

MAN1200 Revision 6.16.1 PUBLIC Page 1

Aculab SS7

Developer's Guide

MAN1200 Revision 6.16.1

MAN1200 Revision 6.16.1 PUBLIC Page 2

PROPRIETARY INFORMATION
The information contained in this document is the property of Aculab Plc and may be the
subject of patents pending or granted, and must not be copied or disclosed without prior
written permission. It should not be used for commercial purposes without prior agreement in
writing.

All trademarks recognised and acknowledged.

Aculab Plc endeavours to ensure that the information in this document is correct and fairly
stated but does not accept liability for any error or omission.

The development of Aculab products and services is continuous and published information
may not be up to date. It is important to check the current position with Aculab Plc.

Copyright © Aculab plc. 2006-2023: All Rights Reserved.

Document Revision

Rev Date By Detail

1.0.0 28.04.06 DJL First issue

1.0.1 12.06.06 DJL Updates to section 8

6.8.3 19.03.07 WM/WN Addition of Distributed TCAP information

6.10.0B1 09.02.08 NW/DSL Addition of Sigtran M3UA

6.10.1 12.09.08 WM Clarified continuity_check_ind field.
Removed hyperlinks to cross-referenced documents.

6.10.2 14.10.08 NW Addition of SCCP routing information.

6.10.3 30.10.08 NW Updated after review.

6.11.0 14.09.10 DSL Fonts changed to Arial

6.11.2 18.01.11 DSL Minor corrections

6.11.11 06.10.11 DSL Minor corrections

6.12.2 05.07.13 DSL IPv6 support. Additional ISUP information.

6.13.0 27.10.14 DSL Minor corrections

6.14.0 15.09.16 DSL Minor corrections

6.15.1 31.08.18 DSL Add M2PA

6.16.0 05.05.22 DSL Update page footers

6.16.1 13.02.23 DSL Update title page.

MAN1200 Revision 6.16.1 PUBLIC Page 3

CONTENTS

1 Introduction ... 6

2 Getting started: SS7 protocols and networks 7
2.1 Protocol layers ... 7

2.1.1 Message Transfer Part (MTP) ... 8
2.1.2 Sigtran M3UA ... 8
2.1.3 Sigtran M2PA.. 8
2.1.4 User Parts... 8

2.2 Message routing and addressing .. 9
2.2.1 Signalling Point Codes .. 9
2.2.2 Service Information Octet .. 9
2.2.3 Routing labels ... 9
2.2.4 ISUP Circuit Identification Codes ... 10
2.2.5 SCCP subsystems .. 10
2.2.6 SCCP Global Titles ... 10

2.3 Signalling components .. 12
2.3.1 Signalling End Points .. 12
2.3.2 Signalling Transfer Points ... 12
2.3.3 Combined Transfer and End Points ... 12
2.3.4 Signalling links and link sets .. 12
2.3.5 Signalling relations .. 13
2.3.6 Signalling routes and route sets .. 13

2.4 Intelligent Network components.. 14
2.4.1 Service Switching Point ... 14
2.4.2 Service Control Point .. 14
2.4.3 Intelligent Peripherals.. 15
2.4.4 Other Intelligent Network components ... 15

2.5 Signalling modes ... 15
2.5.1 Fully associated signalling ... 15
2.5.2 Quasi associated signalling ... 16

3 Aculab SS7 stack architecture .. 17
3.1 SS7 card firmwares .. 17
3.2 SS7 kernel driver .. 18

3.2.1 MTP Level 3 ... 18
3.2.2 Sigtran M3UA ... 18
3.2.3 Sigtran M2PA.. 18
3.2.4 SCCP User Part .. 18
3.2.5 TCAP stub .. 18
3.2.6 ISDN User Part (ISUP) .. 18
3.2.7 Other User Parts ... 18

3.3 MTP testing User Part .. 18
3.4 Call Control Driver and ISUP API... 19
3.5 TCAP API library .. 19
3.6 SCCP API library .. 19

4 LAN distribution of Aculab SS7 .. 20
4.1 Distributed ISUP and TCAP applications .. 20
4.2 Dual-redundant MTP .. 21
4.3 SS7 with Prosody X .. 22

5 Using Aculab MTP ... 23

6 Using Aculab Sigtran M3UA ... 24
6.1 Application Servers and Signalling Gateways .. 24
6.2 Peer-to-peer Nodes .. 25
6.3 Routing Keys and Routing Contexts ... 26
6.4 Traffic Modes .. 26

7 Using Aculab Sigtran M2PA .. 27

8 Using Aculab ISUP .. 28

MAN1200 Revision 6.16.1 PUBLIC Page 4

8.1 ISUP API ... 28
8.1.1 Mapping between Aculab API and ISUP protocol parameters 28

8.2 ISUP helper library ... 35
8.2.1 isup_get_next_parameter() ... 35
8.2.2 isup_get_parameter() .. 35
8.2.3 isup_get_pcompat_info()... 36
8.2.4 isup_lib_version() .. 36
8.2.5 isup_set_parameter() .. 36
8.2.6 Error codes ... 37

8.3 ISUP feature information ... 38
8.3.1 Diversion and forwarding information .. 38
8.3.2 User to user information .. 39
8.3.3 Raw parameters and messages .. 40

8.4 Transmission path switching .. 41
8.4.1 Originating exchanges .. 41
8.4.2 Intermediate exchanges .. 41
8.4.3 Destination exchanges .. 41
8.4.4 Tones and announcements - general .. 42
8.4.5 Ring tone .. 42

