a custom special

build of the driver for a specific customer.

MAN1210 Revision 6.8.7 PUBLIC Page 27

quality

The quality parameter will be set to one of the following character values:

Character Release standard

‘I’ Released version

‘F’ Field trial version

‘S’ Customer special version

‘B’ Beta quality version

‘D’ Development (or alpha quality)
version

reserved0 and reserved1

The reserved0 and reserved1 parameters are for Aculab use only.

On successful completion a value of zero is returned; otherwise, one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

ERR_SW_COMPONENT_MISMATCH version number mismatch between software components.

MAN1210 Revision 6.8.7 PUBLIC Page 28

3.13 sw_get_dsp_stream_info()
This function returns the corresponding TDM stream number and stream length for a given
DSP type, position, and serial port.

Synopsis
int sw_get_dsp_stream_info(ACU_CARD_ID card_id, DSP_STREAM_INFO_PARMS*infoparms);

typedef struct info_parms

{

 ACU_INT size; /* IN */

 ACU_INT dsp_type; /* IN */

 ACU_INT dsp_position_ix; /* IN */

 ACU_INT dsp_serial_port_ix; /* IN */

 ACU_INT switching_stream; /* OUT */

 ACU_INT no_ts_in_stream; /* OUT */

} DSP_STREAM_INFO_PARMS;

The function sw_get_dsp_stream_info() takes a pointer, infoparms, to a structure

DSP_STREAM_INFO_PARMS. The structure must be initialised before invoking the function (see

section 2).

Input parameters
card_id

Selects the required switch driver, which must be a valid card id as returned by
acu_open_card().

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

dsp_type

The following DSP type designations are defined:

DSP type designation

Constant Description
kSW_DSP_TYPE_SIGNALLING DSP used for CAS or SS7 signalling such as

PMX 8101/3

kSW_DSP_TYPE_PROSODY DSP used for Prosody such as 8122

dsp_position_ix

Ranges from zero to kSW_MAX_DSP_POSITION_IX and enumerates the physical position of the

DSP of a given type on the baseboard, or on modules attached to the baseboard.

dsp_serial_port_ix

Indicates the serial port for which switch stream information is required.

Return values
switching_stream

The switch stream number corresponding to the selected DSP serial port index.

no_ts_in_stream

The number of timeslots for the port.

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_NO_SUCH_DSP DSP of the given type is not fitted to the indicated position

MAN1210 Revision 6.8.7 PUBLIC Page 29

ERR_SW_NO_SUCH_DSP_PORT indicated serial port does not exist on DSP

ERR_SW_INVALID_PARAMETER invalid dsp_type specified

MAN1210 Revision 6.8.7 PUBLIC Page 30

3.14 sw_abort_api_calls()
This function forces the switch library to terminate pending switch API calls.

Synopsis
int sw_abort_api_calls(ACU_CARD_ID card_id);

Input parameters
card_id

Selects the required switch driver, which must be a valid card id as returned by
acu_open_card().

Description

This function should be used under the following conditions. If a resource manager
ACU_SYS_EVT_CARD_REMOVED event occurs (indicating, for example, failure of the network

connection to a Prosody X card), applications that have previously invoked
acu_open_switch() should call sw_abort_api_calls(). This will cause all pending switch

API calls on the removed card to complete with the return code ERR_SW_API_CALL_ABORTED.

MAN1210 Revision 6.8.7 PUBLIC Page 31

Switching Functions

3.15 sw_set_output () - Control switch matrix
This function defines the source of the data output on each TDM timeslot.

The data source is normally another TDM timeslot, but the switch matrix can generate
some value (eg constants) internally.

Synopsis
int sw_set_output(ACU_CARD_ID card_id, stuct output_parms* oparms);

typedef struct output_parms

{

 ACU_INT size; /* IN */

 ACU_INT ost; /* IN */

 ACU_INT ots; /* IN */

 ACU_INT mode; /* IN */

 union {

 struct { /* CONNECT_MODE and PATTERN_MODE */

 ACU_INT ist; /* IN */

 ACU_INT its; /* IN */

 ACU_INT pattern; /* IN */

 };

 struct { /* TONE_MODE */

 ACU_INT tone_1; /* IN */

 ACU_INT tone_2; /* IN */

 ACU_INT tone_mu_law; /* IN */

 };

 struct { /* BASE_TONE_MODE */

 ACU_INT base_tone_freq; /* IN */

 ACU_INT base_tone_ampl; /* IN */

 };

 struct { /* LAYER_1_LOOP_MODE */

 ACU_INT l1_loop_type; /* IN */

 ACU_INT l1_loop_opts; /* IN */

 ACU_INT l1_loop_secs; /* IN */

 };

 struct { /* FFT_RESULT_MODE */

 ACU_INT fft_freq_1; /* IN */

 ACU_INT fft_freq_2; /* IN */

 ACU_INT fft_freq_3; /* IN */

 };

 };

} OUTPUT_PARMS;

The sw_set_output() function takes a pointer oparms , to a structure OUTPUT_PARMS. The

structure must be initialised before invoking the function (see section 2).

The anonymous union and struct were added in 6.8.0 to support additional functionality of
Prosody X Evo systems.
The FFT_RESULT_MODE fields are only used with sw_query_output() below.

Description

The TDM switch matrix on Aculab cards can source the TDM data for any timeslot from any
other TDM timeslot on the same card (unrestricted local switching).

For distributed switching (eg between the two cards in a 1U HA chassis) one card must be
configured to take the data from an H.100 stream+timeslot, and the other card configured
to output the required data onto that H.100 timeslot.

A card can source data from an H.100 timeslot that it is also driving.

On 16 port Prosody X Evo systems local switching between TDM ports on different physical
cards is implemented internally by using H.100 streams 22 to 31. These H.100 streams are
not available for application use.

MAN1210 Revision 6.8.7 PUBLIC Page 32

Input parameters
card_id

Is a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT.

ost and ots

The parameters ost and ots define the output stream and timeslot respectively on which

the TDM data byte is to be written.

mode

The mode parameter determines the operation, the following values are supported:

DISABLE_MODE

In this mode the output timeslot on H.100 output streams is tri-stated. Non H.100 streams.
are normally set to 0xff. See section 4.1 for more details.

PATTERN_MODE

In this mode the fixed value from pattern is written to the output timeslot.

CONNECT_MODE

In this mode the ist and its parameters define the input stream and timeslot from which

data is read.
This connects an audio stream from ist:its to ost:ots.

The Prosody X Evo supports some additional modes:

BASE_TONE_MODE

This mode lets the application define base tones for TONE_MODE below.

Only base tones 64 to 127 can be defined by the application.
Set ist to kSW_LI_PT_TONE_GEN, its to the tone number, base_tone_freq to the required

frequency in Hz and base_tone_ampl to the amplitude in dbm multiplied by -10 (eg 65 for

-6.5dbm).

TONE_MODE

In this mode the sum of the base tones selected by tone_1 and tone_2 is converted to

A-law (tone_mu_law == 0) or mu-law (tone_mu_law == 1) and written to the output timeslot.

Base tone 0 is silence, base tones 1 to 63 are predefined (refer to the
BASE_TONE_nnn_HZ_n_DBM constants), base tones 64 to 127 can be defined by the

application.

MAN1210 Revision 6.8.7 PUBLIC Page 33

LAYER_1_LOOP_MODE

This mode is different in that rather than changing the TDM switch matrix it requests the
layer 1 driver apply a loopback to an E1/T1 trunk.
l1_loop_type selects the type of loopback; it should be set to one of:

LAYER_1_LOOP_NONE Remove any loopback.
LAYER_1_LOOP_REMOTE Loop receive to transmit near E1/T1 interface.
LAYER_1_LOOP_PAYLOAD Loop receive to transmit near host interface.
LAYER_1_LOOP_LOCAL Loop transmit to receive near E1/T1 interface.

l1_loop_opts is a bit-wise or of the following:

LAYER_1_LOOP_JITTER_ATTENUATE For remote loop.

LAYER_1_LOOP_FW_DOWNLOAD Apply loop when signal received after firmware
download.

If l1_loop_secs is non-zero the loop will be automatically removed after that number of

seconds.
Loops are also removed by firmware download.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value is
returned indicating the type of error.

ERR_SW_NO_PATH indicates a problem was encountered making the requested connection.

MAN1210 Revision 6.8.7 PUBLIC Page 34

3.16 sw_query_output() - Query switch matrix
This function returns the current mode and connection of a given output stream and
timeslot as configured by the sw_set_output() function.

Synopsis
int sw_query_output(ACU_CARD_ID card_id, stuct output_parms* queryp);

The sw_query_output() function takes a pointer queryp, to a structure OUTPUT_PARMS (see

sw_set_output() above for the definition).

The structure must be initialised before invoking the function (see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

ost and ots

The input parameters ost and ots define the output stream and timeslot respectively, on

which the query is to take place.

Return values

For normal streams mode will be set to one of DISABLE_MODE, PATTERN_MODE, CONNECT_MODE or

(for Prosody X Evo) TONE_MODE. The corresponding fields (eg ist and its for PATTERN_MODE)

are also set.

The Prosody X Evo supports some additional modes:

If ist is to kSW_LI_PT_TONE_GEN and its to a base tone number then mode will be set to

BASE_TONE_MODE and the tone frequency and amplitude returned in base_tone_freq and

base_tone_ampl.

If ist is to kSW_LI_PT_FFT_RESULT+port_no then mode will be set to FFT_RESULT_MODE and the

first three tones from the hardware FFT that is normally connected to the trunk timeslot
written to fft_freq_1, fft_freq_2 and fft_freq_3.

