

MAN1205 Revision 6.16.1 PUBLIC Page 1

Aculab SS7

SCCP API guide

MAN1205 Revision 6.16.1

MAN1205 Revision 6.16.1 PUBLIC Page 2

PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab Plc and may be the
subject of patents pending or granted, and must not be copied or disclosed without prior
written permission. It should not be used for commercial purposes without prior agreement in
writing.

All trademarks recognised and acknowledged.

Aculab Plc endeavours to ensure that the information in this document is correct and fairly
stated but does not accept liability for any error or omission.

The development of Aculab products and services is continuous and published information
may not be up to date. It is important to check the current position with Aculab Plc.

Copyright © Aculab plc. 2008-2023: All Rights Reserved.

Document Revision

Rev Date By Detail

6.10.1 15.09.08 DSL Draft issue

6.10.3 30.10.08 DSL First full release

6.11.0 14.09.10 DSL Additional configuration parameters and support functions

6.12.2 28.06.13 DSL Remove references to Solaris. Support IPv6 connections
to the ss7 driver.

6.13.0 27.10.14 DSL Minor corrections.

6.14.9 15.09.16 DSL Minor corrections.

6.15.1 31.08.18 DSL Minor corrections

6.16.0 05.05.22 DSL Update page footers.

6.16.1 13.02.23 DSL Update title page

MAN1205 Revision 6.16.1 PUBLIC Page 3

CONTENTS

1 Introduction .. 5
1.1 Structure of SCCP .. 5
1.2 SCCP with dual resilient MTP3 ... 5
1.3 SCCP library data structures .. 6
1.4 Functional Overview ... 6
1.5 Relationship between SCCP and TCAP ... 6

2 API Functions .. 7
2.1 SCCP API functions ... 7

2.1.1 Abbreviations and nomenclature ... 7
2.1.2 SCCP Header files .. 7

2.1.2.1 sccp_api.h ... 7
2.1.2.2 sccp_synch.h ... 7

2.1.3 Configurable parameters ... 8
2.1.3.1 Configuration file format ... 10

2.1.4 Tracing ... 11
2.1.4.1 acu_sccp_trace/trace_v/trace_buf.. 11
2.1.4.2 acu_sccp_trace_error .. 12
2.1.4.3 acu_sccp_strerror .. 12

2.1.5 SCCP access functions ... 13
2.1.5.1 acu_sccp_ssap_create .. 13
2.1.5.2 acu_sccp_ssap_delete .. 13
2.1.5.3 acu_sccp_ssap_connect_driver ... 13
2.1.5.4 acu_sccp_ssap_set_cfg_int/str .. 14
2.1.5.5 acu_sccp_ssap_get_locaddr/remaddr .. 14

2.1.6 Connection structure functions .. 15
2.1.6.1 acu_sccp_con_create .. 15
2.1.6.2 acu_sccp_con_delete .. 15
2.1.6.3 acu_sccp_ssap_get_unitdata_con ... 15
2.1.6.4 acu_sccp_con_set_userptr .. 16
2.1.6.5 acu_sccp_con_get_userptr .. 16
2.1.6.6 acu_sccp_con_get_ids .. 16
2.1.6.7 acu_sccp_con_set_cfg_int/str .. 17
2.1.6.8 acu_sccp_con_get_locaddr/remaddr ... 17

2.1.7 Message sending functions ... 18
2.1.7.1 acu_sccp_connect_request ... 18
2.1.7.2 acu_sccp_connect_confirm.. 18
2.1.7.3 acu_sccp_connect_refused ... 18
2.1.7.4 acu_sccp_disconnect .. 19
2.1.7.5 acu_sccp_data_request ... 19
2.1.7.6 acu_sccp_unitdata_request ... 19

2.1.8 Message receiving functions ... 20
2.1.8.1 acu_sccp_ssap_msg_get .. 20
2.1.8.2 acu_sccp_con_msg_get .. 21
2.1.8.3 acu_sccp_event_msg_get ... 22
2.1.8.4 acu_sccp_msg_free... 22
2.1.8.5 acu_sccp_msg_copy_rx_buffer.. 22
2.1.8.6 acu_sccp_con_unblock.. 23
2.1.8.7 acu_sccp_con_block ... 23
2.1.8.8 acu_sccp_ssap_wakeup_msg_get... 23
2.1.8.9 acu_sccp_can_wakeup_msg_get .. 23

2.1.9 Timer functions ... 24
2.1.9.1 acu_sccp_con_timer_start ... 24
2.1.9.2 acu_sccp_con_timer_restart .. 24
2.1.9.3 acu_sccp_con_timer_cancel .. 24

2.1.10 TCP/IP connection status functions ... 25
2.1.10.1 acu_sccp_get_con_state ... 25

2.1.11 acu_sccp_msg_get_con_state .. 26
2.1.12 Remote SP and SSN status functions ... 27

MAN1205 Revision 6.16.1 PUBLIC Page 4

2.1.12.1 acu_sccp_get_sccp_status .. 27
2.1.12.2 acu_sccp_msg_get_sccp_status ... 28
2.1.12.3 acu_sccp_enable_user_status... 28
2.1.12.4 acu_sccp_enable_sp_status .. 28

2.1.13 SCCP message events ... 29
2.1.13.1 acu_sccp_event_create ... 29
2.1.13.2 acu_sccp_event_delete ... 29
2.1.13.3 acu_sccp_event_wait .. 29
2.1.13.4 acu_sccp_event_get_os_event .. 30
2.1.13.5 acu_sccp_event_clear ... 30
2.1.13.6 acu_sccp_event_ssap_attach .. 30
2.1.13.7 acu_sccp_event_ssap_detach ... 30
2.1.13.8 acu_sccp_event_ssap_detach_all ... 31
2.1.13.9 acu_sccp_event_con_attach ... 31
2.1.13.10 acu_sccp_event_con_detach .. 31
2.1.13.11 acu_sccp_event_con_detach_all ... 31

2.2 Thread support functions .. 32
2.2.1 Mutex functions .. 32

2.2.1.1 acu_sccp_mutex_create .. 32
2.2.1.2 acu_sccp_mutex_delete .. 32
2.2.1.3 acu_sccp_mutex_lock ... 32
2.2.1.4 acu_sccp_mutex_trylock ... 33
2.2.1.5 acu_sccp_mutex_unlock ... 33

2.2.2 Condition variable functions .. 34
2.2.2.1 acu_sccp_condvar_create ... 34
2.2.2.2 acu_sccp_condvar_delete ... 34
2.2.2.3 acu_sccp_condvar_wait .. 34
2.2.2.4 acu_sccp_condvar_wait_tmo ... 34
2.2.2.5 acu_sccp_condvar_broadcast ... 35

2.2.3 Thread functions ... 36
2.2.3.1 acu_sccp_thread_create ... 36
2.2.3.2 acu_sccp_thread_exit .. 36
2.2.3.3 acu_sccp_thread_join .. 36
2.2.3.4 acu_sccp_thread_id .. 36

Appendix A: Building SCCP applications .. 37
A.1 Linux .. 37
A.2 Windows .. 37

Appendix B: sccp_api.h... 38
B.1 Error Codes ... 38
B.2 SCCP addresses ... 39

Appendix C: System limits ... 40

MAN1205 Revision 6.16.1 PUBLIC Page 5

1 Introduction
This document describes the SCCP API.

1.1 Structure of SCCP
The Aculab SCCP is split between the interface library and the ss7 driver. The library is
responsible for most of the connection-oriented procedures, with the driver controlling
message routing and the actual format of the SCCP messages. The SCCP library
communicates with the driver using a proprietary protocol over TCP/IP connecting to the same
driver interface code as the TCAP library.

The product supports:
- SCCP classes 0, 1 and 2
- Multiple SCCP and TCAP applications using different SSNs.
- An SCCP application connecting to multiple SCCP endpoints (e.g.: several SSNs or

multiple MTP3 local pointcodes).
- SCCP applications in a dual-MTP3 environment
- Multiple copies of the same SCCP application running on multiple chassis.
- Multiple SCCP applications running in a single chassis.
- ITU, ANSI and CHINA SCCP.
- SCCP over MTP2 and MTP3 or M3UA.

The SCCP library is based on the distributed TCAP library and shares common source files.
However all symbols in the two libraries differ so an application can use both libraries without
any conflicts.

1.2 SCCP with dual resilient MTP3
The diagram below shows the components of a dual resilient MTP3 system.

The SCCP interface, SCCP and MTP3 code all reside in the kernel. The application is shown
running in a different system, but can run in the same system as SCCP and MTP3 by

SCCP(a)
Interface

Ethernet LAN

SCCP(a)

MTP(a)

SCCP(b)

MTP(b)

 SS7 Signalling Linkset
 to STP

Application

SCCP(2)
Library

SCCP(3)
Library

Application Application

SCCP(1)
Library

SCCP(b)
Interface

MAN1205 Revision 6.16.1 PUBLIC Page 6

connecting to ‘localhost’.

SCCP must pass inward messages to the correct application. This is done by allocating
different ranges of SCCP connection identifiers to each application. Inward connections and
Unitdata messages are given to each application in a round-robin fashion.