8.5 ISUP Continuity test ... 43
8.5.1 Inward continuity check (IAM) ... 43
8.5.2 Inward continuity check test call (CCR) ... 44
8.5.3 Outbound continuity test (IAM) .. 44
8.5.4 Outbound continuity check test call (CCR) .. 44

8.6 System performance considerations .. 45
8.6.1 Maximising throughput .. 45
8.6.2 Avoiding missed calls .. 45

8.7 Using Aculab ISUP with national variants .. 46

9 Using Aculab SCCP .. 47
9.1 SCCP Addressing .. 47

9.1.1 Routing on SSN .. 47
9.1.2 Routing on Global Title ... 47

9.2 SCCP status information ... 47

10 Using Aculab TCAP ... 48
10.1 TCAP protocol and procedures ... 48

10.1.1 TCAP messages ... 48
10.1.2 TCAP components and operations .. 48
10.1.3 TCAP dialogues and transactions ... 48
10.1.4 Unstructured Dialogue .. 49
10.1.5 Structured dialogue ... 49
10.1.6 Dialogue identifiers ... 49
10.1.7 Transaction identifiers ... 49

10.2 Writing Aculab TCAP applications .. 50
10.2.1 Configuration parameters .. 50
10.2.2 ASN.1 API parameters .. 50
10.2.3 SCCP Service Access Points .. 51
10.2.4 TCAP transaction structures ... 51
10.2.5 Building messages .. 51
10.2.6 Sending messages ... 51
10.2.7 Receiving messages ... 52
10.2.8 Decoding messages ... 52
10.2.9 Message event notification .. 52
10.2.10 Encoding/Decoding ASN.1 .. 53

11 Sample applications .. 55
11.1 What the samples do ... 55

11.1.1 Call generator ... 55
11.1.2 “SSP” Call handler .. 55
11.1.3 “SCP” Call validation ... 55

11.2 The sample network ... 58

MAN1200 Revision 6.16.1 PUBLIC Page 5

11.3 Installation and configuration .. 59
11.3.1 Hardware and software installation .. 59
11.3.2 Verifying network connectivity ... 59

11.4 Running the samples ... 59
11.4.1 Compiling and linking .. 59
11.4.2 Running the SSP .. 60
11.4.3 Running the SCP .. 60
11.4.4 Generating calls .. 60

Appendix A : Code examples ... 62
A.1 Example 1 – Flexible ISUP parameter edit on a supported message type 62
A.2 Example 2 – Supporting a nationally significant message 63
A.3 Example 3 – Enabling, receiving, and handling of EV_EXT_RAW_MSG 64

A.3.1 Enabling EV_EXT_RAW_MSG ... 64
A.3.2 Receiving EV_EXT_RAW_MSG and processing raw messages 64

A.4 Example signalling trace ... 66

Table of Figures
Figure 1 - SS7 and the OSI model ...7
Figure 2 - Signalling End Points and Signalling Transfer Points ... 12
Figure 3 - Intelligent Network nodes .. 14
Figure 4 - fully associated signalling between ISUP exchanges ... 15
Figure 5 - Quasi associated signalling between ISUP exchanges .. 16
Figure 6 - Simplified view of Aculab SS7 internal architecture .. 17
Figure 7 - Distributed ISUP and Distributed TCAP architecture .. 20
Figure 8 - Distributed ISUP and Distributed TCAP with dual redundant MTP...................................... 21
Figure 9 - Distributed ISUP using Prosody X and dual redundant MTP .. 22
Figure 10 - M3UA application server and signalling gateway ... 24
Figure 11 - M3UA peer-to-peer.. 25
Figure 12 - Unsuccessful call attempt .. 56
Figure 13 - Successful call attempt .. 57
Figure 14 - Network diagram for sample applications... 58
Figure 15 - Single-chassis implementation of the sample network using a 4-port PM module and two

crossover cables (simpler networks could be tested using just two ports and a single cable) 58

List of tables
Table 1: ISUP messages sent in response to generic call control API calls .. 29
Table 2: Generic call control API events raised on receipt of common ISUP protocol messages (not

including “Extended” API events) ... 29
Table 3: Generic call control API parameters vs. ISUP protocol parameters (the API parameters may

appear in more than one API structure) ... 30
Table 4: Error codes .. 37

MAN1200 Revision 6.16.1 PUBLIC Page 6

1 Introduction
This manual provides guidance for software developers using the Aculab SS7 products. It
provides an overview of SS7 protocols, networks, national and international variants, and
explains the ways in which the services provided by SS7 protocols are made available by the
Aculab software interfaces.

Developers using Aculab SS7 will be required to program to various Application Program
Interfaces (APIs). There are two main APIs for SS7, namely ISUP and TCAP, either or both of
which may be used in a customer application. The terms “ISUP” and “TCAP” will be explained
in detail in later sections of this manual, however, ISUP is essentially used for setup of circuit
switched calls (e.g. voice calls), whilst TCAP is used for transaction based applications such
as mobile text messaging.

For ISUP, the API used is Aculab’s generic Call control API guide, the same API is used for
other call control protocols provided by Aculab, such as ISDN or CAS. The TCAP API is
described in a separate manual, Distributed TCAP API guide.

Applications using ISUP for call setup will need to use the Aculab switch API, see the Aculab
Switch API guide, which is used to connect local circuitry or devices to the network on TDM
timeslots controlled by the ISUP call control API.

During application development, developers may find that they have a need to understand
how to install and configure Aculab SS7. This along with other aspects of system
administration is covered in the SS7 Installation and administration guide. As information
that exists in other documents has, in general, not been replicated in this document, you may
need to read the SS7 Installation and administration guide as well as the various Aculab API
guides and associated documentation.