The resolution of the FFT is about 8Hz although the accuracy is a little worse.
If fft_freq_3 is non-zero there are multiple peaks and it is unlikely the sampled data is a

tone.
The values are updated every 256 TDM frames.
The FFT result relies on the FFT input streams (56 to 63) being connected to the trunk
ports. They are initialised that way and the CAS firmwares will use the same mapping.

It is not possible to read the layer 1 loop settings.

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_INVALID_STREAM invalid ost stream number specified

ERR_SW_INVALID_TIMESLOT invalid ots timeslot number specified

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 35

3.17 sw_sample_input(), sw_sample_input0() - Sample timeslot
This function samples an octet from the indicated timeslot. The behaviour of the legacy
API call sw_sample_input0() is identical to sw_sample_input(). See Appendix B for further

information.

Synopsis
int sw_sample_input(ACU_CARD_ID card_id, struct sample_parms* samplep);

int sw_sample_input0(ACU_CARD_ID card_id, struct sample_parms* samplep);

typedef struct sample_parms

{

 ACU_INT size; /* IN */

 ACU_INT ist; /* IN */

 ACU_INT its; /* IN */

 char sample; /* OUT */

} SAMPLE_PARMS;

The sw_sample_input() function takes a pointer samplep , to a structure SAMPLE_PARMS. The

structure must be initialised before invoking the function (see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

ist and its

The input parameters ist and its define the input stream and timeslot respectively on

which the sample is to be taken.

Return values
sample

Contains an 8-bit sample of the data that is currently asserted on the input timeslot.

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_INVALID_STREAM invalid ist stream number specified

ERR_SW_INVALID_TIMESLOT invalid its timeslot number specified

ERR_SW_NO_RESOURCES no resources to sample this input

ERR_SW_PATH_BLOCKED cannot sample this input without breaking a current

connection

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 36

3.18 sw_tristate_switch() - Tristate switch matrix
This function is used to enable or disable the outputs from switch matrix.

Disabling the outputs stops the card from driving H.100 expansion bus signals.

Synopsis
int sw_tristate_switch(ACU_CARD_ID card_id, int tristate);

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

tristate

Enables or disables the switch matrix:

tristate = 0 : switch matrix enabled

tristate = 1 : switch matrix disabled (tristated)

Return values

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 37

3.19 sw_reset_switch() - Reset switch matrix
This function will reset the switch matrix to the idle state. All timeslot outputs on all streams
will be disabled on each expansion bus. All companding conversion settings will be reset
to COMPANDING_DISABLED. The state of the clock will not be altered by this function.

Some switch matrix connections that are used internally (eg for SS7 signalling and on the
Prosody X Evo) are not affected by application resets of the switch matrix.

Synopsis
int sw_reset_switch(ACU_CARD_ID card_id);

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

Return values

On successful completion a value of zero is returned; otherwise a negative values is
returned indicating the type of error.

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation

failed or device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 38

Clock Control Functions

3.20 sw_clock_control() - Set clock reference
This function controls the configuration of the reference source for the clock generation
circuit, and the card clock master/slave mode on expansion buses.

Synopsis
int sw_clock_control(ACU_CARD_ID card_id, int clockmode);

Description

When a switch driver is configured to operate a card in H-Bus mode, it may be more
appropriate to use the H-Bus specific clock configuration API call
sw_h100_config_board_clock(). This gives the application the ability to set up the full range

of possible H-Bus clocking scenarios rather than the simple master/slave type scenario
configurable through this call.

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

clockmode

This argument provides a designator for the clock.

The following values are defined:

Reference source clockmode Value

H.100 A bus clock CLOCK_REF_H100 0x0007

H.100 netref clock CLOCK_REF_SEC8K 0x0001

Local oscillator CLOCK_REF_LOCAL 0x0002

Network ports 1 to 4

CLOCK_REF_NET1

CLOCK_REF_NET2

CLOCK_REF_NET3

CLOCK_REF_NET4

0x0003

0x0004

0x000c

0x000d

Network ports 5 to 8

CLOCK_REF_NET5

CLOCK_REF_NET6

CLOCK_REF_NET7

CLOCK_REF_NET8

0x0005

0x000a

0x000b

0x000e

Network ports 9 to 16

CLOCK_REF_NET9

through
CLOCK_REF_NET16

0x0011

to

0x0018

Note that the clock_ref_net values are not sequential.

Not all clock modes are valid for all card types or card operation modes. See Appendix A
for permitted values for the various card types. See section 5 for further information on
clocking.

Return values

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_INVALID_CLOCK_PARM clock mode invalid for card or card mode

MAN1210 Revision 6.8.7 PUBLIC Page 39

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 40

3.21 sw_query_clock_control() - Query clock reference
This function determines the last configured clock set up for a card.

When a switch driver is configured to operate a card in H-Bus mode, it may be more
appropriate to use the H-Bus specific clock query API call sw_h100_query_board_clock().

This gives the application more information about how the H-Bus bus clocking is currently
set up.

Synopsis
int sw_query_clock_control(ACU_CARD_ID card_id, struct query_clkmode_parms*

queryp);

typedef struct query_clkmode_parms

{

 ACU_INT size; /* IN */

 ACU_INT last_clock_mode; /* OUT */

 ACU_INT sysinit_clock_mode; /* OUT */

} QUERY_CLKMODE_PARMS;

The sw_query_clock_control() function takes a pointer queryp, to a structure

QUERY_CLKMODE_PARMS. The structure must be initialised before invoking the function (see

section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

Return values
last_clock_mode

Will be set to the clock mode that the clock generation circuit is using.
For the values see sw_clock_control() above, in addition CLOCK_NO_MVIP90_MAPPING may

be set for modes that can only be set by sw_h100_config_board_clock().

sysinit_clock_mode

The value returned by this field is no longer used and should be ignored

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 41

3.22 sw_h100_config_board_clock() - Set up H-Bus clocking
Used to set up card clocking parameters, See section 5 for more information on H-Bus
clocking issues.

Synopsis
int sw_h100_config_board_clock(ACU_CARD_ID card_id, struct

h100_config_board_clock_parms* clockp);

typedef struct h100_config_board_clock_parms

{

 ACU_INT size; /* IN */

 ACU_INT clock_source; /* IN */

 ACU_INT network; /* IN */

 ACU_INT h100_clock_mode; /* IN */

 ACU_INT auto_fall_back; /* IN */

 ACU_INT netref_clock_speed; /* IN */

} H100_CONFIG_BOARD_CLOCK_PARMS;

Input parameters

The sw_h100_config_board_clock() function takes a pointer clockp, to a structure

H100_CONFIG_BOARD_CLOCK_PARMS. The structure must be initialised before invoking the

function (see section 2).

card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

clock_source

This parameter indicates reference source for the card clock generation circuit and should
be set to one of the following values:

Clock source Value
H100_SOURCE_INTERNAL 1

H100_SOURCE_NETWORK 3

H100_SOURCE_H100_A 8

H100_SOURCE_H100_B 9

H100_SOURCE_NETREF 10

network

If clock_source is set to H100_SOURCE_NETWORK, then the parameter network should be set to

the number of the network port to be used as the reference source. network may also need

to be configured if clock_source is set to H100_SOURCE_H100_A or H100_SOURCE_H100_B, and

auto fall back is enabled, see below.

Note that the switch API numbers network (E1/T1) ports from 1.

h100_clock_mode

Determines whether the card is an H-Bus primary or secondary clock master, or an H-Bus
clock slave, and should be set to one of the following values:

MAN1210 Revision 6.8.7 PUBLIC Page 42

H.100 clock mode Value
H100_SLAVE 0

H100_MASTER_A 1

H100_MASTER_B 2

auto_fall_back

Determines the card’s clocking behaviour when an H-Bus clock failure occurs. It should be
set to H100_FALLBACK_DISABLED if no clock fallback action is required. If a clock fallback

action is required, it should be set to H100_FALLBACK_ENABLED with one or more of the

following optional qualifiers added to it:

Auto fallback qualifier Value
H100_FALLBACK_DISABLED 0

H100_FALLBACK_ENABLED 1

H100_AUTO_RETURN 16

H100_CHANGEOVER_TO_NETWORK 32

H100_CHANGEOVER_TO_NETREF 64

The interpretation of this parameter depends on the cards current clock mode as follows:

Card configured as H-Bus primary clock master:

If the card is operating as a H-Bus bus primary clock master with the h100_clock_mode

parameter set to either H100_MASTER_A or H100_MASTER_B, and the clock_source parameter

set to H100_SOURCE_NETWORK, then setting the parameter auto_fall_back to

H100_FALLBACK_ENABLED will cause the H-Bus CT_NETREF signal to automatically be used as a

fallback clock reference.

If auto_fall_back is qualified by H100_AUTO_RETURN, then when the original reference source

once more becomes available, the card will revert to using it as clock reference.

If auto_fall_back is set to H100_FALLBACK_DISABLED, a default configuration is used. This

does not guarantee valid H-Bus primary clocks if the primary master network reference is
lost. It does however ensure that the H-Bus primary clocks will be restored when the
primary master network reference recovers.

Card configured as H-Bus secondary clock master:

If the card is operating as a H-Bus bus secondary clock master with the h100_clock_mode

parameter set to either H100_MASTER_A or H100_MASTER_B, and the clock_source parameter

set to H100_SOURCE_H100_A or H100_SOURCE_H100_B, then setting the parameter

auto_fall_back to H100_FALLBACK_ENABLED will cause the card to automatically be promoted

to become the new primary clock master driving the alternate set of H-Bus clock signals if
the primary clock master fails.