1.3 SCCP library data structures
The SCCP library defines the following major data structures:
- The ssap structure (SCCP service access point). One of these must be created for each

SSN. The TCP/IP connection to SCCP is controlled from this structure. Everything refers
(directly or indirectly) to an ssap structure. An application would normally only create a
single ssap structure.

- The connection structure. This holds all the information for an SCCP message exchange
with the SCCP peer. Multiple connection structures can be created on each ssap.

- The msg structure. This is used for passing SCCP messages between the application and
the library.

- The sccp_addr structure. This is used to hold address information.

All the fields of the ssap and connection structures are private to the library.

1.4 Functional Overview
AN SCCP application should perform the following steps:

- Create a ssap structure and initialise the configurable fields (from a configuration file or
using the API calls).

- Connect to the SCCP systems.
If the application is going to initiate an SCCP connection:

- Create a connection structure.
- Set the required destination address.

If the application is a server, wait for the first message; the library will allocate a connection
area.

- Call the appropriate function to send a connect request/confirm/refused, data or
disconnect message.

- Wait for a response on either the ssap queue, or connection queue (the response is
added to both).

- When all messages have been sent/received, delete the connection.

Connectionless (class 0 and 1) messages can be sent from any idle connection data area,
inbound messages are queued on a single connection which will be created if needed

An application can create any (reasonable) number of connections.

1.5 Relationship between SCCP and TCAP
The Aculab SCCP and TCAP APIs use the same method to communicate with the SCCP
driver code, and the two libraries share many source files. There are, however, no run-time
dependencies between the libraries and applications can safely link to both libraries.

The driver tracing for SCCP API requests may imply that the requests are being processed as
TCAP. This is just the way the driver components are named.

SCCP connection local references are 24bit values. The Aculab SCCP API splits this using
the upper 12 bits to select the application and the lower 12 to select the connection within the
application. Since TCAP transaction identifiers are 32 bits (and split 12/20) some trace entries
from common code will show an SCCP local reference as xxx00yyy the inserted zeros are

deleted before the data is placed in any SCCP message.

MAN1205 Revision 6.16.1 PUBLIC Page 7

2 API Functions

2.1 SCCP API functions

2.1.1 Abbreviations and nomenclature

The following are used:
condvar condition variable

pdu protocol data unit

ssap SCCP service access point
connection a set of messages using the same connection-id
con connection, usually the library data structure

The word ‘connection’ is overused. In most places it refers to the library data structure that
contains the information about an SCCP signalling connection. In some places it will refer to
the TCP/IP connection from the application to the SCCP driver code, and in others to the
SCCP signalling relation itself.

2.1.2 SCCP Header files

All the definitions start acu_sccp_ or ACU_SCCP_ (or similar) in order to avoid polluting other

namespaces.

The definitions are all in C, but can be used from C++ applications.

Note A significant amount of pre-processor ‘magic’ is used to avoid replicating information.

2.1.2.1 sccp_api.h

This header file contains all the definitions for the SCCP API.

The majority of the structures are described with the function that uses them. Additional
information is in Appendix B:

2.1.2.2 sccp_synch.h

This header file contains the definitions for the synchronisation functions.

MAN1205 Revision 6.16.1 PUBLIC Page 8

2.1.3 Configurable parameters

SCCP’s configurable values can either be read from a configuration file when an ssap is
created, or set directly on the ssap or connection by function call.

Whenever a connection is created, it gets a copy of its configuration information from its ssap.

Once the SCCP application has connected to the SS7 driver, parameters can also be
changed using ss7maint. This is particularly useful for changing the trace parameters.

Configurable parameters can be placed into three groups

ssap parameters: these control tracing and the connection to the SS7 driver:

Name Type Default Description

LOGFILE string Name of logfile to open.

LOGFILE_MAX_SIZE integer 1000000 Size (bytes) before logfile rotated.

LOGFILE_APPEND boolean no Append to existing logfile.

LOGFILE_OLD_KEPT integer 5 Number of old logfiles kept.

LOGFILE_FLOCK_INDEX boolean yes flock() logfile.index during log rotation.

TRACE_TAG string Name for trace entries.

TRACE_BUFFER_SIZE integer 32768 Size of cyclic trace buffer.

TRACE_MODE integer 0 Determines when trace buffer is written to file,
see section 2.1.4

CO_SERVER boolean no Process inward connections.

CL_SERVER boolean no Process inward connectionless.

SINGLE_THREADED boolean no Block on removing messages from ssap queue
is not applied.

NI integer from mtp3 Network Indicator.

TRACE_LEVEL_ALL integer 5 Set all trace levels.

TRACE_LEVEL_xxx integer 5 Set trace level for source ‘xxx’, see section

2.1.4.
TRACE_LEVEL(n) integer 5 Set trace level for source ‘n’.

HOST_A_NAME string 127.0.0.1 Name and IP addresses of host A (see below).

HOST_A_PORT integer 8256 TCP/IP port number.

HOST_A_PASSWORD string Password for host A.

HOST_B_NAME string Name and IP addresses of host B (see below).

HOST_B_PORT integer 8256 TCP/IP port number.

HOST_B_PASSWORD string Password for host B.

RX_BUFLEN integer 130172 Size (bytes) of TCP/IP receive buffer.

TX_QUEUE_LEN integer 16 Number of SCCP messages queued before
transmit flow control reported.

KEEPALIVE_TIMEOUT integer 10 Seconds between keepalives, set to zero to
disable keepalives.

CONNECT_TIMEOUT integer 10 Timeout for TCP/IP connection establishment.

TX_BYTE_WINDOW integer 2920 Number of data bytes sent to driver before an
ack is requested.

Enclose string parameter values that contain spaces (or other special characters) in double
quotes.

If the CO_SERVER and CL_SERVER options are changed after the connection to the driver is

made, then the driver is informed of the new value. This allows one node of a distributed
application to gracefully shutdown.
General connection parameters are settable on both ssap and connections; connections
inherit the values from the ssap:

The HOST_A_NAME and HOST_B_NAME fields consist of a hostname optionally followed a comma

separated list of numeric IP addresses (IPv4 or IPv6). If there are no numeric addresses
getaddrinfo() is called to resolve the hostname to a list of addresses, otherwise the

hostname is ignored unless it is a valid numeric IP address. The returned addresses are tried
in turn when connecting to the server.

MAN1205 Revision 6.16.1 PUBLIC Page 9

Name Type Default Description

QOS_RET_OPT boolean no SCCP ‘return on error’.

QOS_SEQ_CTRL boolean no SCCP ‘sequential delivery’, if enabled the ‘sls’ value
is taken from the low bits of the local connection id.

QOS_PRIORITY integer ~0u SCCP ‘message priority’. ~0u requests the default of

0 for ANSI and absent for ITU.

QOS_RESPONSE_PRI integer ~0u SCCP ‘message priority’ for response messages,
default (~0u) is 1 for ANSI and absent for ITU.

SCCP connection-oriented protocol timers. The ssap values will be overwritten with values
obtained from the SCCP driver (taken from the driver configuration file). Connections inherit
the values from the ssap, all timer values are in seconds:

Name Type Range Description

T_CONN_EST integer 60-120 Waiting for connect confirm.

T_IAS integer 300-600 Idle time before IT message send.

T_IAR integer 660-1320 Waiting to receive any message.

T_REL integer 10-20 Waiting for release complete.

T_REPEAT_REL integer 10-20 Retransmit RLSD after initial T_REL.

T_INT integer 60-120 Waiting for RLC after initial T_REL.

Note RLSD messages are retransmitted by the driver, so T_REPEAT_REL is unused

Address parameters, local and remote (replace LOCAL with REMOTE) are settable on ssaps and

connections; connections inherit the values from the ssap. See section B.2 for further details:

Name Type Description

LOCAL_FLAGS integer Address flags.

LOCAL_GTI integer Global Title Indicator.

LOCAL_SSN integer SSN.

LOCAL_PC integer SCCP address pointcode.

LOCAL_RL_PC integer MTP routing label pointcode.

LOCAL_TT integer Translation Type.

LOCAL_NP integer Numbering Plan.

LOCAL_ES integer Encoding Scheme.

LOCAL_NAI integer Nature of Address Indicator.

LOCAL_GT_DIGITS BCD Global Title digits.

The eight address fields (GTI, SSN, PC, RL_PC, TT, NP, ES and NAI) have a ‘data valid’ bit set

whenever they are set via the configuration interface. This bit can be cleared by setting the
parameter CLEAR_LOCAL_SSN (etc) to an empty string. This might be needed to stop SCCP

including the parameter (e.g. the local ssn) in a message.

When calling the functions to set configuration item, the names above must be preceded by
ACU_SCCP_CFG_ (e.g. ACU_SCCP_CFG_REMOTE_PC).

For ANSI/China networks the pointcodes can be specified in 8-8-8 format, although they are
currently always traced in decimal.

Note The configured values for the remote address are overwritten with the actual remote address when the
first backwards message arrives.

MAN1205 Revision 6.16.1 PUBLIC Page 10

2.1.3.1 Configuration file format

The SCCP configuration file has a similar format to that of the ss7 protocol stack. It should
contain a single block of configuration data bracketed between [SCCP] and [endSCCP].