A sample application, complete with network configuration, is described in section 8, and is
available to Aculab customers as downloadable source code. It illustrates the use of the
various APIs and demonstrates how a single stand-alone computer can be used for the
development and testing of applications.

Further sample code fragments are provided in Appendix A. These may be useful to
programmers who need to develop applications that use some of the more advanced features
of the ISUP or TCAP APIs.

Aculab also offer a comprehensive list of customer training courses, which should assist those
wishing to further expand their knowledge of the topics covered in this manual. Please contact
the Aculab Training Manager for details (email training@aculab.com).

mailto:training@aculab.com

MAN1200 Revision 6.16.1 PUBLIC Page 7

2 Getting started: SS7 protocols and networks
This section provides a brief introduction to SS7 technology; it is not Aculab-specific. If you
are already familiar with SS7, you may be able to skip over most of the detail. In subsequent
sections, explanations will be provided showing how Aculab have implemented the SS7
protocols.

A full and detailed description of all aspects of SS7 protocols would be outside the scope of
this document. If a more detailed description and understanding is needed, please refer to the
ITU-T recommendations (Q.700 series). In the event of any ambiguities or contradictions in
this document, the ITU-T recommendations should be regarded as the authoritative reference.

The following section is based on ITU-T international recommendations. Should you have an
interest in a national variant of SS7, you should refer to appropriate national publications.
National variants of SS7 are usually described in the form of a protocol specification based on
the ITU-T recommendations.

2.1 Protocol layers
SS7 is a layered protocol conforming loosely to the widely recognised OSI seven-layer model.
The protocol layers are known in SS7 as “levels”, and are divided between the Message
Transfer Part levels 1 to 3, which correspond to OSI layers 1 to 3, and the user parts, which
correspond to OSI layers 4 to 7. Figure 1 shows the layered approach to SS7, and how it
maps to the OSI model.

Figure 1 - SS7 and the OSI model

SS7 Level 4: User Parts

TCAP
OSI Layers 4-7

ISUP
OSI Layers 4-7

SCCP
OSI Layer 3

SS7 levels 1-3: Message Transfer Part (MTP)

Signalling Network
OSI Layer 3 - SS7 MTP Level 3 (MTP3)

Signalling Link
OSI Layer 2 - SS7 MTP Level 2 (MTP2)

Signalling Data Link
OSI Layer 1 - SS7 MTP Level 1 (MTP1)

Transaction oriented users,
e.g. GSM MAP, INAP

Circuit switched users,
e.g. Telephony

MAN1200 Revision 6.16.1 PUBLIC Page 8

2.1.1 Message Transfer Part (MTP)
MTP is described in ITU-T recommendations Q.70x (currently, Q.700-Q.707). It provides the
signalling functions equivalent to layers 1 to 3 of the OSI seven layer model.

2.1.1.1 MTP level 1 – signalling data link

Level 1 defines the physical medium in terms of electrical and functional characteristics. A
typical SS7 data link is a 64K bits per second timeslot within an E1/T1 TDM, although other
physical mediums for Level 1 are also possible.

2.1.1.2 MTP level 2 – signalling link

Level 2 defines the procedures for transfer of signalling messages over a level 1 data link.
Level 2 provides detection and recovery of errors that may occur at level 1, and hence it
provides a reliable link for transfer of messages.

2.1.1.3 MTP level 3 – signalling network

Level 3 provides functions for sequenced transport of messages between individual signalling
links and user parts. This includes a network routing (or “transfer”) function for forwarding
traffic received from a signalling link back into the network on a different link. It also provides
transmission and reception of messages between local user parts and signalling links.

One of level 3’s responsibilities is to maintain routing tables so that when a message needs to
be transmitted, it can choose an appropriate signalling link that provides a route towards the
destination.

2.1.2 Sigtran M3UA
M3UA is defined in the IETF specification RFC 4666. It carries the MTP3 service interface (ie
that between MTP3 and SCCP or ISUP) over the IP network using Stream Control
Transmission Protocol (SCTP).

The normal use of M3UA is to connect high throughput TCAP/SCCP applications to the SS7
network (of some telco). It can be used for ISUP but that is less common.

M3UA also supports a ‘loopback’ (IPSP) mode that directly connects two userparts without
going through MTP3.

The Aculab M3UA supports the server (ie MTP3 interface) end of the connection, but it has
restrictions that mean it is only really suitable for testing client (ie SCCP) applications.

Note Since M3UA implements the MTP3 service interface it cannot be used to replace an MTP2 signalling linkset
to interconnect two MTP3 systems.

2.1.3 Sigtran M2PA

M2PA is defined in the IETF specification RFC 4165. It provides the equivalent of MTP2
signalling links over the IP network using Stream Control Transmission Protocol (SCTP).

2.1.4 User Parts
2.1.4.1 ISDN User Part (ISUP)

ISUP is described in ITU-T recommendations Q.76x (currently, Q.760-Q.767), with further
details on supplementary services in ITU-T Q.73x (currently, Q.730-737). ISUP provides the
signalling functions for call setup and establishment of circuit-related services, including both
data and voice circuits. Although the “ISDN” part of the acronym may imply otherwise, ISUP is
used not only for ISDN calls, but also for analogue and POTS (Plain Old Telephone Service)
calls.

In almost all cases, ISUP traffic is sent directly via MTP3. In rare circumstances, it is possible
for ISUP traffic to be sent via SCCP as indicated in figure 1, but this is very unusual and has
not been implemented by Aculab. Historically, ISUP superseded a number of other SS7 user
parts including Telephony User Part (TUP), Data User Part (DUP), and various national user
parts (NUPs).