If auto_fall_back is set to H100_FALLBACK_DISABLED, no automatic promotion will occur.

The qualifier H100_CHANGEOVER_TO_NETWORK indicates that a network port (specified by the

network parameter) is to be used as reference source by a promoted clock master, the
qualifier H100_CHANGEOVER_TO_NETREF indicates that the reference source CT_NETREF is to be

used instead. Specifying both qualifiers indicates the network port is to be used and that
fallback to CT_NETREF is to be enabled should the network port reference source

subsequently fail.

Card configured as H-Bus clock slave:

MAN1210 Revision 6.8.7 PUBLIC Page 43

If the card is operating as a H-Bus clock slave with the h100_clock_mode parameter set to

H100_SLAVE, then setting the parameter auto_fall_back to H100_FALLBACK_ENABLED will

cause the card to automatically fallback to the alternate clocks driven by the secondary
clock master if the primary clock master fails. If auto_fall_back is set to

H100_FALLBACK_DISABLED, no automatic fallback will occur.

netref_clock_speed

The parameter netref_clock_speed indicates the clock rate that the H.100 CT_NETREF

fallback clock line is running at, and should be set to one of the following values:

NETREF clock speed Value
H100_NETREF_8KHZ (8 kHz) 0

H100_NETREF_1544MHZ (1.544 MHz) 1

H100_NETREF_2048MHZ (2.048 MHz) 2

Return values

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred.

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id.

MAN1210 Revision 6.8.7 PUBLIC Page 44

3.23 sw_h100_config_netref_clock() - Set up H-Bus fallback clock
Used to set up fallback clocking parameters, see section 5 for more information on H-Bus
bus clocking issues.

Synopsis
int sw_h100_config_netref_clock(ACU_CARD_ID card_id, struct

h100_netref_clock_parms* fallbackp);

typedef struct h100_netref_clock_parms

{

 ACU_INT size; /* IN */

 ACU_INT network; /* IN */

 ACU_INT netref_clock_mode; /* IN */

 ACU_INT netref_clock_speed; /* IN */

} H100_NETREF_CLOCK_PARMS;

The sw_h100_config_netref_clock() function takes a pointer fallbackp , to a structure

H100_NETREF_CLOCK_PARMS. The structure must be initialised before invoking the function

(see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

network

If netref_clock_mode is set to H100_ENABLE_NETREF, then the parameter network should be

set to a value that indicates which network port should be used as the reference source for
the CT_NETREF clock signal.

netref_clock_mode

NETREF clock mode Value
H100_DISABLE_NETREF 0

H100_ENABLE_NETREF 1

netref_clock_speed

If the parameter netref_clock_mode is set to H100_ENABLE_NETREF, then the H-Bus CT_NETREF

clock signal will be driven at the rate indicated by the parameter netref_clock_speed,

which must take one of the following values:

NETREF clock speed Value
H100_NETREF_8KHZ (8 kHz) 0

H100_NETREF_1544MHZ (1.544 MHz) 1

H100_NETREF_2048MHZ (2.048 MHz) 2

The reference clock source for the generated CT_NETREF will be the network port indicated

by the network parameter.

The type of firmware (E1 or T1) loaded on the network port selected as the CT_NETREF

reference clock source determines the possible speeds that CT_NETREF may be driven at. If

MAN1210 Revision 6.8.7 PUBLIC Page 45

the port indicated by the network parameter is loaded with E1 firmware, then CT_NETREF

may be driven at either 8kHz or 2.048MHz; if the port indicated by the network parameter is
loaded with T1 firmware, then CT_NETREF may be driven at either 8kHz or 1.544MHz.

Firmware must be loaded on to the network port to be used as the CT_NETREF source before

sw_h100_config_netref_clock() is invoked.

If the card is already acting as an H-Bus primary clock master, the fallback network port
selected in this call must be distinct from the network port selected as the primary master
clock reference network port.

Return values

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 46

3.24 sw_h100_query_board_clock() - Query H-Bus clock mode
Function is used to determine H-Bus clock settings for a given card, and status of H-Bus
clocks, see section 5 for more information on H-Bus clocking issues.

Synopsis
int sw_h100_query_board_clock (ACU_CARD_ID card_id, struct

h100_query_board_clock_parms* queryp);

typedef struct h100_query_board_clock_parms

{

 ACU_INT size; /* IN */

 ACU_INT clock_source; /* OUT */

 ACU_INT network; /* OUT */

 ACU_INT h100_clock_mode; /* OUT */

 ACU_INT auto_fall_back; /* OUT */

 ACU_INT fall_back_occurred; /* OUT */

 ACU_INT h100_a_clock_status; /* OUT */

 ACU_INT h100_b_clock_status; /* OUT */

 ACU_INT netref_a_clock_status; /* OUT */

 ACU_INT netref_b_clock_status; /* OUT */

} H100_QUERY_BOARD_CLOCK_PARMS;

The sw_h100_query_board_clock() function takes a pointer queryp , to a structure

H100_QUERY_BOARD_CLOCK_PARMS. The structure must be initialised before invoking the

function (see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

Return values

clock_source, network, h100_clock_mode, and auto_fall_back

On return the output parameters, clock_source, network, h100_clock_mode, and

auto_fall_back will normally be set to the last values set up by a call to

sw_h100_config_board_clock(). If clock settings have changed, clock fallback may have

occurred

h100_a_clock_status, h100_b_clock_status and netref_a_clock_status

The output parameters h100_a_clock_status, h100_b_clock_status and

netref_a_clock_status will be set to one of the following values:

Clock status Value
H100_CLOCK_STATUS_GOOD 0

H100_CLOCK_STATUS_BAD 1

H100_CLOCK_STATUS_UNKNOWN 2

Prosody X PCIe rev 3 cards can determine CT_NETREF status when the CT_NETREF clock

frequency is 8kHz, 1.544MHz, or 2.048MHz provided that the CT_NETREF clock rate for the

H-bus has been previously set using either sw_h100_config_netref_clock() or

sw_h100_config_board_clock().

MAN1210 Revision 6.8.7 PUBLIC Page 47

fallback_occurred

The fallback_occurred parameter will be set to a non-zero value if a primary master has

fallen back and is using CT_NETREF as a clock source.

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 48

3.25 sw_h100_query_netref_clock() - Query H-Bus fallback clock

Synopsis
int sw_h100_query_netref_clock(ACU_CARD_ID card_id, struct

h100_netref_clock_parms* queryp);

typedef struct h100_netref_clock_parms

{

 ACU_INT size; /* IN */

 ACU_INT network; /* OUT */

 ACU_INT netref_clock_mode; /* OUT */

 ACU_INT netref_clock_speed; /* OUT */

} H100_NETREF_CLOCK_PARMS;

The sw_h100_query_netref_clock() function takes a pointer queryp, to a structure

H100_NETREF_CLOCK_PARMS. The structure must be initialised before invoking the function

(see section 2).

Input parameters
card_id

The required switch driver, which must be a valid card ID as returned by acu_open_card()

size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

Return values

network, netref_clock_mode and netref_clock_speed

On return the output parameters network, netref_clock_mode and netref_clock_speed will

reflect the current card set up with respect to H-Bus CT_NETREF generation, values for these

output parameters are as described for the sw_h100_config_netref_clock() API call.

After a card has been configured to generate the H.100 CT_NETREF signal from one of its

ports, the H.100 CT_NETREF clock signal will only be generated when a good signal is

present at the port. At other times, when no signal is present at the port, the CT_NETREF

signal will not be generated. The returned netref_clock_mode allows an application to

determine if CT_NETREF is currently being generated. If a card has previously been

configured to generate CT_NETREF from a network port and CT_NETREF is not currently being

generated (due to the absence of a valid signal at the port) then netref_clock_mode will be

set to H100_DISABLE_NETREF.

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_INVALID_SWITCH no switch driver corresponding to card_id

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 49

Diagnostic and trace functions

3.26 sw_track_api_calls() - Track API calls
For applications running on multi-tasking operating systems, this function may be used to
track API calls made to a switch driver.

Typically this call would be used in a diagnostic application such as when swcmd is running

as a separate process to the application whose switch API calls are being tracked.

An alternative to using this API call is to use the Aculab trace_mode tool to generate a log of

switch API calls.

Synopsis
int sw_track_api_calls (SW_TRACK_API_PARMS track_api);

typedef struct sw_track_api_parms

{

 ACU_INT size; /* IN */

 INT tracking_on; /* IN */

 INT count; /* IN */

 ACU_CARD_ID* cards; /* IN */

} SW_TRACK_API_PARMS;

The sw_track_api_calls() function takes a pointer track_api, to a structure

SW_TRACK_API_PARMS. The structure must be initialised before invoking the function (see

section 2).

Input parameters
size

The size field should be set to the size of the input structure in bytes. This may be

achieved using INIT_ACU_STRUCT

tracking_on

Normally the switch driver does not track application API calls. If this function is called with
tracking_on set to:

kSWDiagTrackCmdTrackAPIWithTimestamp - all further API calls made to the switch driver,

up to an internal buffering limit, will be recorded. Information will be written to stdout.

kSWDiagTrackCmdTrackingOff - tracking is turned off.

count

The number of cards included in cards.

cards

The cards field is a pointer to an array of count card ids. It is up to the application to

allocate memory for this array and ensure it is de-allocated once it is finished with.