Each line inside the configuration block has the format ‘parameter = value’, where

parameter is one of the configurable parameter names, and value is the required value.

Comments can be added to any line by preceding the comment with a ‘#’ character. Blank
lines are ignored. The lines before [SCCP] and after [endSCCP] are currently ignored, but this

isn’t guaranteed as additional sections may be added at some later release.

The parameter names can be specified in upper or lower case. For compatibility with other
parts of the Aculab SS7 protocol stack, the configuration file can contain localxxx and

remotexxx instead of local_xxx and remote_xxx.

For example:

[SCCP]

 trace_tag = program_name

 logfile_append = y

 logfile = sccp2020.log

 localpc = 2020

 localssn = 27

 remote_pc = 7070

 remote_ssn = 143

 co_server = y

 host_a_name = sccp_host_a

 host_a_password = sccp_password

 host_b_name = sccp_host_b

 host_b_password = sccp_password

[EndSCCP]

The SS7 stack configuration file on sccp_host_a (that for sccp_host_b is similar) needs to

contain the following:

[SP]

 LocalPC = 2020

 [SCCP]

 sccp_listen = y

 password = sccp_password

 master = y

 [EndSCCP]

 [MTP3]

 [DUAL]

 host = sccp_host_b

 ipaddresses = 192.168.1.2

 master = y

 listen = 0

 connect = 1

 password = dual_password

 [EndDUAL]

 [DESTINATION]

 RemotePC = 7070

 [EndDESTINATION]

 [EndMTP3]

[EndSP]

MAN1205 Revision 6.16.1 PUBLIC Page 11

2.1.4 Tracing

The SCCP library contains extensive tracing of the API calls and the interface to SCCP. Each
trace call specifies a trace source (0 to 63) and trace level (0 to 15). The level of trace output
can be set separately for each trace source from the application configuration file, from the
program by calling acu_sccp_ssap_set_cfg_int(), or from the command line by running

ss7maint sccpconfig.

Tracing starts when the LOGFILE parameter is set for the ssap.

By default the trace buffer is written to the logfile after each trace entry is complete. This can
be modified by setting TRACE_MODE. to ACU_SCCP_TRACE_MODE_BLOCK (1) or

ACU_SCCP_TRACE_MODE_CYCLIC (2). In block mode the buffer is written when full, in cyclic

mode the buffer just wraps (discarding trace entries). The buffer is always written when a
message with trace level 0 or 1 is written, or when the trace mode is set (even if the value
doesn’t change).

The logfile is always opened in ‘append’ mode (although it may be truncated). On Linux
systems this allows multiple programs and ssaps to log to a common file.

Note On Windows systems, using a common log file can lead to corrupted log entries.

If the size of the logfile exceeds the LOGFILE_MAX_SIZE bytes parameter, then a new logfile

logfile.1 (et seq) is opened. The number of old logfiles is restricted to LOGFILE_OLD_KEPT

(default is 5). The sequence number of the current logfile is kept in logfile.index

On Linix system the logfile rotation uses flock() (on the index file) to maintain consistency

between multiple applications. Some NFS file systems block the flock() call indefinitely, it

can be disabled by setting LOGFILE_FLOCK_INDEX to 0.

The logfile is formatted so that ‘ss7maint decode’ can be used to pretty-print the sccp

messages.

Functions are supplied so that the application can add items to the library log file.

Note The default level of tracing has a significant performance penalty.

Trace sources:
APPLICATION(0) to 0x00 16 trace sources available for application use
APPLICATION(15) 0x0f

API_ENTRY 0x10 Entry to API routine (not all functions make trace calls)

API_EXIT 0x11 Normal exit from API function

API_ERROR 0x12 Error exit from API function (might be an internal function)

API_EVENT 0x13 Significant event

API_INFO 0x14 Additional information

API_CONFIG 0x15 Configuration changes

API_OP_TIMER 0x16 Connection timers

TCP 0x30 TCP/IP connection establishment and control

TCP_SEND 0x31 TCP/IP messages being sent

TCP_RECV 0x32 TCP/IP messages being received

Other values are reserved for future use.

2.1.4.1 acu_sccp_trace/trace_v/trace_buf
void acu_sccp_trace_v(acu_sccp_ssap_t *ssap, unsigned int flags,

const void *buf, int buf_len, const char *fmt, va_list ap);

void acu_sccp_trace(acu_sccp_ssap_t *ssap, unsigned int flags,

const char *fmt, ...);

void acu_sccp_trace_buf(acu_sccp_ssap_t *ssap, unsigned int flags,

const void *buf, int buf_len, const char *fmt, ...);

Purpose

These functions output text to the trace buffer, acu_sccp_trace_buf() adds a hexdump of

buf following the text output.

MAN1205 Revision 6.16.1 PUBLIC Page 12

Parameters

ssap the ssap structure the trace is for

flags usually ACU_SCCP_TRF(part, source, level)
 part One of FIRST, MIDDLE, LAST or ONLY indicating which part of the trace entry

is being generated.
 source APPLICATION(n) for n between 0 and 9, identifying the source of the

trace.
 level 0 to 15 indicating the level (high number for more verbose trace) of this call,

the default is usually 5
buf address of buffer area to hexdump following the format output

buf_len number of bytes to hexdump

fmt printf format for trace arguments

ap variable argument list for underlying printf call

The flags parameter specifies the trace source and level and also indicates which part of a

trace entry is being generated (allowing a single trace entry to be generated by multiple calls
to the trace functions). A short header including the system time is output at the start of each
trace entry. The trace is locked while a trace entry is generated (i.e. from the call specifying
FIRST to that specifying LAST) to avoid trace output from different threads being intermixed –

even when multiple threads try to write concurrently to the same log file.

The trace is output if the level in the call is less than that set using

acu_sccp_ssap_set_cfg_int() for the same source.

Note The trace is formatted by a local version of snprintf() which does not support floating point format

specifiers.

2.1.4.2 acu_sccp_trace_error
int acu_sccp_trace_error(acu_sccp_ssap_t *ssap, const char *fname, int rval,

const char *fmt, ...);

Purpose

This function is used to write a trace entry when one of the SCCP error codes is generated.
It is loosely equivalent to calling acu_sccp_trace() with flags of ACU_SCCP_TRF(ONLY,

API_ERROR, 5).

Parameters

ssap the ssap structure the trace is for

fname name of function that is returing the error

rval SCCP error number (one of ACU_SCCP_ERROR_xxx)

fmt printf style format string, followed by the arguments

Return value

Always rval.

2.1.4.3 acu_sccp_strerror
const char *acu_sccp_strerror(int rval, unsigned int flags);

Purpose

This function returns a text string that describes an SCCP library error code.

Parameters

rval SCCP error number (one of ACU_SCCP_ERROR_xxx)

flags 0 => return descriptive text, see B.1
1 => return the C name ”ACU_SCCP_ERROR_xxx”

Return value

A pointer to a static const string describing the error, unless the error number is unknown in
which case the address of a static array filled with the text “error %d unknown” is returned.

The error text strings are defined by the ACU_SCCP_ERRORS define in sccp_api.h.

MAN1205 Revision 6.16.1 PUBLIC Page 13

2.1.5 SCCP access functions

2.1.5.1 acu_sccp_ssap_create
acu_sccp_ssap_t *acu_sccp_ssap_create(const char *cfg_file,

acu_sccp_ssap_flags_t flags);

Purpose

This function creates a new SCCP access point without establishing the connection to the
driver. The application may set parameters from its own configuration information before the
connection to the driver is established.

Parameters

cfg_file Name of the configuration file to use, may be NULL

If the file cannot be opened, and the name doesn’t contain a ‘/’ (or ‘\’) then the
library will look for the file in the directories ${HOME} and ${ACULAB_ROOT}/ss7

flags Bitwise OR of:
 ACU_SCCP_CO_SERVER Application is a server process and will be given new

connections
 ACU_SCCP_CL_SERVER Application will be given inward connectionless messages.
 ACU_SCCP_LOG_APPEND Append to the log file.
 ACU_SCCP_STATUS_IND The application will be given all the status indications from

SCCP.
 ACU_SCCP_LOG_STDERR Write initialisation errors to stderr

The CO_SERVER, CL_SERVER and LOG_APPEND flags can also be set from the configuration.

Return value

The address of an initialised acu_sccp_ssap_t structure, or NULL if malloc() fails or the

configuration file cannot be accessed.

2.1.5.2 acu_sccp_ssap_delete
void acu_sccp_ssap_delete(acu_sccp_ssap_t *ssap);

Purpose

This function deletes an SCCP access point, and any SCCP connections created on it.

Parameters

ssap The address of the acu_sccp_ssap_t structure to delete

Return value

None.

2.1.5.3 acu_sccp_ssap_connect_driver
int acu_sccp_ssap_connect_driver(acu_sccp_ssap_t *ssap);

Purpose

This function causes the SCCP library to try to establish a TCP/IP connection between the
ssap library and the SCCP driver code.

The local SSN and POINTCODE must be set before this is called.

After this function completes the TCP connection attempt continues asynchronously, and it
may subsequently succeed or fail. When the connection attempt completes, a message of
type ACU_SCCP_MSG_CON_STATE will be sent to the ssap, indicating a state transition. When

that message is seen, the application should check the ssap connection state, using
acu_sccp_get_con_state(), to see whether the connection was successfully established.