2.1.4.2 Signalling Connection Control Part (SCCP)

SCCP is described in ITU-T recommendations Q.71x (currently, Q.710-Q.716). It provides
additional networking functionality over and above that provided by MTP3 or M3UA. This
includes a connectionless service and a reliable connection oriented service.

MAN1200 Revision 6.16.1 PUBLIC Page 9

A primary user of SCCP is TCAP (see section 2.1.4.3), which requires only the connectionless
service. SCCP may also be encountered in other applications, such as some internal
interfaces within a GSM network. As mentioned elsewhere, it is also possible for ISUP traffic
to be sent over SCCP, but this mode is rarely encountered.

2.1.4.3 Transaction Capabilities Application Part (TCAP)

TCAP is described in ITU-T recommendations Q.77x (currently, Q.771-Q.775). It is a
transaction-oriented protocol and provides communications for non circuit-related services.
TCAP applications include intelligent networking services such as number translation and
mobile networking, for example, GSM MAP where it is used for management of cell handover,
roaming, and delivery of text messages.

2.1.4.4 Other User Parts

The list of user parts described in the above sections of the document is not exhaustive. SS7
also includes other user parts, some of which are effectively obsolete (see section 2.1.4.1).
Aculab provides support for TCAP/SCCP and ISUP, which are the most commonly used.
Other protocols may be supported through the SCCP and MTP3 API. Please contact Aculab
support for further details.

2.2 Message routing and addressing
Some messages in an SS7 network, specifically those that are entirely handled within MTP2,
relate implicitly to the adjacent protocol entity, i.e. the MTP2 entity at the other end of the
signalling link. Such messages do not require any explicit addressing. Higher protocol layers
may need to communicate with signalling points other than those which are immediately
adjacent, and hence, explicit addressing is required based on signalling point codes and a
service information octet, and any additional SCCP addressing as described below.

2.2.1 Signalling Point Codes

Each Signalling Point (SP) in an SS7 network is identified by a signalling point code, which is
unique within the scope of the network. The number of bits in a point code varies between
networks. The ITU-T recommendation for the international network is that point codes should
be 14 bits long and this has been adopted in most national networks, but there are exceptions
such as the USA and China, where 24 bit point codes are used.

2.2.2 Service Information Octet

When a message needs to be processed by a protocol layer above MTP2, the initial level of
addressing is the Service Information Octet (SIO). The SIO is comprised in turn of two fields
known as the Service Indicator (SI) and Network Indicator (NI). The SI identifies individual
user parts, such as ISUP and SCCP. The NI specifies whether the User Part is international or
national. For example, a Signalling Point could provide two different ISUP variants, one for the
international network addressed by the international SI, and the other for local national traffic
addressed by the national SI.

2.2.3 Routing labels

Messages that are to be handled by MTP3, or by the user parts, include a field called the
“routing label”. The routing label includes an Originating Point Code (OPC) and a Destination
Point Code (DPC), these are the sender’s and recipient’s signalling point codes.

The routing label may also contain a field known as the Signalling Link Selector (SLS). MTP3
includes procedures to ensure that all messages with the same SLS are delivered in the
sequence in which they are sent. This usually requires that the messages be sent in sequence
on the same signalling link. The user parts provide the SLS parameter, which enables them to
request in-sequence delivery of streams of messages. Where appropriate, a User Part can
allow MTP3 to load share traffic by assigning different SLS values to different messages.

An example of sequence delivery applicability would be the dialled digits that accompany a
telephone call. It is clearly important that for each individual call the digits are delivered in the
sequence they are sent. In fact, the ISUP protocol detail requires that all messages (not just
dialled digits) for the same circuit (not just the same call) must be delivered in the sequence
they are sent. This is achieved by using the same SLS for all messages relating to a given
ISUP circuit. Different ISUP circuits can, however, use different SLS values, thus allowing

MAN1200 Revision 6.16.1 PUBLIC Page 10

ISUP traffic to be load shared between available links.

Some MTP3 messages, relating to management of signalling links, contain a Signalling Link
Code (SLC) instead of (and occupying the same position in the message as) the SLS. The
SLC allows individual links in a link set, (see section 2.3.4) to be explicitly addressed. The
protocol for messages that use an SLC is designed such that sequenced delivery is not a
requirement. In some national variants, the SLC is a separate field.

2.2.4 ISUP Circuit Identification Codes

Within a Signalling Point that contains an ISUP User Part, there will be a number of different
circuits, for example, individual timeslots within E1/T1 TDM trunks upon which calls may be
established. To distinguish between these different circuits, all ISUP messages contain a
Circuit Identification Code (CIC), which identifies the circuit to which the message refers.

Where ISUP is used for call setup over E1/T1 TDM circuits, there is a direct mapping between
CICs and timeslots. This CIC numbers and the mapping to trunks and timeslots is usually
obtained from the network provider. With the Aculab SS7 the CIC numbers are specified when
the 'firmware' for a trunk is downloaded.

2.2.5 SCCP subsystems

Within a Signalling Point that contains an SCCP User Part, there may be several SCCP users.
Each user is known as a “Sub System” and is assigned a Sub System Number (SSN) that is
unique within the signalling point. Within a network, an SCCP user can therefore be uniquely
addressed by its signalling point code and SSN. These can be further qualified by the NI to
indicate whether the network is a local national network, or if it is the international network.

The following are examples of some of the SSNs assigned by ITU-T:

SSN 0x0=SSN not known/not used

SSN 0x1=SCCP Management

SSN 0x2=Reserved

SSN 0x3=ISUP

SSN 0x4=OMAP (Operations, Maintenance and Administration Part)

SSN 0x5=MAP (Mobile Application Part)

SSN 0x6=HLR (Home Location Register)

SSN 0x7=VLR (Visitor Location Register)

SSN 0x9=EIC (Equipment Identification Centre)

SSN 0xA=AUC (Authentication Centre)

Network-specific SSNs may also be used. The ITU-T recommendation is for these to be
allocated descending values from 0xfe downwards.