Returns

On successful completion a value of zero is returned; otherwise one of the following
negative values will be returned indicating the type of error:

ERR_SW_DEVICE_ERROR no switch drivers installed, switch driver initialisation failed or

device I/O error occurred

MAN1210 Revision 6.8.7 PUBLIC Page 50

4 Switching considerations

4.1 General principles
It should be noted that there are two categories of stream timeslot that can be switched to;
these are bus timeslots and non-bus timeslots:

• a bus timeslot references the location of a single instance of a bearer channel
on a bus, thus specifying this timeslot as an input or an output to a connection
references the same bearer channel

• a non-bus timeslot references a pair of a bearer channels, one input and one
output (for instance, a network port timeslot has a bearer channel for the
speech signal received and one for the speech signal sent), thus a different
bearer channel instance is selected depending on whether the timeslot is
specified as an input or an output

Applications normally use one of two strategies to manage switching activity:

• Creating connections on demand and breaking them when they are no longer
needed

• Creating a set of “nailed up connections” at application start up time, which
exist for whole lifetime of application

Sometimes, for example, when using 3rd party cards with Aculab cards, using a mixture of
the two strategies may be appropriate.

The architecture of switch devices is such that any given output timeslot can only be driven
from one specific input timeslot. If a new switch connection is made to an output timeslot
that is already in use, then the new input timeslot will replace the existing input timeslot.

The application can configure system clocking when it starts up or it can leave the job to
the automatic system configuration mechanism (either configured using the Aculab
configuration tool or by manually editing the system configuration files).

For an application to configure system clocking itself, it should use the
sw_h100_config_board_clock() function to set the clock master and clock slaves. Use the

sw_reset_switch() function to ensure that all existing switch connections are broken. The

port_init() function can be used to write an idle pattern to each timeslot on a port. It is

important to bear in mind that using these functions while another telephony application is
running can disrupt that application's activities.

When an application makes connections to network port timeslots, attention should be paid
as to when it is safe to do so.

• For CAS protocols, where signalling is performed using the bearer channel, no
switch connection should be made until the call reaches its CONNECTED
state. Then when the switch connection has been finished, and before the call
is disconnected, the Call Control API routine idle_net_ts() should be invoked.

• For ISDN protocols, switch connections can be made at an earlier stage if
required, but idle_net_ts() should still be invoked once the connection has

been finished with. This use of idle_net_ts() replaces a DISABLE_MODE

sw_set_output() call.

MAN1210 Revision 6.8.7 PUBLIC Page 51

When implementing an on-demand switching strategy, applications must have a scheme
for managing the use of timeslots on the expansion bus. They must make sure that they
always disable outputs to the expansion bus once a set of switch connections is finished
with, otherwise bus contention between cards attempting to drive the same expansion bus
timeslot could occur.

When using nailed up connections, it should be noted that if a connection has no driven
input (say from another card on the expansion bus) the connection could pick up a signal
from an adjacent timeslot. If this poses a problem, for example, because the nailed up
connection is an input to a conference, then the application can arrange for a card to output
to this timeslot in PATTERN_MODE until the time that the input can be driven, at which point the

pattern output can be replaced by the required connection.

The same pickup phenomenon can occur on some card types for outputs to network port
timeslots if the output for a network port is set to DISABLE_MODE while a phone call is still

connected. Use sw_set_output() with mode set to PATTERN_MODE to output a constant A-law

(0xD5) or Mu-law (0xFF) silence octet.

4.2 H.100 switching
Aculab cards have enough switching capacity for all port and Prosody module timeslots to
have full duplex connections to the bus.

Local switching between on-card resources is also possible.

There are no conventions on stream usage for switching data between network and
resource cards.

For the H-Bus there are 32 streams with 128 timeslots each. Streams are referenced with
the same stream number for both input and output.

Below is an example code fragment showing how four connections may be made to make
a connection over the H-Bus between two network port timeslots on two different Aculab
cards (card_id_a and card_id_b).

OUTPUT_PARMS halfParms;

halfparms.ost =0;

halfparms.ots =0;

halfparms.mode =CONNECT_MODE

halfparms.ist =32;

halfparms.its =24;

sw_set_output(card_id_a, &halfParms);

halfparms.ost =33;

halfparms.ots =14;

halfparms.mode =CONNECT_MODE

halfparms.ist =0;

halfparms.its =0;

sw_set_output(card_id_b, &halfParms);

halfparms.ost =0;

halfparms.ots =64;

halfparms.mode =CONNECT_MODE

halfparms.ist =33;

halfparms.its =14;

sw_set_output(card_id_b, &halfParms);

halfparms.ost =32;

halfparms.ots =24;

halfparms.mode =CONNECT_MODE

halfparms.ist =0;

halfparms.its =64;

sw_set_output(card_id_a, &halfParms);

MAN1210 Revision 6.8.7 PUBLIC Page 52

5 Clocking considerations
Refer to Appendix A: for the clocking options available on each card type.

5.1 Clocking of cards and expansion buses
When cards interconnected by an expansion bus exchange data across that bus, it is
essential that all the cards on the bus are correctly synchronized (so that the switching of
data to/from expansion bus timeslots by different cards is synchronized). This
synchronization is achieved by configuring expansion bus clocking.

Current Aculab cards may be integrated into the following expansion bus type:

• H.100 bus

This bus type requires exactly one card to act as the clock master on the bus. All other
cards must act as clock slaves (an H-Bus secondary clock master slaves off the primary H-
Bus clocks and so can be classed as a clock slave here).

If a card acts as clock master on a bus, the mastered bus clock is generated from the
card’s clock generation circuit. This clock generation circuit may be configured to obtain
timing information from a number of reference sources including for example:

• Network port signal

• Local oscillator

• A primary clock or secondary clock on an expansion bus

5.1.1 Failsafe mode

When a Prosody X card is configured to use an external clock source (i.e. a network port or
an H-bus clock) and that source has failed, then if fallback has not been configured (or has
also failed), the card will resort to using a local clock source. The card is then referred to as
being in failsafe clock mode. The following events will force a card into failsafe mode:

• A card configured as an H-bus slave, with fallback disabled, loses its H-bus primary
clock reference.

• A card configured as an H-bus master, with fallback disabled, loses its H-bus or
network port clock source.

• A card configured as an H-bus master, with fallback enabled, loses both its primary and
its secondary (fallback) references.

While a card is in failsafe mode it will not be synchronized to any other cards on the H-bus
and will not be clocked from an external network reference. The card will exit failsafe mode
and start using its configured primary clock reference as soon as the primary reference is
restored.

The swcmd utility (see Appendix D) may be used to query the H.100 clock mode of a card

(swcmd –e, or swcmd –i <serial no.>). These commands will print out the current clock

setting of a card and also indicate when a card is in failsafe mode, as shown below.

swcmd –i <123456>

123456: SLAVE: H100-A-clocks A=BAD B=BAD NR1=UNKNOWN NR2=UNKNOWN

123456: Using failsafe clock - not synchronized to H.100 bus

In this case, the card is configured as an H.100 ‘A’ clocks slave, but the ‘A’ clocks are “BAD”,

so the card is operating in failsafe clock mode

swcmd -i 218170

218170: A-MASTER: Network(1) A=GOOD B=BAD NR1=BAD NR2=BAD

218170: Using failsafe clock - not synchronized to H.100 bus

MAN1210 Revision 6.8.7 PUBLIC Page 53

Here the card is configured as an H.100 ‘A’ clocks master, but there is no valid clock
reference on network port 1. The ‘A’ clocks are “GOOD” as the card is driving the H.100 bus

‘A’ clocks using the failsafe clock reference.

5.1.2 H.100 bus clocking

The ECTF document “H.100 Hardware Compatibility Specification: CT Bus” contains
further information on the H.100 bus signals referred to below.

The H.100 bus has three sets of signals used for synchronising data transfer across the
bus and distributing network timing among multiple network cards, these are the ‘A’ clocks,
the ‘B’ clocks and the CT_NETREF fallback clock signal.

The use of these clock signals by a card on the bus depends on the clock-master/clock-
slave role that the card has being assigned on the H.100 bus during system initialisation
and later by the application API calls.

Initial H.100 bus clocking will be set up during switch driver initialisation, (see the section
“Controlling clocking set up during system initialisation”).

Single clock master/multiple clock slaves configuration

In the simplest case, one card would be designated as H.100 primary clock master and
drive the H.100 ‘A’ clocks, and all other cards would be designated clock slaves and take
their timing from the H.100 ‘A’ clocks. The H.100 ‘B’ clocks would not be used.

The following code fragment shows how such a clocking scenario may be set up using the
H.100 switch driver API clock control calls. Here the first card is set up to be H.100 primary
clock master driving ‘A’ clocks using its first network port as a timing reference source. A
second card is set up to be an H.100 bus clock slave synchronized to H.100 ‘A’ clocks.