Note SCCP connections cannot be created until the connection to the driver has been established.

Parameters

ssap The address of the acu_sccp_ssap_t structure to connect to the driver.

MAN1205 Revision 6.16.1 PUBLIC Page 14

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.5.4 acu_sccp_ssap_set_cfg_int/str
int acu_sccp_ssap_set_cfg_int(acu_sccp_ssap_t *ssap,

acu_sccp_cfg_param_t param, unsigned int i_val);

int acu_sccp_ssap_set_cfg_str(acu_sccp_ssap_t *ssap,

acu_sccp_cfg_param_t param, const char *s_val);

Purpose

These functions set a configurable value of the ssap.

Integer parameters can be set using either function.

Refer to section 2.1.3 for a list of configurable parameters.
Connections inherit their configuration from the ssap.

Parameters

ssap The address of the acu_sccp_ssap_t structure to modify

param Configuration parameter to modify

i_val Integer value for parameter

s_val String value for parameter

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.5.5 acu_sccp_ssap_get_locaddr/remaddr
acu_sccp_addr_t *acu_sccp_ssap_get_locaddr(acu_sccp_ssap_t *ssap);

acu_sccp_addr_t *acu_sccp_ssap_get_remaddr(acu_sccp_ssap_t *ssap);

Purpose

These functions return a pointer to the local/remote SCCP address information for this ssap.
The application can change the structure through the returned pointer. The values can also be
set from the configuration file and by the configuration functions.

The local SSN and POINTCODE values are used when connecting to the driver.

Parameters

ssap The address of the acu_sccp_ssap_t structure.

Return value

The address of the acu_sccp_addr_t structure within the ssap data area, or NULL if the ssap

pointer is invalid.

See section B.2 for details of the acu_sccp_addr_t structure.

MAN1205 Revision 6.16.1 PUBLIC Page 15

2.1.6 Connection structure functions

2.1.6.1 acu_sccp_con_create
acu_sccp_con_t *acu_sccp_con_create(acu_sccp_ssap_t ssap);

Purpose

This function creates a new SCCP connection data area on the specified ssap.

Parameters

ssap The ssap on which to create a connection

Return value

The address of an initialised acu_ccp_con_t structure, or NULL if the ssap isn’t connected to

SCCP or if malloc() fails.

2.1.6.2 acu_sccp_con_delete
void acu_sccp_con_delete(acu_sccp_con_t *con);

Purpose

This function deletes an SCCP connection data area and all memory associated with it.

This has the effect of a ‘pre-arranged’ end on any active SCCP connection.

Parameters

con The address of the acu_sccp_con_t structure to delete

Return value

None.

Note The connection data isn’t actually deleted until the last message that references the connection is freed.

2.1.6.3 acu_sccp_ssap_get_unitdata_con
acu_sccp_con_t *acu_sccp_ssap_get_unitdata_con(acu_sccp_ssap_t ssap);

Purpose

This function returns the address of the connection on which received connectionless unitdata
and notice messages are queued.

The connection is created either by this call, or when the first connectionless message is
received. If the connection is deleted it will be re-created when needed.

Note An application will only be given connectionless messages if ‘cl_server = y’ is set in the ssap’s

configuration.

Connectionless messages can be sent from this connection, or from another connection
created by acu_sccp_con_create().

Parameters

ssap The ssap whose unidirectional connection is required

Return value

The address of an acu_sccp_con_t structure, or NULL if malloc fails.

MAN1205 Revision 6.16.1 PUBLIC Page 16

2.1.6.4 acu_sccp_con_set_userptr
void acu_sccp_con_set_userptr(acu_sccp_con_t *con, void *userptr);

Purpose

This function saves the pointer to an application data area for this connection.

Parameters

con The address of the acu_sccp_con_t structure to modify

userptr The pointer to save

2.1.6.5 acu_sccp_con_get_userptr
void *acu_sccp_con_get_userptr(acu_sccp_con_t *con);

Purpose

This function retrieves the pointer saved by acu_sccp_set_userptr().

Parameters

con The address of the acu_sccp_con_t structure

Return value

The pointer saved previously.

2.1.6.6 acu_sccp_con_get_ids
int acu_sccp_con_get_ids(acu_sccp_con_t *con, unsigned int *loc_ref,

unsigned int *rem_ref, unsigned int *rem_ref_len);

Purpose

This function gets the connection local references assigned to the connection.

Parameters

con The address of the acu_sccp_con_t structure to modify

loc_ref Address of location to write the reference assigned by this system

rem_ref Address of location to write the reference assigned by the remote system

rem_id_len Address of location to write the length of the remote reference

Any of loc_ref, rem_ref and rem_ref_len may be NULL in which case nothing is returned.

*rem_ref_len will be set to zero if the remote connection identifier is unknown.

For SCCP the references are always 3 bytes long.

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 17

2.1.6.7 acu_sccp_con_set_cfg_int/str
int acu_sccp_con_set_cfg_int(acu_sccp_con_t *con, acu_sccp_cfg_param_t param,

unsigned int i_val);

int acu_sccp_con_set_cfg_str(acu_sccp_con_t *con, acu_sccp_cfg_param_t param,

const char *s_val);

Purpose

These functions set a configurable value of the connection data area. The default values for
these are inherited from the ssap when a connection is created.
acu_sccp_con_set_cfg_str() can be used to set an integer parameter from a character

string value.

Refer to section 2.1.3 for a list of the configurable parameters.

Parameters

con The address of the acu_sccp_con_t structure to modify

param Configuration parameter to modify

i_val Integer value for parameter

s_val String value for parameter

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.6.8 acu_sccp_con_get_locaddr/remaddr
acu_sccp_addr_t *acu_sccp_con_get_locaddr(acu_sccp_con_t *con);

acu_sccp_addr_t *acu_sccp_con_get_remaddr(acu_sccp_con_t *con);

Purpose

These functions return a pointer to the local/remote SCCP address information for this
connection. The application can change the structure through the returned pointer.

The default values for these are inherited from the ssap when a connection is created.

The remote address will be set from information in the first message received for each
connection. For connection-oriented SCCP, only the remote point code is significant once the
SCCP connection has been established.

To respond from the destination address in a received connectionless message (rather than
from the configured address) set the connections local address with:
 *acu_sccp_con_get_locaddr(connection) = *msg->tm_local_addr;

when processing the received message.

Parameters

con Connection

Return value

The address of the structure or NULL if the con pointer is invalid.

See section B.2 for details of the acu_sccp_addr_t structure.

MAN1205 Revision 6.16.1 PUBLIC Page 18

2.1.7 Message sending functions

2.1.7.1 acu_sccp_connect_request
int acu_sccp_connect_request(acu_sccp_con_t *con, const void *user_data,

unsigned int data_len);

Purpose

This function sends an SCCP CR message to the remote system to request that a new
connection be established.

The local address will be encoded unless its sa_valid field is zero.

Parameters

con Address of connection data area

user_data Address of optional connect user data

data_len Length in bytes of the connect user data

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.7.2 acu_sccp_connect_confirm

int acu_sccp_connect_confirm(acu_sccp_con_t *con, const void *user_data,

unsigned int data_len);

Purpose

This function sends an SCCP CC message to the remote system in order to accept an
incoming connection.

The local address will be encoded unless its sa_valid field is zero.

Parameters

con Address of connection data area

user_data Address of optional connect user data

data_len Length in bytes of the connect user data

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.7.3 acu_sccp_connect_refused
int acu_sccp_connect_refused(acu_sccp_con_t *con, int cause,

const void *user_data, unsigned int data_len);

Purpose

This function sends an SCCP CREF message to the remote system in order to reject an
incoming connection.

The local address will be encoded unless its sa_valid field is zero.

Parameters

con Address of connection data area

cause Refusal cause value from Q.713 section 3.15

user_data Address of optional connect user data

data_len Length in bytes of the connect user data

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 19

2.1.7.4 acu_sccp_disconnect
int acu_sccp_disconnect(acu_sccp_con_t *con, int cause,

const void *user_data, unsigned int data_len);

Purpose

This function sends an SCCP RLSD message to the remote system in order to release a
connection.

Parameters

con Address of connection data area

cause Release cause value from Q.713 section 3.11

user_data Address of optional disconnect userdata

data_len Length in bytes of the disconnect user data

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.7.5 acu_sccp_data_request
int acu_sccp_data_request(acu_sccp_con_t *con, const void *user_data,

unsigned int data_len);

Purpose

This function sends one or more SCCP DT1 messages to the remote system containing the
user data.

If more than 255 bytes of user data are supplied, multiple DT1 messages are sent with all but
the last having the ‘M’ bit (of the Segmenting/reassembling parameter) set to 1.

Note Class 2 SCCP cannot detect missing DT1 messages, if a packet is lost from (or mis-sequenced in) an M-bit
sequence then the remote system will receive corrupted data.

This function may fail reporting ERROR_CONNECTION_OUTSTATE if an inwards disconnect

occurs.

Parameters

con Address of connection data area

user_data Address of the user data to send

data_len Length in bytes of the user data

Return value

Zero if successful, a positive number indicating the number of bytes sent if only part of an M-
bit sequence is sent before an error occurs, ACU_SCCP_ERROR_xxx on failure before any bytes

are sent.