2.2.6 SCCP Global Titles

It is not always convenient to address SCCP users explicitly by point code and SSN, as this
would require each and every Signalling Point in the network to have detailed knowledge of
the point codes and SSNs of every other signalling point, together with a mapping between
SSNs and the various services to which they correspond. In the case of international traffic, it
would be very unlikely that each of the networks involved would be aware of individual point
code allocations within one another’s networks. These problems are resolved by a more
abstracted level of SCCP user addressing known as “Global Titles”, which removes the need
to know the point code and SSN of the remote SCCP user.

An SCCP Global Title serves to uniquely identify an SCCP user or service, but does not
require distant users of that service to know the actual point code and SSN of the network
node where it is implemented.

As an SCCP message traverses the SS7 network each node need only determine the 'next
hop' pointcode, this may be based on network availability, network or application loadshare or
just delegating the actual routing to another system. The Global title may be rewritten as the
message is forwarded, typically to add/remove a suffix or convert a 'service' GT into that of a
specific instance of an application.

The first backwards message always contains the GT of the actual application that responded.

MAN1200 Revision 6.16.1 PUBLIC Page 11

This is used for further messages (rather than the original 'service' GT) so that messages get
routed to the same copy of the application.

Before delivery to an SCCP application, messages addressed by Global Title undergo a
translation process known as Global Title Translation, which converts the Global Title into an
explicit point code and SSN. The advantage of this approach is that it is only the translating
node that needs to know the actual point codes and SSNs of the SCCP applications, and so
only the translating node needs to keep track of their availability within the network.

Global titles are very much like ordinary telephone numbers, at times it is necessary to add (or
remove) national prefixes, or convert (the equivalent of) 0800 numbers into geographic
numbers.

MAN1200 Revision 6.16.1 PUBLIC Page 12

2.3 Signalling components
All signalling points within an SS7 network contain MTP levels 1-3. Each individual signalling
point may then function as a Signalling End Point and/or a Signalling Transfer Point, as shown
in figure 2 and then described below.

Figure 2 - Signalling End Points and Signalling Transfer Points

2.3.1 Signalling End Points

Some (not all) signalling points may contain one or more user parts capable of sending or
receiving User Part network traffic. For example, an ISUP telephone exchange would include
the ISUP User Part. Signalling points that include user parts are called either SEPs (Signalling
End Points), or sometimes just SPs (Signalling Points).

2.3.2 Signalling Transfer Points

When a Signalling Point receives a message that needs to be delivered to MTP3 or a User
Part, it may find that the destination point code in the routing label is not its own point code.
Under these circumstances some signalling points have the ability to retransmit the message
back out on another link that provides a route towards the desired destination. This is known
as the “transfer” function, and such signalling points are known as Signalling Transfer Points
(STPs).

STPs share some of the characteristics of SCCP nodes that perform Global Title Translation
(see section 2.2.6), in that they both forward messages on towards their final destination.
Global Title Translation is an SCCP User Part function, so strictly speaking it is not performed
by a node that contains only an STP. However, it is not unusual for a Signalling Point that
serves as an STP for messages addressed by point code (or point code and SSN), to also
include the SCCP Global Title Translation function in which case it is often loosely referred to
as an STP.

2.3.3 Combined Transfer and End Points

In some networks it is common to find a Signalling Point that is not only capable of the MTP3
transfer function, but also includes one or more user parts. For example, a network node may
be capable of terminating ISUP traffic for its own signalling point code whilst acting as an STP
for traffic addressed to other signalling points. Such a Signalling Point includes STP and SEP
functionality, and is sometimes referred to as a Signalling Transfer End Point (STEP).

2.3.4 Signalling links and link sets

As described in section 2.1.1, signalling links are the medium by which two interconnected
signalling points can exchange messages. There may be more than one parallel link
connecting the same two signalling points, in which case the entire set of parallel links are
known as a link set.

Each signalling link is assigned a Signalling Link Code (SLC) that uniquely distinguishes it
from the other links in the same link set. The ITU-T recommendation for the international
network is that an SLC should be four bits in length. Four bit SLCs have also been adopted by
all major national specifications, so the number of links in a link set is normally restricted to 16.

MTP3

MTP2

MTP1

MTP2

MTP1

MTP3

MTP2

MTP1

User
Part

MTP3 MTP3

MTP2

MTP1

User
Part

MTP3

Signalling End Point Signalling Transfer Point Signalling End Point

MAN1200 Revision 6.16.1 PUBLIC Page 13

2.3.5 Signalling relations

A signalling relation is the logical association between a User Part within a signalling point,
and a remote user part in some other signalling point with which it is able to exchange
messages.

A signalling relation may or may not correspond to a direct physical connection. Where the
two user parts are interconnected via an STP, there is no direct signalling connection. If
however the two user parts happen to be ISUP, then the switched voice/bearer circuits will
form a direct physical connection that corresponds to the signalling relation. See also section
2.5, which provides more details about signalling via STPs.

2.3.6 Signalling routes and route sets

A signalling route is a predetermined path that a message takes from the originating User
Part, through any number of STPs to the Signalling Point that contains destination User Part.
For any given signalling relation there may be several alternative routes, in which case the
signalling route set is the set of all routes that can be used for the relation. Individual routes
within a route set can be assigned different priorities, allowing some to be used in preference
to others, depending upon availability.