H100_CONFIG_BOARD_CLOCK_PARMS h100MasterClocks;

H100_CONFIG_BOARD_CLOCK_PARMS h100SlaveClocks;

h100MasterClocks.clock_source = H100_SOURCE_NETWORK;

h100MasterClocks.network = 1;

h100MasterClocks.h100_clock_mode = H100_MASTER_A;

h100MasterClocks.auto_fall_back = H100_FALLBACK_DISABLED;

sw_h100_config_board_clock(card_id_a, &h100MasterClocks);

h100SlaveClocks.clock_source = H100_SOURCE_H100_A;

h100SlaveClocks.h100_clock_mode = H100_SLAVE;

h100SlaveClocks.auto_fall_back = H100_FALLBACK_DISABLED;

sw_h100_config_board_clock(card_id_b, &h100SlaveClocks);

Handling trunk failures and clock fallback

In the simple system clocking scenario described in the previous section, if the trunk
connected to network port being used as a reference source by the H.100 bus primary
clock master were to go out of service, the H.100 bus timing would go into holdover mode
and eventually become de-synchronized from the network. This situation can be avoided if
an alternative trunk, synchronized to the same network, is connected to another network
port on any of the cards on the H.100 bus. This alternative trunk can be nominated,
through the switch driver API call sw_h100_config_netref_clock(), to be used as a

“fallback” reference source for the card acting as H.100 primary clock master. Once
nominated, timing from the fallback trunk will be used to drive the H.100 CT_NETREF clock

signal. As soon as the primary clock master detects that it can no longer obtain network
timing information from its usual trunk, it will fallback to use timing from this CT_NETREF

signal. Primary master fallback is a “Stratum 4 Enhanced” compatible changeover and will
not cause any disruption to the H.100 primary clock.

MAN1210 Revision 6.8.7 PUBLIC Page 54

Only one card at any time may drive the H.100 CT_NETREF signal. It may be driven at one of

three possible clock speeds 8kHz, 1.544MHz or 2.048MHz. The rate it is driven at is
immaterial but all the cards on the H.100 bus must be configured to use it at the same rate.
If CT_NETREF is driven from a network port loaded with E1 firmware, it can be driven at either

8kHz or 2.048MHz. If CT_NETREF is driven from network port loaded with T1 firmware, it can

be driven at either 8kHz or1.544 MHz.

The code fragment that follows shows how an alternative trunk may be set up to provide a
fallback clock reference for the primary clock master.

The primary clock master must have its auto-fallback capability enabled and the CT_NETREF

speed must be specified for all cards. In this example the nominated alternative trunk is
attached to a network port on a card acting as an H.100 clock slave. It is equally possible
to nominate an alternative trunk connected to a primary/secondary clock master card.

H100_CONFIG_BOARD_CLOCK_PARMS h100MasterClocks;

H100_CONFIG_BOARD_CLOCK_PARMS h100SlaveClocks;

H100_NETREF_CLOCK_PARMS h100FallbackClocks;

h100MasterClocks.clock_source = H100_SOURCE_NETWORK;

h100MasterClocks.network = 1;

h100MasterClocks.h100_clock_mode = H100_MASTER_A;

h100MasterClocks.auto_fall_back = H100_FALLBACK_ENABLED;

h100MasterClocks.netref_clock_speed = H100_NETREF_8KHZ;

sw_h100_config_board_clock(card_id_a, &h100MasterClocks);

h100SlaveClocks.clock_source = H100_SOURCE_H100_A;

h100SlaveClocks.h100_clock_mode = H100_SLAVE;

h100SlaveClocks.auto_fall_back = H100_FALLBACK_DISABLED;

h100SlaveClocks.netref_clock_speed = H100_NETREF_8KHZ;

sw_h100_config_board_clock(card_id_b, &h100SlaveClocks);

h100FallbackClocks.network = 1;

h100FallbackClocks.netref_clock_mode = H100_ENABLE_NETREF;

h100FallbackClocks.netref_clock_speed = H100_NETREF_8KHZ;

sw_h100_config_netref_clock(card_id_b, &h100FallbackClocks);

An application can determine if the primary master card has fallen back to the alternative
trunk by using the switch driver API call sw_h100_query_board_clock(). This call can also

be used with other cards to determine the status of various H.100 bus clock signals – for
example to see if CT_NETFREF is being driven:

MAN1210 Revision 6.8.7 PUBLIC Page 55

H100_QUERY_BOARD_CLOCK_PARMS h100ClocksStatus;

sw_h100_query_board_clock(card_id_a, &h100ClocksStatus);

if (h100ClocksStatus.fall_back_occurred)

{

 /* Default trunk for primary clock master has gone out of service or

 * failed in some other way.

 * Primary master clocks being driven from CT_NETREF.

 */

}

if (h100ClocksStatus. netref_a_clock_status != H100_CLOCK_STATUS_GOOD)

{

 /*

 * Fallback trunk must also have failed.

 * Perform some action - e.g. alert operator

 */

}

else

{

 /* Primary clock master has fallen back to alternate trunk

 * Perform some action - e.g. alert operator

 */

}

The application can use a call control driver API call to obtain layer 1 statistics for a given
network port, this information may be used to obtain more information about a trunk failure.
It may also be used to detect when the failed trunk comes back into service.

The primary clock master can be configured to return automatically to using the original
trunk as a reference source when timing information can once more be recovered from it.
To enable this feature, an auto-return bit is OR’ed with the fallback enable bit during the
initial primary clock master clock set up.

H100_CONFIG_BOARD_CLOCK_PARMS h100MasterClocks;

h100MasterClocks.clock_source = H100_SOURCE_NETWORK;

h100MasterClocks.network = 1;

h100MasterClocks.h100_clock_mode = H100_MASTER_A;

h100MasterClocks.auto_fall_back = (H100_FALLBACK_ENABLED+H100_AUTO_RETURN);

h100MasterClocks.netref_clock_speed = H100_NETREF_8KHZ;

sw_h100_config_board_clock(card_id_a, &h100MasterClocks);

Fallback has occurred and auto-return was not enabled, then the application must make
new a call to sw_h100_config_board_clock() in order to return the primary master clock

reference to the original trunk (with the same set of parameters as before).

Handling failure of primary clock master

As mentioned previously, the H.100 bus has two sets of parallel clocks that slave cards can
synchronize to, the ‘A’ clocks and the ‘B’ clocks. For simple system configurations, an
application can restrict itself to just using the ‘A’ clocks. If a system has a requirement to
handle, with minimum disruption, situations when the card acting as primary clock master
fails - possibly due to hardware failure - then both sets (‘A’ and ‘B’) clocks must be
configured using switch driver API calls. In this case, the two sets of clocks are symmetric
with one set being driven by a primary clock master and the other set by another card
acting as secondary clock master.

Normally secondary clock timing will be locked to the primary master clocks. However, if
the primary clock master card fails, then the secondary clock master card will change over
its reference source to one of its network ports (or to CT_NETREF). All the H.100 slave cards

will change over from slaving off the primary master clocks to slaving off the secondary
master clocks. When such a change over occurs, the secondary clock master is promoted

MAN1210 Revision 6.8.7 PUBLIC Page 56

to become the new primary clock master. Use of a completely different set of clock signals
during and after change over averts any danger of clock contention between the original
failed primary clock master and the newly promoted primary clock master. The clock
changeover on slave cards resulting from a primary master hardware failure is not required
to be a “Stratum 4 Enhanced” compatible changeover, and it may cause brief disruption to
the clocks on the slave cards.

On initial system configuration, the primary clock master would normally drive the H.100 ‘A’
clocks and the secondary clock master would normally drive the H.100 ‘B’ clocks (from
timing derived from ‘A’ clocks). If the primary clock master were then to fail, then the
secondary clock master would be promoted to become the new primary clock master.
(Thus the roles of the ‘A’ clocks and ‘B’ clocks would be reversed and if a new secondary
clock master were to be configured subsequently, it would be configured to drive the ‘A’
clocks.)

The following code fragment shows how a multi-card system may be set up with the first
card being configured to be primary clock master driving ‘A’ clocks. The second card is
configured to be secondary clock master driving ‘B’ clocks from timing it derives from ‘A’
clocks.

H100_CONFIG_BOARD_CLOCK_PARMS h100PriMasterClocks;

H100_CONFIG_BOARD_CLOCK_PARMS h100SecMasterClocks;

H100_CONFIG_BOARD_CLOCK_PARMS h100SlaveClocks;

h100PriMasterClocks.clock_source = H100_SOURCE_NETWORK;

h100PriMasterClocks.network = 1;

h100PriMasterClocks.h100_clock_mode = H100_MASTER_A;

h100PriMasterClocks.auto_fall_back = H100_FALLBACK_DISABLED;

sw_h100_config_board_clock(card_id_a, &h100PriMasterClocks);

h100SecMasterClocks.clock_source = H100_SOURCE_H100_A;

h100SecMasterClocks.h100_clock_mode = H100_MASTER_B;

h100SecMasterClocks.auto_fall_back = H100_FALLBACK_DISABLED;

sw_h100_config_board_clock(card_id_b, &h100SecMasterClocks);

It will take up to 1 second for secondary ‘B’ clocks to become phase aligned with the ‘A’
clocks following the call to sw_h100_config_board_clock() on card_id_b .