2.1.7.6 acu_sccp_unitdata_request

int acu_sccp_unitdata_request(acu_sccp_con_t *con, const void *user_data,

unsigned int data_len);

Purpose

This function sends an SCCP UDT, XUDT or LUDT message to the remote system containing
the user data.

Any ‘con’ structure (in any state) can be used.

Parameters

con Address of connection data area

user_data Address of the user data

data_len Length in bytes of the user data

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 20

2.1.8 Message receiving functions

SCCP messages received from the driver (via TCP/IP) are queued on, and can be retrieved
from queues on both the ssap and connection data areas.

Every message must be freed at some point by calling acu_sccp_msg_free().

The application must normally call acu_sccp_con_unblock() after processing messages that

refer to a connection in order to make any further messages for that connection available from
the ssap queue. The block is applied in order to stop an application having more than one
thread processing messages for a single connection.

If the application only ever uses a single thread to access SCCP then SINGLE_THREADED=y

can be configured and the block will not be applied.

The data bytes of the message itself are within a circular buffer used to receive data from the
TCP/IP connection. The application must call acu_sccp_msg_free() or

acu_sccp_msg_copy_rx_buffer() in a timely manner to avoid blocking messages for other

SCCP connections.

The initial elements of acu_sccp_msg_t are exposed in the header file and can be read by the

application.

As well as received SCCP messages, other indications from the library to the application are
passed through this interface. These additional messages are only added to the ssap queue.

2.1.8.1 acu_sccp_ssap_msg_get
int acu_sccp_ssap_msg_get(acu_sccp_ssap_t *ssap, int tmo_ms,

acu_sccp_msg_t **msgp);

Purpose

This function retrieves the next inbound sccp message from the queue associated with the
specified ssap.

A new connection structure is automatically allocated when a CR message is retrieved.

Note An application will only be given CR messages if ‘co_server = y’ is set in the ssap’s configuration.

Note An application will only be given UDT messages if ‘cl_server = y’ is set in the ssap’s configuration.

Parameters

ssap Address of ssap data area

tmo_ms Time in milliseconds to wait for a message, 0 => don’t wait, -1 => wait forever

msgp Address of parameter where the message structure address will be written

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

*msgp will be set to NULL if the function fails.

The following fields of the message are set:
tm_msg_type Type of message/indication, one of:
 ACU_SCCP_MSG_DATA_IND Connection data from remote SCCP (DT1

messages)
 ACU_SCCP_MSG_CONNECT_IND
 ACU_SCCP_MSG_CONNECT_CONF
 ACU_SCCP_MSG_CONREF_CONF
 ACU_SCCP_MSG_DISCON_IND
 ACU_SCCP_MSG_DISCON_CONF
 ACU_SCCP_MSG_ERROR_IND
 ACU_SCCP_MSG_UNITDATA Unitdata from remote SCCP ({L|X}UDT messages)
 ACU_SCCP_MSG_NOTICE Error report from remote SCCP ({L|X}UDTS

message)
 ACU_SCCP_MSG_TIMEOUT Timer expired

MAN1205 Revision 6.16.1 PUBLIC Page 21

 ACU_SCCP_MSG_CON_STATE Change in state of TCP/IP connections to the driver
 ACU_SCCP_MSG_USER_STATUS Change in status of remote user (from local SCCP)
 ACU_SCCP_MSG_SP_STATUS Change in status of remote signalling point from

local SCCP
tm_ssap Address of associated ssap

tm_con Address of associated connection (may be NULL)

For indications from the remote SCCP the following are also set:
tm_local_addr Destination (ie our) address from SCCP message, NULL if not present

tm_remote_addr Source (ie remote) address from SCCP message, NULL if not present

tm_data Address of any associated user data, NULL if none present

tm_data_length Number of bytes of user data

tm_ret_opt Received SCCP ‘return on error’ option (UDT messages)

tm_class Received message class (UDT, CR, CC messages)

tm_cause Received ‘cause’ (RLSD, UDTS, ERR, or CREF message)

tm_priority ANSI message priority, ITU importance (0xff if ITU option not present)

For TIMEOUT message the following is set:

tm_timer_id Number of timer that expired.

For CON_STATUS call acu_sccp_msg_get_con_state() to find the connection states at the

time the message was generated, or acu_sccp_get_con_state() to find the current state.

For USER_STATUS and SP_STATUS call acu_sccp_msg_get_sccp_status() to determine the

concerned pointcode and SSN.

Failure to establish an outward connect may be indicated by an ERROR_IND or DISCON_IND as

well as the more usual CONREF_IND. Similarly disconnection of an active connection might be

signalled by a ERROR_IND. The message generated depends on the type of message received

from the network (and the tm_cause value coding depends on the message type).

If the library or driver initiates a disconnect then the message type passed to the application
matches that sent to the remote system, but the cause value is or’ed with 0x80.

2.1.8.2 acu_sccp_con_msg_get
int acu_sccp_con_msg_get(acu_sccp_con_t *con, int tmo_ms,

acu_sccp_msg_t **msgp);

Purpose

This function retrieves the next inbound sccp message from the queue associated with the
specified connection.

Refer to acu_sccp_ssap_msg_get() for information on the possible message types.

Parameters

con Address of connection data area

tmo_ms Time in milliseconds to wait for a message, 0 => don’t wait, -1 => wait forever

msgp Address of parameter where the message structure address will be written

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

msgp will be set to NULL if the function fails.

MAN1205 Revision 6.16.1 PUBLIC Page 22

2.1.8.3 acu_sccp_event_msg_get
int acu_sccp_event_msg_get(acu_sccp_event_t *event, acu_sccp_msg_t **msgp);

Purpose

This function retrieves the next inbound sccp message from one of the queues associated
with event. Refer to section 2.1.13 for more information on the event mechanism.

Refer to acu_sccp_ssap_msg_get() for information on the possible message types.

Parameters

event Address of an event data area

msgp Address of parameter where the message structure address will be written

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

msgp will be set to NULL if the function fails.

2.1.8.4 acu_sccp_msg_free
void acu_sccp_msg_free(acu_sccp_msg_t *msg);

Purpose

This function releases all resources associated with the specified msg.

Parameters

msg Address of message to free

Note Every message must be explicitly freed using this function.

2.1.8.5 acu_sccp_msg_copy_rx_buffer
int acu_sccp_msg_copy_rx_buffer(acu_sccp_msg_t *msg);

Purpose

This function copies any data that msg references that is in the TCP/IP receive buffer

area to a malloced memory area and updates all of the pointers within the message

structure to reference the correct locations in the new buffer.

The memory will be freed when msg is freed.

Parameters

msg Address of message to process

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 23

2.1.8.6 acu_sccp_con_unblock
void acu_sccp_con_unblock(acu_sccp_con_t *con);

Purpose

This function removes the block that stops inbound messages for the given connection from
being retrieved from the corresponding ssap queue.

The block exists so that a pool of threads can be used to process messages from the ssap
queue without having to worry about multiple threads processing messages from the same
connection. It also allows the application to use a separate thread for each connection,
although this is discouraged because of the resource issues with large numbers of threads.

Parameters

con Address of connection data area

2.1.8.7 acu_sccp_con_block
int acu_sccp_con_block(acu_sccp_con_t *con);

Purpose

This function sets the block that stops inbound messages for the given connection from being
retrieved from the corresponding ssap queue.

The block is automatically set whenever a message is retrieved for a connection unless
SINGLE_THREADED=y is configured.

It may be necessary to manually set the block on a newly created connection.

Parameters

con Address of connection data area

Return value

One if the block was already set, zero otherwise.

2.1.8.8 acu_sccp_ssap_wakeup_msg_get

void acu_sccp_ssap_wakeup_msg_get(acu_sccp_ssap_t *ssap);

Purpose

This function wakeup up all threads sleeping in acu_sccp_ssap_msg_get() for the specified
ssap.

Parameters

ssap Address of ssap data area

2.1.8.9 acu_sccp_can_wakeup_msg_get
void acu_sccp_con_wakeup_msg_get(acu_sccp_con_t *con);

Purpose

This function wakeup up all threads sleeping in acu_sccp_con_msg_get() for the specified
connection.

Parameters

con Address of the connection data area

MAN1205 Revision 6.16.1 PUBLIC Page 24

2.1.9 Timer functions

There are 256 timers defined for each connection structure. Timers 250 and above are
reserved for use by the connection-oriented SCCP protocol code, the other timers can be
used for any purpose by the application.

The timer resolution is 1 second and the maximum timeout 9 hours. Timers are guaranteed
not to expire in less than the specified period. Even if the system is idle they may not expire
until almost 2 seconds after the nominal expiry time.

When a timer expires, a message with tm_msg_type set to ACU_SCCP_MSG_TIMEOUT will be

queued. The timer number is placed in the tm_timer_id field.

Note The timer resolution is 1 second. A 1 second timer is guaranteed to sleep for at least 1 second, but may
sleep for almost 3 seconds.

2.1.9.1 acu_sccp_con_timer_start
int acu_sccp_con_timer_start(acu_sccp_con_t *con, int timer_id,

unsigned int tmo_secs);

Purpose

This function starts the requested timer.