From the perspective of a Signalling Point that needs to send (or transfer) a message towards
a remote User Part, the MTP only has visibility of the next “hop” in the route; subsequent hops
are selected in turn by each STP that the message passes through. Thus, for the sake of
configuring routing rules for an individual signalling point, it is only the immediately adjacent
signalling points that need to be considered.

There is no limit to the number of routes in a route set, but most networks are designed to
restrict the number of routing alternatives at an SP to a small number (often 2), which provides
adequate fault-tolerance in the event of failure.

MAN1200 Revision 6.16.1 PUBLIC Page 14

2.4 Intelligent Network components
By combining the circuit-switched capabilities of ISUP with the transaction-oriented features of
TCAP, it becomes possible to build “intelligence” into the network, allowing calls to be handled
based on dynamic criteria, possibly involving interaction with the caller.

There are various standards and protocols for intelligent networking, including ETSI Intelligent
Network Application Protocol (INAP), Bellcore Advanced Intelligent Network (AIN) and other
proprietary protocols. Most intelligent networks are designed around similar discrete
component types including Service Switching Points, Service Control Points, and Intelligent
Peripherals as illustrated in figure 3 and then described below.

Figure 3 - Intelligent Network nodes

2.4.1 Service Switching Point

A Service Switching Point (SSP) is an ISUP exchange that includes the ability to make
“intelligent” routing decisions, usually involving dialogue with a Service Control Point (see
section 2.4.2). A common example is a call to an 800 freephone number, where the call
passes through an SSP that in turn queries an SCP to translate the non-geographic freephone
number into a geographic subscriber number towards which the call can be routed.

The term “SSP” is often used to describe any ISUP exchange that is capable of processing a
call, but in this document “SSP” is used only in reference to exchanges with intelligent
switching capability.

2.4.2 Service Control Point

A Service Control Point (SCP) may contain a database together with service control logic.
Following the freephone example cited in section 2.4.1, the SCP would maintain a mapping of
freephone numbers to actual subscriber numbers. An SCP may take account of other factors
such as the caller’s geographic location or the load on individual call centres, but the SSP that
queries a freephone number can simply “trust” on the SCP to make the right decision.

MAN1200 Revision 6.16.1 PUBLIC Page 15

2.4.3 Intelligent Peripherals

In addition to SSPs and SCPs, an Intelligent Network would typically include Intelligent
Peripherals that provide additional service functionality on-demand to SSPs or SCPs.

One common application of an Intelligent Peripheral is to provide a Specialised Resource
Function (SRF) to interact by voice with the caller, possibly involving DTMF or speech
recognition. In this scenario, the SCP would need to instruct the SRF of the actions it needs to
perform as well as instructing the SSP to connect the speech paths. The SRF then responds
to the SCP allowing it to make an appropriate decision about how the call should be handled.

Use of Intelligent Peripherals can offer cost savings for a network. For example, by using
Intelligent Peripherals to perform DTMF or speech-recognition during call setup, the speech
processing resource may be shared between many different calls as it is only used during the
setup phase of each call. This contrasts with other, more traditional IVR (Interactive Voice
Response) technologies that could require the speech resource to be assigned for the entire
duration of the call.

2.4.4 Other Intelligent Network components

The components described so far are only a subset of the components likely to be
encountered in a real network. Other component types may exist, such as Service Switching
Control Points (SSCPs) that combine both SSP and SCP functions, and Service Data Points
(SDPs) that provide a stand-alone data resource. A detailed description of all possible
components is beyond the scope of this document.

2.5 Signalling modes
SS7 signalling involves delivery of a message from a User Part within a signalling end point to
a peer User Part in some other signalling end point. The two end points may either be directly
connected by a signalling data link, or they may be indirectly connected via one or more
STPs. This distinction is illustrated in figures 4 and 5, and explained in more detail below.

2.5.1 Fully associated signalling

In fully associated mode, the traffic for a signalling relation is usually exchanged directly
between the User Parts without passing through any STPs. In the case of ISUP, exchanges
with directly interconnected voice/data circuits would have a direct signalling link set between
each pair of exchanges.

ISUP

Exchange

ISUP

Exchange

ISUP

Exchange

ISUP

Exchange

ISUP bearer circuits

MTP signalling links

Figure 4 - fully associated signalling between ISUP exchanges

If the direct signalling link fails, an MTP3 route via another adjacent ISUP exchange (acting as
an STP) would be used in order to maintain connectivity.

It is rare for TCAP/SCCP traffic to use fully associated signalling, but it is commonly used for
ISUP in some regions (including the UK).

MAN1200 Revision 6.16.1 PUBLIC Page 16

2.5.2 Quasi associated signalling

In quasi-associated mode, the traffic between the user parts passes through one or more
STPs. In the case of ISUP exchanges with directly interconnected voice/data circuits to other
exchanges, each exchange need only have a signalling link set to the adjacent STP, which
can then route the signalling traffic (possibly via other STPs) towards the destination User
Part.

Signalling

transfer

points within

network

ISUP

Exchange

ISUP

Exchange

ISUP

Exchange

ISUP

Exchange

ISUP bearer circuits

MTP signalling links

Figure 5 - Quasi associated signalling between ISUP exchanges

Quasi-associated signalling is widely used for TCAP/SCCP traffic, and is used for ISUP in
some regions (including the USA).

MAN1200 Revision 6.16.1 PUBLIC Page 17

3 Aculab SS7 stack architecture
The protocols and network features described in section 2 have been implemented by Aculab
in such a way as to deliberately conceal most of the protocol detail from the user. This means
that application developers can concentrate on the end-user services and applications.

In order to make best use of Aculab’s SS7 it may help to have an appreciation of aspects of
the implementation detail that is normally concealed by the APIs. This section explains the
internal structure and rationale behind some of the major software components, and how they
relate to the underlying operating system and processor environments, as well as to other
Aculab components.