In the above example, the secondary clock master has not been configured to make an
automatic change over to another clock reference in the event of primary clock master
failure. Normally the secondary clock master would be required to make such an automatic
change over. The following code fragment shows how the secondary clock master could
be pre-configured to automatically changeover to become a primary clock master whose
reference source would be its first network port.

h100SecMasterClocks.clock_source = H100_SOURCE_H100_A;

h100SecMasterClocks.h100_clock_mode = H100_MASTER_B;

h100SecMasterClocks.auto_fall_back = (H100_FALLBACK_ENABLED +

 H100_CHANGEOVER_TO_NETWORK);

h100SecMasterClocks.network = 1;

sw_h100_config_board_clock(card_id_b, &h100SecMasterClocks);

The following code fragment shows how the secondary clock master could be pre-
configured to change over to become a primary clock master whose reference source
would be CT_NETREF (driven from another card):

MAN1210 Revision 6.8.7 PUBLIC Page 57

h100SecMasterClocks.clock_source = H100_SOURCE_H100_A;

h100SecMasterClocks.h100_clock_mode = H100_MASTER_B;

h100SecMasterClocks.auto_fall_back = (H100_FALLBACK_ENABLED +

 H100_CHANGEOVER_TO_NETREF);

h100SecMasterClocks.network = 1;

sw_h100_config_board_clock(card_id_b, &h100SecMasterClocks);

A third card, operating as an H.100 ‘A’ clocks slave, may be set up to automatically switch
over to the ‘B’ clocks following primary clock master card failure. The slave card clocking
would be configured as shown in the following code fragment:

h100SlaveClocks.clock_source = H100_SOURCE_H100_A;

h100SlaveClocks.h100_clock_mode = H100_SLAVE;

h100SlaveClocks.auto_fall_back = H100_FALLBACK_ENABLED;

sw_h100_config_board_clock(card_id_c, &h100SlaveClocks);

When a card is configured to operate in H100_SLAVE mode, the auto_fall_back parameter is

used to enable clock slave swap over from ‘A’ clocks to ‘B’ clocks (not used to control
fallback to CT_NETREF).

If, for some exceptional reason, no automatic slave clock change over is required, then the
auto_fall_back parameter should be set to H100_FALLBACK_DISABLED.

The status of the ‘A’ clocks and ‘B’ clocks, and the primary/secondary master status of a
card can be determined at any time using the switch driver API call
sw_h100_query_board_clock(). (If a secondary clock master has become promoted to a

primary clock master, then the returned clock_source parameter will reflect this by returning

a value that is not the original set of H.100 bus clocks specified, instead it will be set to
specify the alternate set).

As previously described, the secondary clock master is pre-configured with a reference
source to be used if it becomes promoted to primary clock master. If this reference source
is a trunk attached to a network port on the secondary master, then it is possible to also
pre-configure a fallback to CT_NETREF should that trunk fail after the card has been

promoted to primary master:

h100SecMasterClocks.clock_source = H100_SOURCE_H100_A;

h100SecMasterClocks.h100_clock_mode = H100_MASTER_B;

h100SecMasterClocks.auto_fall_back = (H100_FALLBACK_ENABLED +

 H100_CHANGEOVER_TO_NETWORK +

 H100_CHANGEOVER_TO_NETREF);

h100SecMasterClocks.network = 1;

sw_h100_config_board_clock(card_id_b, &h100SecMasterClocks);

Primary H.100 clock master changeover

Sometimes it may be necessary to changeover the role of H.100 bus primary clock master
from one card to another. Care must be taken during such a changeover so that:

• cards do not become de-synchronized from H.100 bus

• cards do not cause contention on the H.100 bus

• discontinuities of clocks on cards with DSP devices do not occur.
Discontinuities can cause DSPs to lose synchronization with the card.

Such a changeover can be achieved by the use of primary and secondary clocks and
appropriate programming of secondary master clock fallback. The example below
assumes that the primary master is driving the ‘A’ clocks:

MAN1210 Revision 6.8.7 PUBLIC Page 58

• set up the card that is to become the new clock master (it needs a network
port) as secondary clock master (driving ‘B’ clocks), slaving from primary
clocks (‘A’ clocks) with fallback to network port enabled

• wait 1 second for secondary clocks to become phase aligned with primary
clocks

• for all other slave cards in system, change clock reference from primary clocks
to secondary clocks

• change primary master card to become ‘B’ clocks slave, the secondary master
will at this point automatically fallback, changing its clock source to the pre-
configured network port (because ‘A’ clocks will have disappeared) and
become the new H.100 bus primary master (driving ‘B’ clocks)

In the above example, if secondary master fallback had not been used to change over to
the new primary clock reference, and the secondary reference clock source had been
changed by a direct call to sw_h100_config_board_clock(), then for a short period of time

the original clock master would not be synchronized with other cards on H.100 bus. This
would not cause a problem provided that there were no switch connections to or from the
H.100 bus on the original clock master during the changeover. However, if there were such
connections, then the card’s desynchronized state might cause H.100 bus contention to
occur until its clock reference was changed to ‘B’ clocks slave.

5.2 Controlling clocking set up during system initialisation
The configuration of a card to act as bus clock master and of other cards to operate as
clock slaves can occur during any of the following:

• system boot up time through the automatic configuration mechanism

• use of the Aculab Configuration Tool

• application run time through explicit switch API calls
(sw_h100_config_board_clock(), sw_clock_control())

Once a card has been configured as a bus clock master or bus clock slave it will remain
configured in the same way until a switch API call is made to change clock configuration.

5.2.1 Editing files used by the automatic configuration mechanism

The clocking settings for cards in the system are automatically applied at start up by a tool
called config. This tool uses configuration files to determine the appropriate setting for

each card in the system. These configuration files can be automatically generated using
the Aculab Configuration Tool. It is also possible to edit these files manually.

Configuration files are found in a directory called ACULAB_ROOT\Cfg. Each configuration

filename incorporates the serial number of its associated card. Hence, a card with a serial
number of 123456 will be configured using a file called 123456.cfg.

The section in the configuration file that controls the clocking configuration starts with the
line "[Switch]" and ends with the line "[EndSwitch]". For example, the section may look

like this:

[Switch]

CtBusTermination=TRUE

CtBus=SWMODE_CTBUS_H100

Source=H100_SOURCE_INTERNAL

Network=0

H100Mode=H100_MASTER_A

AutoFallBack=H100_FALLBACK_DISABLED

NetRefClockSpeed=H100_NETREF_8KHZ

[EndSwitch]

MAN1210 Revision 6.8.7 PUBLIC Page 59

Each line in the section consists of a case sensitive field name followed by an equals sign
and then the value assigned to that field.

H.100 configuration

Source - controls the source of the card's clock. This can be one of the following:

H100_SOURCE_INTERNAL - generate a clock on board and provide it to the CT bus

H100_SOURCE_NETWORK - use the port specified in the network field as the clock reference

H100_SOURCE_H100_A - take the clock from the H.100 clock master A

H100_SOURCE_H100_B - take the clock from the H.100 clock master B

Network - controls the network port that is used as a clock reference if Source is set to

H100_SOURCE_NETWORK. The network port index is the physical index of the port on the card.

Remember that for the Switch API, ports are numbered from 1.

H100Mode - controls whether the card is an H.100 master or an H.100 clock slave. The

possible values for this field are:

H100_SLAVE - card will be a slave on the H.100 bus (Source must be one of

H100_SOURCE_H100_A or H100_SOURCE_H100_B)

H100_MASTER_A - card will drive the ‘A’ clocks on the H.100 bus (Source must be one of

H100_SOURCE_INTERNAL, H100_SOURCE_NETWORK, or H100_SOURCE_H100_B).

H100_MASTER_B - card will drive the ‘B’ clocks on the H.100 bus (Source must be one of

H100_SOURCE_INTERNAL , H100_SOURCE_NETWORK, or H100_SOURCE_H100_A).

AutoFallBack - This field determines the card's behavior when an H.100 clock failure

occurs. The values in this field depend on the H100Mode field. Examples are:

H100_FALLBACK_DISABLED

H100_FALLBACK_ENABLED

H100_FALLBACK_ENABLED | H100_AUTO_RETURN

H100_FALLBACK_ENABLED | H100_CHANGEOVER_TO_NETWORK

See the description of the auto_fall_back field in the documentation for the

sw_h100_config_board_clock() function for an explanation of how these fields apply.

NetRefClockSpeed - This field is used to tell the card the speed of the CT_NETREF fallback

clock. See the description of the netref_clock_speed field in the documentation for the

sw_h100_config_board_clock() function for further details.

CtBusTermination - This sets H.100 bus termination. Possible values are:

TRUE - the card should terminate the H.100 bus

FALSE - the card should not terminate the H.100 bus

After editing the configuration file, the new settings are applied by running the config tool:

config <card serial number>

MAN1210 Revision 6.8.7 PUBLIC Page 60

6 Troubleshooting
If you think your application has made all the correct switch connections to an expansion
bus but for some reason you think no speech path has been established, verify the
following:

• the switch connections really have been made and still exist (use the
sw_query_output() call to verify each switch connection you think your

application has made is still there)

• the expansion bus clocking has been set up correctly (use the
sw_query_clock_control() call to verify each card’s clock set up, remember

firmware download or restart can sometimes effect clocking)

• the expansion bus clock master has not been abruptly changed from one card
to another (this may cause some resource and network cards to fail to switch
data properly)

• your application has not inadvertently caused bus contention to occur (two
cards outputting to the same expansion bus timeslot). When a connection up
to the expansion bus from a card is no longer needed, the application should
apply sw_set_output() with mode set to DISABLE_MODE to that expansion bus

timeslot

• the cable connecting cards to the expansion bus is not faulty and is not
excessively long or twisted.

• your application was compiled so that the size of the switch driver API
parameter structures were the same as that expected by the switch driver
library for your target operating system

You can check if the expansion bus is operating correctly by switching a constant pattern
onto an expansion bus timeslot using sw_set_output() in PATTERN_MODE and using

sw_sample_input() to read back the pattern from a different card.