This can be used by an application to run a timer for its own purposes.

Parameters

con Connection data area

timer_id Timer identifier, 0 to 249

tmo_secs Required timeout in seconds

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.9.2 acu_sccp_con_timer_restart
int acu_sccp_con_timer_restart(acu_sccp_con_t *con, int timer_id,

unsigned int tmo_secs);

Purpose

This function restarts the requested timer.
An error will be returned it the timer isn’t running (e.g. if it has just expired).

Parameters

con Connection data area

timer_id Timer identifier

tmo_secs Required timeout in seconds

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.9.3 acu_sccp_con_timer_cancel
int acu_sccp_con_timer_cancel(acu_sccp_con_t *con, int timer_id);

Purpose

This function cancels the requested timer.
An error will be returned it the timer isn’t running (e.g. if it has just expired).

Parameters

con Connection data area

timer_id Timer identifier

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 25

2.1.10 TCP/IP connection status functions

The SCCP library connects to the driver using TCP/IP. It connects asynchronously and will
automatically attempt to reconnect if the connection fails for any reason.

Changes in the TCP/IP connection’s state are reported by queueing an
ACU_SCCP_MSG_CON_STATE message onto the ssap message queue. The application must

wait until the IN_SERVICE state is reported before calling acu_sccp_con_create().

Note The IDLE -> CONNECTING and CONNECTING -> CONNECTED transitions are not reported.

2.1.10.1 acu_sccp_get_con_state
int acu_sccp_get_con_state(acu_sccp_ssap_t *ssap, int con_id,

const acu_sccp_con_state_t **con_state);

Purpose

This function returns information about the current state of one of the TCP/IP connections to
the driver.

Parameters

ssap ssap data area

con_id 0 for the connection to ‘host a’, 1 for that to ‘host b’

con_state Pointer filled with address of connection state structure.

The acu_sccp_con_state_t structure contains the following fields:

cs_ipaddr IP address of the connected driver (host order)

cs_tcpport TCP/IP port number of the connected driver

cs_state The current state of the connection, one of:
 ACU_SCCP_CON_STATE_IDLE Not configured or connect failed
 ACU_SCCP_CON_STATE_CONNECTING TCP/IP connection being made
 ACU_SCCP_CON_STATE_CONNECTED Initial message handshake in progress
 ACU_SCCP_CON_STATE_IN_SERVICE Available for SCCP traffic
 If IN_SERVICE the following bits can also be set:

 ACU_SCCP_CON_STATE_RX_BLOCKED No space in receive ring buffer area
 ACU_SCCP_CON_STATE_RX_FLOW Receive flow controlled off
 ACU_SCCP_CON_STATE_TX_BLOCKED No TCP transmit window
 ACU_SCCP_CON_STATE_TX_FLOW Transmit flow controlled off

cs_failure The reason why the last connection (or connect attempt) failed, one of:
 ACU_SCCP_CON_FAIL_SSAP_DELETED ssap deleted
 ACU_SCCP_CON_FAIL_CON_TIMEOUT TCP/IP connect timed out
 ACU_SCCP_CON_FAIL_CON_REJECTED TCP/IP connection rejected
 ACU_SCCP_CON_FAIL_LOGIN_REJECTED Login sequence failed
 ACU_SCCP_CON_FAIL_INWARD Inward disconnected by the driver
 ACU_SCCP_CON_FAIL_KEEPALIVE No response to keepalive
 ACU_SCCP_CON_FAIL_BAD_MESSAGE Corrupt message received

cs_fail_text Textual description of cs_failure, or one of the following texts when the

login fails:
 Bad Request Major discrepancy between the versions of the SCCP

library and the driver
 Responder has gone The driver is no longer waiting for connections on the

requested TCP/IP port.
Driver is probably shut down.

 Unknown service SCCP isn’t configured in the ss7 driver configuration.
 Unknown service parameter SCCP isn’t configured on the requested pointcode.
 Incorrect password The passwords in the application and driver

configuration files do not match.
 Rejected by server Connection rejected by SCCP driver stub.
 Bad hash in response Three-way login handshake failed.

cs_tx_qlen The number of outbound sccp messages queued within the library.

MAN1205 Revision 6.16.1 PUBLIC Page 26

Application level acknowledgements are used on the TCP/IP connection in order to avoid
blocking the TCP/IP connection itself. Thus the BLOCKED states should not happen.

Receive flow control is most likely to occur if the application fails to free receive messages –
which have pointers directly into the receive ring buffer area.

If transmit flow control is reported the application should take steps to avoid sending further
messages. However all messages sent will be queued by the library.

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.11 acu_sccp_msg_get_con_state
int acu_sccp_msg_get_con_state(acu_sccp_msg_t *msg,

const acu_sccp_con_state_t **cs_a, const acu_sccp_con_state_t **cs_b)

Purpose

This function resolves pointers to the connection state field(s) in messages of type
ACU_MSG_SCCP_CON_STATE.

This information relates to the state of the TCP/IP connections to the driver at the time the
indication was generated.

Refer to acu_sccp_get_con_state() for details of the acu_sccp_con_state_t structure.

Parameters

msg Message structure address (from one of the msg_get() functions)

cs_a Address of parameter where the ‘host a’ connection state structure address will be
written.

cs_b Address of parameter where the ‘host b’ connection state structure address will be
written (where SCCP is configured in ‘dual’ mode).

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

Note The addresses written to cs_a and cs_b point into the message itself.

MAN1205 Revision 6.16.1 PUBLIC Page 27

2.1.12 Remote SP and SSN status functions

The SCCP library receives status indications from the driver that show the accessibility of
remote entities. The information is saved so that the application can synchronously determine
the current status.

The application can also ask to be notified when the status of a remote pointcode or ssn
changes. Such changes are reported by queueing an ACU_SCCP_MSG_SCCP_STATUS message

onto the ssap message queue.

Additionally the application can request to be given all of the raw status events from SCCP by
setting the ACU_SCCP_STATUS_IND flag when the ssap is created.

Note The SCCP protocol does not distinguish between the accessibility of connection-oriented and
connectionless users.

2.1.12.1 acu_sccp_get_sccp_status
int acu_sccp_get_sccp_status(acu_sccp_ssap_t *ssap, unsigned int pointcode,

unsigned int ssn, const acu_sccp_sccp_status_t **sccp_status);

Purpose

This function returns information about the current state of the pointcode and ssn.

Parameters

ssap ssap data area

pointcode SS7 pointcode of the remote system.

ssn ssn of remote application
sccp_status

Pointer filled with address of the sccp and user state structure.

The acu_sccp_sccp_status_t structure contains the following fields:

tsp_pc Remote pointcode

tsp_ssn ssn of remote application

tsp_host Either ‘a’ or ‘b’ depending of which SCCP host the information
came from.

tsp_user_status Status of the ssn, one of:
 ACU_SCCP_UIS User In Service
 ACU_SCCP_UOS User Out of Service

tsp_sp_status Status of the signalling point (from MTP3), one of:
 ACU_SCCP_SP_PROHIBIT Prohibited
 ACU_SCCP_SP_ACCESS Accessible

tsp_sccp_status Status of the remote SCCP, one of:
 ACU_SCCP_REM_SCCP_PROHIBIT Prohibited
 ACU_SCCP_REM_SCCP_UNAVAIL Unavailable, reason unknown
 ACU_SCCP_REM_SCCP_UNEQUIP Unequipped
 ACU_SCCP_REM_SCCP_INACCESS Inaccessible
 ACU_SCCP_REM_SCCP_CONGEST Congested
 ACU_SCCP_REM_SCCP_AVAIL Available

tsp_tx_cong_cost A measure of the level of congestion of the remote node.

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 28

2.1.12.2 acu_sccp_msg_get_sccp_status
int acu_sccp_msg_get_sccp_status(acu_sccp_msg_t *msg,

const acu_sccp_sccp_status_t **sccp_status);

Purpose

This function returns the information about the state of a pointcode and ssn from an
ACU_SCCP_MSG_USER_STATUS or ACU_SCCP_MSG_SP_STATUS message.

Parameters

msg Message data area

sccp_status Pointer filled with address of the sccp and user state structure (embedded in
the msg).

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.12.3 acu_sccp_enable_user_status
int acu_sccp_enable_user_status(acu_sccp_ssap_t *ssap,

unsigned int pointcode, unsigned, int ssn);

Purpose

This function enables the receipt of ACU_SCCP_MSG_USER_STATUS messages for the specified

pointcode and ssn.

Parameters

ssap ssap data area

pointcode Remote SS7 pointcode from which user status indications are required.
ssn Associated remote SCCP ssn.

The pointcode and/or ssn may be specified as ~0u in which case indications will be given for

all pointcodes/ssns.

Note User status is only reported if the SS7 stack configuration file contains an SCCP [CONCERNED] section
for the pointcode and ssn.

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.12.4 acu_sccp_enable_sp_status
int acu_sccp_enable_sp_status(acu_sccp_ssap_t *ssap, unsigned int pointcode);

Purpose

This function enables the receipt of ACU_SCCP_MSG_SP_STATUS messages for the specified

pointcode.