The major software components are illustrated in figure 6.

Figure 6 - Simplified view of Aculab SS7 internal architecture

This diagram is a simplified view and does not include all software components. The software
architecture is subject to change as Aculab develops these products, and customers do not
necessarily have any interface to the various software components that are shown.

3.1 SS7 card firmwares
The SS7 card firmware supports MTP1 data links and the physical layer protocol for
voice/data timeslots within the E1/T1 TDM. Aculab SS7 allows signalling links and voice
channels to share different timeslots within a common E1/T1, or to be assigned to separate
E1/T1s if preferred.

SS7 MTP2 demands high volume traffic throughput (up to ~2600 messages per second per
link) and very low (millisecond) latency. These place a high demand on the local processing
hardware. However, most of the intense MTP2 traffic, such as Link Status Signal Units

Customer application, links with either or both

of call control & TCAP

ss7maint command line tool

(includes MTP test user part)

Call control (ISUP)

API library
TCAP API library

Generic Call Control

Kernel Driver

SS7 Kernel Driver

Non - SS7

(ISDN, CAS

etc.)

SS7

Bearer

Circuits

SS7

MTP2

MTP1

MTP3 Protocol

User space

Kernel

Card firmware

E1/T1

Lines

E1/T1

Lines

E1/T1

Lines

LAN connecting

to SS7 drivers in

other chassis

ISDN

User Part

(ISUP)

Other

User

Parts

SCCP

MAN1200 Revision 6.16.1 PUBLIC Page 18

(LSSU) and Fill In Signal Units (FISU), is handled entirely within MTP2 and never needs to be
passed to MTP3.

To meet these demands MTP2 is implemented on its own processor and connects to the
E1/T1 TDM links through the card’s TDM switch. This reduces the load on both the card’s
general purpose CPU and the host system’s CPU, while guaranteeing the required response
times.

On the Prosody X V1 cards the MTP2 code runs on one of the DSPs (as would tone detect for
CAS), on the V3 card it runs on soft CPUs on one of the FPGAs.

3.2 SS7 kernel driver
Most of the Aculab SS7 protocol stack runs on the application system in a large kernel driver.
This makes it easy for multiple applications to use the services.

Any TCP and SCTP connections are made directly from the driver code (ie without using a
daemon process). This significantly reduces the cost of sending and receiving data.

Aculab supplies an implementation of SCTP for windows that can only be used by SS7. On
Linux the normal kernel SCTP implementation is used.

3.2.1 MTP Level 3

Handling of traffic by MTP3 in relation to any given MTP2 signalling link usually involves
interaction with traffic relating to other signalling links. Put another way, MTP3 acts as a focal
point for all links in a signalling point. For that reason, MTP3 it is not well-suited to being
hosted on any one card “firmware”, as that would localise it to the signalling traffic handled by
the links on that card. Thus, in Aculab’s SS7 MTP3 runs on the system host processor.

3.2.2 Sigtran M3UA

M3UA does not require any Aculab firmware. Instead, M3UA makes use of the host machine’s
network interfaces using SCTP. It is implemented in the kernel in order to interface to SCTP.

3.2.3 Sigtran M2PA

M2PA signalling links are implemented in kernel. They don’t have the same latency
requirements as MTP2 links, but a modern cpu can transfer very large numbers of messages.

3.2.4 SCCP User Part

The SCCP protocol is implemented in the kernel. This is necessary to route received
messages to the correct user.

3.2.5 TCAP stub

Although most of the TCAP protocol is implemented in the userspace library, there is a small
kernel component that parses receive messages so that they can be passed to the correct
application.

3.2.6 ISDN User Part (ISUP)

The ISUP interface into MTP3 or M3UA passes through Aculab’s generic call control driver
and API. This allows the SS7 ISUP API to share common code-path with the company’s other
call control protocols (e.g. CAS, ISDN), and ensures consistency in API detail between ISUP
and the other call control protocols.

3.2.7 Other User Parts

Traffic that is neither for ISUP nor TCAP may be accessible through additional Aculab
libraries. One user of this interface is the MTP testing User Part as described in section 3.3.

3.3 MTP testing User Part
The Aculab “ss7maint” tool has been included in figure 1 to show its ability to provide one of

the occasionally required user parts, namely the “MTP testing User Part” as described in ITU-
T Q.782. In most situations, this User Part is used only during laboratory testing, so it need not
be made a permanent part of a customer’s application. Its inclusion in ss7maint relieves the

customer’s application of the need to implement that User Part.

MAN1200 Revision 6.16.1 PUBLIC Page 19

ss7maint is a command-line tool with other functions in addition to that described above,

including stack configuration, maintenance and debugging during application development as
well as after deployment. An example protocol trace from ss7maint is provided in section A.4.

For a full description of ss7maint, please refer to the SS7 Installation and administration

guide.

3.4 Call Control Driver and ISUP API
This is the interface by which customers can implement call control applications using Aculab
ISUP. It is exactly the same interface as is used for other Aculab call control protocols, such
as ISDN and CAS. This provides a valuable simplification for many users, and especially for
any application that may also have to run with other protocols. Application developers can
usually regard ISUP as “just another protocol”.

3.5 TCAP API library
The TCAP API is implemented as a user-space library. The API is fully described in the
Aculab Distributed TCAP API Guide.

There is a small TCAP kernel component that allocates blocks of TCAP transaction id values
to applications and routes received TCAP messages to the correct application. This allows
multiple TCAP applications to use the same SSN.

The TCAP applications always connect to the SS7 driver using TCP. This means that the
applications can be run on a different system.