If the quality of the signal on the speech path seems distorted, verify:

• appropriate firmware is being used for the Aculab card (clicking sounds on a
speech path may originate from clock slips, possibly a non-CRC variant of
signaling system firmware should be used instead of a CRC variant, or vice-
versa)

• the Aculab card is appropriately set up to be synchronized with the network
clock or, exceptionally, to provide timing information to the network

• the expansion bus clocking has been set up correctly

• your application has not inadvertently caused bus contention to occur (two
cards outputting to the same expansion bus timeslot). When a connection up
to the expansion bus from a card is no longer needed, the application should
invoke sw_set_output() with mode set to DISABLE_MODE for that expansion bus

timeslot

• the signal has the appropriate encoding for the network or speech processing

resource (A-law or -law)

• check expansion bus has been terminated appropriately

• if expansion bus is being used at or near its loading limit, locate the card that is
the bus clock master half way along the H.100 bus ribbon cable

You can check how expansion bus clocking has been set up using the switch driver API

MAN1210 Revision 6.8.7 PUBLIC Page 61

call sw_query_clock_control().

If an expansion bus timeslot is not driven by any card, do not assume the sampled values
will be equivalent to a silent (DC) signal whose eight bit samples are 0xff. In fact, such a
non-driven expansion bus timeslot may pickup a signal from an adjacent timeslot. The
same may be true for local resource and network port timeslots, which are not driven
(outputs set to DISABLE_MODE). See section 4.1 for more details.

The switch driver reports an error ERR_SW_NO_RESOURCES when your application tries to make

a connection to/from an expansion bus timeslot. Check your application has disabled each
previous expansion bus connection after it was no longer required using a call to

sw_set_output() with mode set to DISABLE_MODE. There are limits to the number of

connections that can be made up to and down from the expansion bus for certain types of
card.

In a multi-tasking operating system you can run, concurrently with your application, a
diagnostic application that makes calls to sw_track_api_calls() to observe switch driver

calls made by your application.

The swcmd utility described in Appendix D may be used as a troubleshooting tool.

MAN1210 Revision 6.8.7 PUBLIC Page 62

Appendix A: Aculab card stream numbering and clock settings
The different cards use the same basic stream numbers and clock settings.

There are minor differences due to differences between the cards.

Note that in switch API calls, network port numbering starts from 1.

A.1 Prosody X PCIe rev 3 card stream usage

Stream names Available
channels

Stream
numbers

Notes

H.100 bus streams D0-D31 0-127 0-31 1

Network Ports 1-8 bearer channels E1: 1-31
T1: 0-23

32-39 2,3

SS7 signalling 0-31 48-55 4

CAS in-band (tone) signalling 0-31 56-63 4

TiNG1 0-1 0-127 64-65 5

TiNG2 0-1 0-127 66-67 5

TiNG3 0-1 0-127 68-69 5

TiNG4 0-1 0-127 70-71 5

1. Prosody X PCIe rev 3 cards can only be interconnected via an H.100 bus.

2. E1 timeslot 16 and T1 timeslot 23 may be used for protocol signalling.

3. The actual number of network ports available depends on the card variant.

4. The streams and channels used for a particular network port are allocated by the
protocol software.

5. The actual number of TiNG DSPs available depends on the card variant.

A.2 Prosody X PCIe rev 3 card clock settings
Prosody X PCIe rev 3 cards can only be configured to operate the CTBus in H.100 mode.

Prosody X PCIe rev 3 cards support all of the H.100 clocking modes.

The card will act as H.100 bus ‘A’ clocks master in all of these clock modes except
CLOCK_REF_H100, where the card is configured as an H.100 bus clock slave.

MAN1210 Revision 6.8.7 PUBLIC Page 63

A.3 Prosody X 1U Enterprise stream usage
The following streams are available on the Prosody X 1U:

Stream names Available
channels

Stream
numbers

Notes

Network Ports 1-4 bearer
channels

E1: 1-31
T1: 0-23

32-35 1

Signalling DSP0 A1-A4 0-31 48-51 2

TiNG1 0 0-127 64 3

TiNG2 0 0-127 66 3

1. E1 timeslot 16 and T1 timeslot 23 may be used for protocol signalling

2. These streams are used for CAS tone dialling and SS7 signalling links.
CAS and SS7 cannot be used at the same time on a single system.

3. Unlike Prosody X PCIe rev 3 cards, each TiNG DSP only has a single stream of 128
timeslots

A.4 Prosody X 1U Enterprise clock settings
The Prosody X 1U Enterprise system does not have an H.100 bus. The only valid clock
sources are the E1/T1 network ports and the local clock oscillator.

Clock fallback to a second local network port is supported by a virtual H.100 ‘sec8k’ signal.

MAN1210 Revision 6.8.7 PUBLIC Page 64

A.5 Prosody X Evo stream usage

Stream names
Available
channels

Stream numbers Notes

H.100 bus streams D0-D31 0-127 0-21, 22-31 1

Network Ports 1-16 bearer
channels

E1: 1-31
T1: 0-23

32-39, 40-47 2,3,4

SS7 signalling 0-31 48-51, 52-55 2,5

CAS in band (tone) signalling 0-31 56-63, 72-79 2,6

TiNG 0-127 256-257, 258-259 2,7

TiNG (compatibility) 0-127 64-65, 66-67 2,8

1. The H.100 bus in Prosody X Evo systems is internal to the chassis and cannot connect
to other cards.
To aid application portability it can be used for local connections.
Streams 22 to 31 are not available for application use on 16 port systems.

2. The second group of streams is only available on 16 port systems.

3. E1 timeslot 16 and T1 timeslot 23 may be used for protocol signalling.

4. Four port systems only support streams 32 to 35.

5. The channel/timeslot numbers are allocated by the SS7 software.

6. Streams 56-63 are used for network ports 1-8 and 72-79 for network ports 9-16.

7. This is reported as if it were a single DSP with 4 streams.

8. Streams 64-67 can be used in sw_set_output() calls to aid porting applications that

use Prosody X PCIe rev 3 cards. Calls to sw_query_output() will return the

corresponding stream number 256-259.

A.6 Prosody X Evo clock settings
Although the 16 port Prosody X Evo has two 8 port Prosody T cards connected by an
H.100 bus the H.100 bus is handled internally so the only valid clock sources are any of the
16 E1/T1 network ports and the local oscillator.

Clock fallback to a second local network port is supported by the internal H.100 ‘sec8k’
signal.

Internally the H.100 A clock will be driven by whichever Prosody T card contains the
network clock source and the other Prosody T card will use the H.100 A clock as its source.

The system will always report itself as the H.100 A master.

MAN1210 Revision 6.8.7 PUBLIC Page 65

Appendix B: Sampling bearer channels
A bearer channel has a data rate of 64000 bits a second, which are divided up into 8000
samples of 8 bits (an octet) a second. The switch driver API gives an application the ability
to determine the instantaneous value of a single sample from a bearer channel. However,
it is not possible for an application to record or process all the samples on a bearer channel
using sw_sample_input(). If an application requires this kind of functionality, the bearer

channel should be switched through to some kind of recording resource (such as a Prosody
module).

On Prosody X Evo systems it is also possible to use swcmd to sample the transmit data

without having to locate the actual data source.

MAN1210 Revision 6.8.7 PUBLIC Page 66

Appendix C: API error codes
As defined in sw_lib.h

Error Value Meaning
SUCCESS 0 Command executed successfully

ERR_SW_INVALID_COMMAND -200 Command code is not supported

ERR_SW_DEVICE_ERROR -202 No switch drivers installed, switch driver
initialisation failed or device I/O error

occurred

ERR_SW_NO_RESOURCES -204 Not enough switching paths left

ERR_SW_INVALID_SWITCH -209 Switch driver selector out of range

ERR_SW_INVALID_STREAM -210 Stream number in parameter list is out of
range

ERR_SW_INVALID_TIMESLOT -211 Timeslot in parameter list is out of range

ERR_SW_INVALID_CLOCK_PARM -213 Invalid clock configuration parameter

ERR_SW_INVALID_MODE -216 Incorrect command mode

ERR_SW_INVALID_MINOR_SWITCH -217 Minor internal switch error

ERR_SW_INVALID_PARAMETER -218 General invalid parameter error

ERR_SW_NO_PATH -220 Refer to notes in description of
sw_set_output() API call

ERR_SW_PATH_BLOCKED -226 Switch connection cannot be made

ERR_SW_OS_INTERRUPTED -227 Event wait interrupted

ERR_SW_OS_INTERRUPTED -227 Event wait interrupted

ERR_SW_PORT_NOT_LOADED -229 Firmware is not running on network port

ERR_SW_PORT_RATE_MISMATCH -230 NETREF rate does not match line rate

ERR_SW_PMX_FPGA -231 Request not supported by PMX FPGA

ERR_SW_COMPONENT_MISMATCH -232 Prosody X software component versions
do not match (PXSCS and t8110.ko)

ERR_SW_NO_SUCH_DSP -233 No DSP is fitted in requested position

ERR_SW_NO_SUCH_DSP_PORT -234 Requested DSP serial port does not exist

ERR_SW_PXSCS_TIMED_OUT -235 API call has timed out

ERR_SW_PXSCS_UNKNOWN_API_CALL -236 New PX_Sw_Driver package may be
required

ERR_SW_T8110_UNKNOWN_IOCTL -237 New Prosody_IP_Firmware may need to
be flashed

ERR_SW_PXSCS_COMMS_FAILED -238 Problem communicating with pxscs on
Prosody X card

ERR_SW_API_CALL_ABORTED -239 An application has called
sw_abort_api_calls()

MAN1210 Revision 6.8.7 PUBLIC Page 67

Error Value Meaning
ERR_SW_SIZE_PARAMETER -240 size field in struct used in API call is less

than the size expected by the switch

library

MAN1210 Revision 6.8.7 PUBLIC Page 68

Appendix D: Using swcmd

Introduction

swcmd is a command line utility/diagnostic tool which may be used to exercise the

functionality of the Aculab switch driver API for Aculab cards, allowing display and
alteration of card clocking and switching modes, and diagnosis of switch path integrity
problems.

swcmd may be run concurrently with an application. It can be used to verify which switch

connections are made; to determine the current clocking mode of each card, and even to
output a log of switch API calls made by the application.