Parameters

ssap ssap data area

pointcode Remote SS7 pointcode from which user status indications are required.

The pointcode may be specified as ~0u in which case indications will be given for all

pointcodes.

Note The ‘unavailable’, ‘unequipped’, ‘inaccessible’ and ‘congested’ statuses are only reported if the SS7 stack
configuration file contains an SCCP [CONCERNED] section for the pointcode.

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 29

2.1.13 SCCP message events

The message receiving functions allow an application to wait for messages on an ssap or a
connection, however there are cases where an application may need to wait for messages on
a group of connections, or wait for messages from SCCP and events from some other part of
the system. The event mechanism described here solves both these problems.

On Microsoft Windows events are implemented using manual-reset events, on Linux systems
pipes are used. This allows the application to use WaitForMultipleObjects or poll/select

to wait for SCCP messages. Due to scalability problems with both of these it is inappropriate
to allocate an event for each connection. The application can create an event which can be
signalled by messages being queued at several SCCP connections, or queued at the ssap
itself.

Note The connections must all be on the same ssap

2.1.13.1 acu_sccp_event_create
acu_sccp_event_t *acu_sccp_event_create(acu_sccp_ssap_t *ssap);

Purpose

This function creates an event structure.

Parameters

ssap ssap data area

Return value

Address of an initialised event structure. NULL if one cannot be allocated or the ssap pointer is

invalid.

2.1.13.2 acu_sccp_event_delete
void acu_sccp_event_delete(acu_sccp_event_t *event);

Purpose

This function unlinks the event from any message queues and then deletes the structure itself.

Parameters

event Address of event structure

Return value

None.

2.1.13.3 acu_sccp_event_wait
int acu_sccp_event_wait(acu_sccp_event_t *event, int tmo_ms);

Purpose

This function waits for the specified event to be signalled.

Parameters

event Address of event data area

tmo_ms Time to wait in milliseconds, 0 => don’t wait, -1 => wait for ever

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 30

2.1.13.4 acu_sccp_event_get_os_event
acu_sccp_os_event_t acu_sccp_event_get_os_event(acu_sccp_event_t *event);

Purpose
This function returns the operating system data item underlying the given event.

The return type is actually HANDLE for Windows and int for Linux systems.

Parameters
event Address of event data area

Return value
For Windows the HANDLE of the windows event.

For Linux the file descriptor number of the read side of a pipe.
If the call is invalid 0 is returned, care is taken to ensure the pipe fd number isn’t zero, one or
two.

2.1.13.5 acu_sccp_event_clear
void acu_sccp_event_clear(acu_sccp_event_t *event);

Purpose
This function clears (i.e.: returns to the non-signalled state) the operating system item
underlying the given event.

The event is automatically cleared if when acu_sccp_event_msg_get() returns the last

message or fails because no messages are present.

Parameters
event Address of event data area

Return value
None.

2.1.13.6 acu_sccp_event_ssap_attach
int acu_sccp_event_ssap_attach(acu_sccp_event_t *event,

acu_sccp_ssap_t *ssap);

Purpose
This function adds the message queue for ssap as a source for the event.

Note The ssap specified must be the same one specified when the event was created.

Parameters

event Address of event data area

ssap Address of corresponding ssap data area

Return value
Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.13.7 acu_sccp_event_ssap_detach

int acu_sccp_event_ssap_detach(acu_sccp_event_t *event,

acu_sccp_ssap_t *ssap);

Purpose

This function removes the message queue for the ssap from the sources for event. It

reverses the effect of acu_sccp_event_ssap_attach()

Parameters

event Address of event structure

ssap Address of ssap data area

Return value
Zero if successful, ACU_SCCP_ERROR_xxx on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 31

2.1.13.8 acu_sccp_event_ssap_detach_all
int acu_sccp_event_ssap_detach_all(acu_sccp_ssap_t *ssap);

Purpose

This function detaches the message queue for the ssap from all events. It is implicitly called if
the ssap is deleted.

Parameters

ssap ssap data area

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.13.9 acu_sccp_event_con_attach

int acu_sccp_event_con_attach(acu_sccp_event_t *event, acu_sccp_con_t *con);

Purpose

This function adds the message queue for con as a source for the event.

Note The connection and event must have been created on the same ssap.

Parameters

event Address of event structures

con Connection data area

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.13.10 acu_sccp_event_con_detach
int acu_sccp_event_con_detach(acu_sccp_avent_t *event, acu_sccp_con_t *con);

Purpose

This function removes the message queue for con from the sources for event. It reverses the

effect of acu_sccp_event_con_attach()

Parameters

event Address of event data area

con Connection data area

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

2.1.13.11 acu_sccp_event_con_detach_all
int acu_sccp_event_con_detach_all(acu_sccp_con_t *con);

Purpose

This function detaches the message queue for con from all events. It is implicitly called if the
connection is deleted.

Parameters

con Connection data area

Return value

Zero if successful, ACU_SCCP_ERROR_xxx on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 32

2.2 Thread support functions
Support functions are provided for multi-threaded applications. They provide an operating
independent interface to threads and thread synchronization functions.

Some of the functions are actually #defines within the header file sccp_synch.h. Because of

this, the function arguments may be evaluated more than once.

Additional error information may be available in an operating system dependant manner (e.g.:
by inspecting errno).

These functions are used within the SCCP library itself. They are exposed by its interface, and
portable applications may decide to use them internally.

On Linux systems the functions use the pthread library routines.

Note Do not cancel threads that are using the SCCP API library.

2.2.1 Mutex functions

Mutexes are used to protect data areas from concurrent access by more than one thread.

The mutex functions are non-recursive under Linux. Under Windows an error message will be
output to stderr if a mutex is acquired recursively.

On Windows systems mutexes are implemented using the critical-section functions so that
acquiring an uncontested mutex does not require a system call.

2.2.1.1 acu_sccp_mutex_create
int acu_sccp_mutex_create(acu_sccp_mutex_t *mutex);

Purpose

This function initialises the mutex, allocating any operating system resources needed.

Parameters

mutex Address of the mutex to initialise.

Return value

Zero on success, -1 on failure.

2.2.1.2 acu_sccp_mutex_delete
void acu_sccp_mutex_delete(acu_sccp_mutex_t *mutex);

Purpose

This function frees all the operating system resources associated with the mutex. The mutex
must not be locked when it is deleted.

Parameters

mutex Address of the mutex delete.

2.2.1.3 acu_sccp_mutex_lock
int acu_sccp_mutex_lock(acu_sccp_mutex_t *mutex);

Purpose

This function locks the mutex. If the mutex is already locked the thread will block until the
mutex is unlocked.

Parameters

mutex Address of the mutex to lock

Return value

MAN1205 Revision 6.16.1 PUBLIC Page 33

Zero on success, -1 on failure.

2.2.1.4 acu_sccp_mutex_trylock
int acu_sccp_mutex_trylock(acu_sccp_mutex_t *mutex);

Purpose

This function attempts to lock the mutex. If the mutex is already locked then it will return
immediately with a non-zero return value.

Parameters

mutex Address of the mutex to lock

Return value

Zero on success, -1 on failure.

2.2.1.5 acu_sccp_mutex_unlock
void acu_sccp_mutex_unlock(acu_sccp_mutex_t *mutex);

Purpose

This function unlocks the mutex. A mutex can only be unlocked by the thread that locked it

Parameters

mutex Address of mutex to unlock.

MAN1205 Revision 6.16.1 PUBLIC Page 34

2.2.2 Condition variable functions

Condition variables allow one thread to wait until signalled by a different thread. To avoid
timing windows all accesses to a condition variable must be protected by the same mutex.

Under Windows, a condition variable is implemented using two manual reset events that are
used alternately, with the last thread to exit resetting the event. This avoids any problems
associated with PulseEvent() and kernel mode APC. It also allows the mutex to be

implemented using the critical section functions – avoiding a system call when the mutex is
available.

2.2.2.1 acu_sccp_condvar_create
int acu_sccp_condvar_create(acu_sccp_cond_t *condvar);

Purpose

This function initialises the condition variable, allocating any operating system resources
needed.

Parameters

condvar Address of the condition variable to initialise

Return value

Zero on success, -1 on failure.

2.2.2.2 acu_sccp_condvar_delete
void acu_sccp_condvar_delete(acu_sccp_cond_t *condvar);

Purpose

This function frees the operating system resources allocated to the condition variable. No
threads must be waiting for a condition variable when it is deleted.

Parameters

condvar Condition variable to delete

2.2.2.3 acu_sccp_condvar_wait
int acu_sccp_condvar_wait(acu_sccp_cond_t *condvar, acu_sccp_mutex_t *mutex);

Purpose

This function waits for the condition variable to be signalled. The mutex is released atomically

with the wait and re-acquired before the function returns.

Parameters

condvar Condition variable to wait for
mutex Mutex associated with this condvar

Return value

Zero on success, -1 on failure.

2.2.2.4 acu_sccp_condvar_wait_tmo
int acu_sccp_condvar_wait_tmo(acu_sccp_cond_t *condvar,

acu_sccp_mutex_t *mutex, int millisecs);

Purpose

This function waits for the condition variable to be signalled. If the condition variable isn’t
signalled within the specified timeout it will return –1.