Command line syntax

The swcmd command line must specify one or more flags, each flag followed by a space-

separated list of parameters. Multiple actions can be requested in a single invocation, for
example:

swcmd -v –t 12345 2 –t 67890 1

Which equates to:

swcmd <verbose> <flag> <serial no> <clkmode> <flag> <serial no> <clkmode>

Numeric values may be specified as decimal (default) or as C style hex values (e.g. 0x72).

The following parameter types occur in many parameter lists:

<serial no> - card serial number (e.g. 12345)

<ost> - output stream specifier

<ots> - output timeslot specifier

<ist> - input stream specifier

<its> - input timeslot specifier

The following flags are supported:

Global flags: these can be anywhere on the command line, but only the last value is used.

<Flag> Parameters Use
-? none Output swcmd command line syntax.

All other flags are ignored.

-v none Run swcmd tool in verbose output mode. Print out driver

version and card information. Invokes sw_ver_switch()

and sw_card_info()

-vv none As -v but don’t print the driver and card information

-n <repeat-

count>
Iterate each swcmd command typically incrementing the

timeslot – see below for further information.

-l <ms_delay> Loop forever invoking the switch driver calls specified
by the other swcmd flags.

Unlike other commands there must not be a space
between -l and the <ms_delay> parameter.

Clock mode flags:

<Flag> Parameters Use
-t <serial no>

<clkmode>
Set card clock circuit reference and/or expansion bus
clock mastering/slaving mode using <clkmode> for card

<serial no>. Invokes sw_clock_control().

MAN1210 Revision 6.8.7 PUBLIC Page 69

<Flag> Parameters Use
-ti none Set clock mode interactively

-e none Display system clocking for all cards.

-h <serial no>

<src> <net>

<mode> <afb>

<ncs>

Configure H.100 clocks. Invokes
sw_h100_config_board_clock() for card <serial no>

-hi none Configure H.100 clocks interactively

-i <serial no> Query H.100 clocks. Invokes
sw_h100_query_board_clock() for card <serial no>

-j <serial no>

<net> <mode>

<ncs>

Configure CT_NETREF. Invokes

sw_h100_config_netref_clock() for card <serial no>

-ji none Configure CT_NETREF interactively

-u <serial no> Query H.100 CT_NETREF. Invokes

sw_h100_query_netref_clock() for card <serial no>

-s <serial no>

<mode>
Turns the bus termination off (mode=0) or on (mode=1).

TDM switch matrix flags:

<Flag> Parameters Use
-r <serial no> Invokes sw_reset_switch()for card <serial no>.

Equivalent to disabling the output for all streams and
timeslots.
Some switch connections setup by the system (eg for
SS7 signalling links) are not removed.

-c <serial no>

<ost> <ots>

<ist> <its>

Make switch connection on card <serial no> switching

data from <ist,its> to <ost,ots>

-d <serial no>

<ost> <ots>
Disable switch output <ost,ots> on card <serial no>.

H.100 timeslots are tri-stated, all others output constant
0xff.

-o <serial no>

<ost> <ots>

<pat>

Output constant pattern <pat> on card <serial no> on
<ost,ots>

-q <serial no>

<ost> <ots>
Determine source of data being switched to <ost,ots>

by card <serial no>. Invokes sw_query_output().

-a <serial no>

<ist> <its>
Obtain 8-bit sample of data currently being received by
card <serial no> on <ist,its>. Invokes

sw_sample_input().

-w <predicted

sample>
Use with -a and –l, swcmd will loop, sampling data until

a value not equal to <predicted sample> is obtained.

-y <serial no> Report the number of H-bus timeslots driven by card.

-f <serial no>

<stream>

<rx_mode>

<tx_mode>

Sets the companding mode on a network port stream.

MAN1210 Revision 6.8.7 PUBLIC Page 70

<Flag> Parameters Use
-ft <serial no>

<stream>

<timeslot>

<rx_mode>

<tx_mode>

Sets the companding mode on a network port timeslot.

-g <serial no>

<stream>
Determines which companding mode has been set on a
network port stream

-gt <serial no>

<stream>

<timeslot>

Determines which companding mode has been set on a
network port timeslot

Additional flags for Prosody X Evo systems:

<Flag> Parameters Use
-at <serial no>

<ist> <its>
Obtain 8-bit sample of data currently being transmitted
by card <serial no> on <ist,its>.

-ob <serial no>

<tone>

<freq>

<ampl>

Set base tone number <tone> (64 to 127) to <freq>Hz

and amplitude <ampl>/-10 dbm.

Base tones 0 to 63 are fixed.

-qb <serial no>

<tone>
Query base tone number <tone> (0 to 127).

-oa <serial no>

<ost> <ots>

<tone_1>

<tone_2>

Output the sum of base tones <tone_1> and <tone_2>

as an A-law sample (for E1) on <ost,ots>

-ou <serial no>

<ost> <ots>

<tone_1>

<tone_2>

Output the sum of base tones <tone_1> and <tone_2>

as a u-law sample (for T1) on <ost,ots>

-qt <serial no>

<port>

<timeslot>

Report the tones detected by the hardware FFT block
for the specified <port> and <timeslot>.

The required switch connections are made during
firmware download.

-ol <serial no>

<port>

<type>

<opts>

<duration>

Apply a layer 1 loopback.

Miscellaneous flags:

<Flag> Parameters Use
-k none Monitor switch driver API calls being made by an

application to standard output, repeatedly invokes
sw_track_api_calls().

-2 none Turn switch driver API call tracking on.

-0 none Turn switch driver API call tracking off.

-b <serial no>

<type>

<position>

<port>

Invokes sw_get_dsp_stream_info()

Iterating commands

MAN1210 Revision 6.8.7 PUBLIC Page 71

As a convenience some swcmd commands can be iterated by invoking swcmd with the flag to

invoke the required command and the “-n count” flag to iterate it a given number of times.

At least one of the fields (typically timeslot numbers and pattern values) has the iteration
number added before the command is executed.

For example the command:

swcmd -c 12345 16 1 0 0

makes a single connection from stream 0 timeslot 0 to stream 16 timeslot 1, whereas the
command:

swcmd -c 12345 16 1 0 0 -n 15

would make 15 connections as follows:

stream 0 timeslot 0 connected to stream 16 timeslot 1
stream 0 timeslot 1 connected to stream 16 timeslot 2
...
stream 0 timeslot 14 connected to stream 16 timeslot 15

If multiple iterable commands are specified, they are all executed in order before the
iteration number is incremented.

Non-iterable commands are only ever executed once (regardless of any -n flag) and are

execute before iterable commands.

The commands invoked by the following flags are iterable:

‘c’, ‘o’, ‘q’, ‘d’, ‘a’, ‘f’, ‘g’

If a query command is being iterated then specifying -vv can help identify the timeslot (etc)

being displayed on each output line.

Examples of use

• Identifying driver versions and card serial numbers

swcmd may be used to display version numbers of all switch drivers installed in the system,

identify the type of cards they are associated with and display their serial numbers.

swcmd –v

• Changing card clock mode

swcmd may be used to change a Prosody X card’s clock reference:

swcmd –t <serial no> <clkmode>

See Appendix A for valid <clkmode> parameters for the various card types.

• Verifying expansion bus operation

A good way to see if a bus is being clocked correctly and to verify H-bus cable integrity is to
output a pattern from one card onto the bus, then sample it on a second card.

For example, the first command below will cause card 12345 to output a pattern 0x42 on H-

bus stream 0 timeslot 0. The second command will cause card 67890 to sample the pattern

on H-bus stream 0 timeslot 0.

swcmd –o 12345 0 0 0x42

swcmd –a 67890 0 0

would output:

sampled 0x42

To check every sample on a given timeslot is the expected value, swcmd can be invoked in

loop mode with a predicted sample value:

MAN1210 Revision 6.8.7 PUBLIC Page 72

swcmd -a 12345 16 1 -w 0x54 -l

In the above example swcmd will continue to execute (with no output) until a non-0x54

sample is obtained on stream 16 timeslot 1, or swcmd is aborted.

• Looping back a network port timeslot

To loopback timeslot 1 on network port 1 of an E1 card, so data received from the network
on that B channel is sent straight back again, use swcmd as follows:

swcmd –c 12345 32 1 32 1

See Appendix A for stream/timeslot numbering used for the various card types.

• Tracking application switch driver API calls

Invoke swcmd as follows (under Linux use ‘&’ to run swcmd as background task; under

Windows run in separate command window):

swcmd –k –2

Trace will appear on stdout as an application makes API calls similar to the following:

[18:05:35]00003685: 0 <- sw_clock_control(67890,CLOCK_REF_H100)

[18:05:35]00003695: 0 <- sw_set_output(12345,{ost=32,ots=0,

mode=PATTERN_MODE,pattern=0x54})

Alternatively, the Aculab trace_mode tool may be used to generate a log of switch API calls.

MAN1210 Revision 6.8.7 PUBLIC Page 73