Parameters

condvar Condition variable to wait for

MAN1205 Revision 6.16.1 PUBLIC Page 35

millisecs The maximum time to wait in milliseconds
mutex Mutex associated with this condvar

Return value

Zero on success, -1 on failure or if the wait times out.

2.2.2.5 acu_sccp_condvar_broadcast
int acu_sccp_condvar_broadcast(acu_sccp_cond_t *condvar);

Purpose

This function signals the condition variable. All threads blocked in acu_sccp_condvar_wait()

or acu_sccp_condvar_wait_tmo() on the specified condition variable are woken up.

The calling thread must hold the mutex associated with the condvar.

Parameters

condvar Address of the condition variable to signal

Return value

Zero on success, -1 on failure.

MAN1205 Revision 6.16.1 PUBLIC Page 36

2.2.3 Thread functions

2.2.3.1 acu_sccp_thread_create
int acu_sccp_thread_create(acu_sccp_thrd_id_t *id,

ACU_SCCP_THREAD_FN((*fn), arg), void *fn_arg);

Purpose

This function creates a new thread to run the caller supplied function. The thread function can
be defined portably as:

static ACU_SCCP_THREAD_FN(fn, arg)

{

 ...

 acu_sccp_thread_exit(1, 0);

 return 0;

}

Parameters

id Data area to hold thread identification

fn Function to call in the new thread

fn_arg Argument to pass fn

Return value

Zero on success, -1 on failure.

2.2.3.2 acu_sccp_thread_exit
void acu_sccp_thread_exit(int detach, unsigned int rval);

Purpose

This function causes the current thread to terminate itself.

Parameters

detach If non-zero the thread will exit and free all associated system resources.
If zero acu_sccp_thread_join() must be called to free the resources.

rval Return value to pass to the caller of acu_sccp_thread_join().

If a thread function returns (instead of calling acu_sccp_thread_exit) then it is not detached

and acu_sccp_thread_join must be called to free the operating system resources.

2.2.3.3 acu_sccp_thread_join
void acu_sccp_thread_join(acu_sccp_thrd_id_t *id, unsigned int *rval);

Purpose

This function waits for the specified thread to terminate, saves the thread return code, and
frees all the system resources associated with the thread.

Parameters

id Thread identification data for the thread (from acu_sccp_thread_create)

rval Pointer to a where the thread return code will be written

2.2.3.4 acu_sccp_thread_id
int acu_sccp_thread_id(void);

Purpose

This function returns an operating system supplied identifier for the current thread.

Return value

The operating system identifier for the current thread. This has the same value as the
att_thrd_id field of the acu_sccp_thrd_id_t structure.

MAN1205 Revision 6.16.1 PUBLIC Page 37

Appendix A: Building SCCP applications

A.1 Linux
The SCCP API header file includes all the necessary system headers.
Compile with –D_REENTRANT.

Link with –lpthread –Wl,--enable-new-dtags.

Link with –Wl,-rpath,$ACULAB_ROOT/lib64 to get the location of the libraries embedded in

the application image ($ACULAB_ROOT here must be expanded at program link time).

A.2 Windows
To obtain the correct definitions the symbol _WINSOCKAPI_ must be defined before

windows.h is included. One way to achieve this is to specify -D_WINSOCKAPI_= on the

compiler command line.

Since the SCCP library itself creates threads, the program must be compiled as a threaded
program. ie: build with -MT (or –MTd) not –ML.

The application must also include windows.h and winsock2.h before the SCCP API header

file.

MAN1205 Revision 6.16.1 PUBLIC Page 38

Appendix B: sccp_api.h

B.1 Error Codes
The error codes returned by the SCCP library functions are small negative integers. API
functions may return any of the error codes below, not just those identified in the section for
the API function itself.

In most cases more detailed information is written to the logfile.

ACU_SCCP_ERROR_SUCCESS

API call succeeded (guaranteed to be zero).
ACU_SCCP_ERROR_TIMEDOUT

Request timed out.
ACU_SCCP_ERROR_NO_MESSAGE

There are no messages on the specified queue.
ACU_SCCP_ERROR_NO_INFORMATION_AVAILABLE

Requested information isn’t available.
ACU_SCCP_ERROR_MALLOC_FAIL

The library failed to allocate memory for a data item.
Check the application for memory leaks.

ACU_SCCP_ERROR_NO_THREADS

The SCCP library failed to create a thread.
Check that the application isn’t using more threads than the operating system can
support.

ACU_SCCP_ERROR_BAD_CONNECTION

The acu_sccp_con_t parameter doesn’t reference a valid connection data area.

ACU_SCCP_ERROR_BAD_SSAP

The acu_sccp_ssap_t parameter doesn’t reference a valid ssap data area.

ACU_SCCP_ERROR_BAD_MESSAGE

The acu_sccp_msg_t parameter doesn’t reference a valid message data area.

ACU_SCCP_ERROR_BAD_EVENT

The acu_sccp_event_t parameter doesn’t reference a valid event data area.

Note The above four errors are likely to be caused by the application using a stale pointer.
ACU_SCCP_ERROR_BAD_OS_EVENT

An internal function tried to use an invalid operating system event or file descriptor.
ACU_SCCP_ERROR_WRONG_MSG_TYPE

The message buffer isn’t the correct type for the called function.
ACU_SCCP_ERROR_ALREADY_CONNECTED

The ssap is already connected to (or is trying to connect to) the driver.
ACU_SCCP_ERROR_NO_LOCAL_SSN

No local SCCP sub-system number has been set.
ACU_SCCP_ERROR_NO_LOCAL_POINTCODE

No local MTP3 pointcode has been set.
ACU_SCCP_ERROR_UNKNOWN_CONFIG_PARAM

Configuration parameter not known.
ACU_SCCP_ERROR_INVALID_CONFIG_VALUE

Invalid, or out of range, configuration parameter value.
ACU_SCCP_ERROR_CANNOT_OPEN_CONFIG_FILE

The configuration file cannot be opened.
ACU_SCCP_ERROR_BAD_CONNECTION_STATE

The connection isn’t in the correct state for the request.
ACU_SCCP_ERROR_CONNECTION_OUTSTATE

Connection (or timer) is not in the correct state.
ACU_SCCP_ERROR_CONNECTION_IDLE

Connection (or timer) is idle.

Note Do not confuse the above error codes with call control error codes that have the same numeric values.

MAN1205 Revision 6.16.1 PUBLIC Page 39

B.2 SCCP addresses
The acu_sccp_addr_t structure has the following fields:

sa_flags bitwise ‘or’ of the following:
 ACU_SCCP_SA_FLAGS_ROUTE_SSN route on SSN (even if global title present)
 ACU_SCCP_SA_FLAGS_RAW_GT raw global title (unknown sa_gti)

sa_valid indicates which address elements contain valid data, bitwise ‘or of:
 ACU_SCCP_SA_VALID_GTI
 ACU_SCCP_SA_VALID_SSN
 ACU_SCCP_SA_VALID_PC
 ACU_SCCP_SA_VALID_RL_PC
 ACU_SCCP_SA_VALID_TT
 ACU_SCCP_SA_VALID_NP
 ACU_SCCP_SA_VALID_ES
 ACU_SCCP_SA_VALID_NAI

sa_gti global title indicator (4 bits)

sa_ssn subsystem number

sa_pc SS7 signalling pointcode for/from SCCP address buffer

sa_rl_pc SS7 signalling pointcode from MTP3 routing label

sa_tt translation type (8 bits)

sa_np numbering plan (4 bits)

sa_es encoding scheme (4 bits)

sa_nai nature of address indicator (7 bits)

sa_gt.sag_num number of digits in sa_gt.sag_digits

sa_gt.sag_digits[] global title address information, two digits per byte

The global title indicator placed in outbound messages depends on which of the ss_tt,

sa_np, sa_es and sa_nai fields are marked as valid, not on the value of sa_gti.

The sa_gt.sag_num field contains the number of digits (not bytes) in the global title. The

application need not care about the odd/even field of the encoded global title.

The sa_rl_pc field contains the pointcode from the MTP3 routing label of received messages,

it has no effect on outward messages.

When routing using global titles, if the sa_pc field is set then the SCCP driver will not perform
global title translation and will send the message to that point code, if the sa_pc is not set then
global title translation is performed.

The SCCP protocol constrains the valid combinations of TT, NP, ES and NAI. NP and ES
must always be specified together. NAI is not valid for ANSI SCCP, and, for ITU and China
SCCP, must be specified on its own or with TT, NP and ES.

The first digit of the global title is encoded in the least significant 4 bits of
sa_gt.sag_digits[0] and the second digit in the most significant 4 bits. This matches the

protocol encoding, but is reversed from a normal hexdump of the address buffer.

MAN1205 Revision 6.16.1 PUBLIC Page 40

Appendix C: System limits
The following limits are inherent in the design of the SCCP product, however other constraints
(e.g. lack of memory) may apply first:

Dimension Limit Notes

Connections to an SCCP
system

4094 Also constrained by available server-side
resources.

Connections per library ssap 3840 Cost a few kb per connection.

Timers per connection 250 No additional cost per timer.

MAN1205 Revision 6.16.1 PUBLIC Page 41