3.6 SCCP API library
The SCCP API library allows direct access to both connectless and connection-oriented
SCCP. The API is fully described in the SCCP API guide.

The SCCP and TCAP API interfaces share a lot of common code.

MAN1200 Revision 6.16.1 PUBLIC Page 20

4 LAN distribution of Aculab SS7
It can be advantageous to distribute the Aculab SS7 software, as well as user-written
application software, across a Local Area Network (LAN) which can provide increased
resilience and scalability. Aculab SS7 supports a number of different options for LAN
distribution as described below.

4.1 Distributed ISUP and TCAP applications
For both ISUP and TCAP applications, it is possible for an application providing a large-scale
service to be implemented using only a small number of signalling links, with all the links
terminated in a single chassis. This can place considerable performance demands on the
customer application, as well as the other software (including the Aculab components) running
in the chassis. In the case of ISUP a large-scale application may imply a large number of
cards, causing further problems relating to backplane capacity and power requirements. For
both ISUP and TCAP applications such single-chassis systems are vulnerable, in the event of
failure of that one chassis, to catastrophic failure of the entire system.

Distributed ISUP and TCAP overcome the problems listed above by spreading the load
among a number of separate chassis. Each of the chassis operates independently, and failure
of any one chassis does not affect the others, so in many cases low-cost chassis can be used
which may also allow the possibility of overall cost saving.

When using distributed applications, there can be a number of different chassis, each running
TCAP applications and/or ISUP applications, and an additional chassis (or two – see section
4.2) providing the signalling links. It is optionally possible to run ISUP or TCAP applications in
the signalling chassis as well. The networking architecture for distributed ISUP is illustrated in
figure 7.

Figure 7 - Distributed ISUP and Distributed TCAP architecture

ISUP Voice/Data Bearer timeslots

Distributed ISUP/TCAP Host

Application

Distributed

TCAP API

Call control

API

ISUP

Distributed ISUP/TCAP Host

Application

Distributed

TCAP API

Call control

API

ISUP

Distributed ISUP/TCAP Host

Application

Distributed

TCAP API

Call control

API

ISUP

MTP3 Host

Application

Distributed

TCAP API

Call control

API

ISUPSCCP

MTP

Signalling links

Local Area Networks

MAN1200 Revision 6.16.1 PUBLIC Page 21

4.2 Dual-redundant MTP
Section 4.1 explained how TCAP and ISUP functionality can be distributed among a number
of physically separate chassis, providing scalability as well as resilience for user’s
applications. When used as shown in Figure 7 however, the distributed applications still
depend on the single MTP system that is shared by all application chassis. To overcome this
potential weakness, it is also possible to add a second MTP host, thus eliminating any single
point of failure.

The dual MTP configuration appears to the network as a single point code, with traffic load
shared amongst all available links. In the event of failure of any one or more links, or failure of
an entire MTP3 host chassis, the surviving links can continue to carry the traffic. The
application hosts are unaffected by such failures. In the event that an ISUP chassis should
fail, ISUP calls for circuits in other chassis are not disrupted, and this applies to calls in
transient states as well as stable calls. The networking architecture for dual redundant MTP,
together with distributed applications, is illustrated in figure 8.

Figure 8 - Distributed ISUP and Distributed TCAP with dual redundant MTP

The link between the two MTP3 systems is implemented as a normal linkset typically with two
'signalling links' on two TCP connections - one established by each system. With two separate
IP subnets this gives resilience against some failures of the local network infrastructure.

ISUP Voice/Data Bearer timeslots

Signalling links

MTP3 Host

Application

Distributed

TCAP API

Call control

API

ISUPSCCP

MTP

MTP3 Host

Application

Distributed

TCAP API

Call control

API

ISUPSCCP

MTP

Distributed ISUP/TCAP Host

Application

Distributed

TCAP API

Call control

API

ISUP

Distributed ISUP/TCAP Host

Application

Distributed

TCAP API

Call control

API

ISUP

Distributed ISUP/TCAP Host

Application

Distributed

TCAP API

Call control

API

ISUP

Local Area Networks

MAN1200 Revision 6.16.1 PUBLIC Page 22

4.3 SS7 with Prosody X
The LAN distribution features already described can also be utilised in conjunction with
Prosody X, in which case each Prosody X card can be configured as a stand-alone resource
on the LAN and controlled by applications and protocol stacks running on one or more
separate host chassis.

When using Prosody X for the provision of ISUP bearer circuits, the number of ISUP
application hosts is independent of the number of remote Prosody X cards. At one extreme a
separate host chassis could be used for each Prosody X card, and at the other extreme a
single host chassis could control all ISUP circuits for a large number of Prosody X cards. The
networking architecture is illustrated in figure 9.

Although not shown in figure 9, it is also possible for Prosody X cards carrying MTP signalling
links to be remotely accessed via the LAN in exactly the same way as the Prosody X cards
supporting ISUP voice/bearer circuits.

Figure 9 - Distributed ISUP using Prosody X and dual redundant MTP

MTP3 Host

Signalling links

ISUP Voice/Data Bearer timeslots

Call control API

ISUP

Application

Distributed ISUP Host

Prosody X

Prosody X

Prosody X

Local Area Networks

MTP3 Host

Call control API

ISUP

Application

MTP

Call control API

ISUP

Application

MTP

Call control API

ISUP

Application

Distributed ISUP Host

MAN1200 Revision 6.16.1 PUBLIC Page 23

5 Using Aculab MTP
The MTP has been implemented in such a way that for the majority of application
programmers, whose chief concern is normally ISUP and/or TCAP, the MTP to a large extend
can be disregarded.

Other applications that require a special MTP user part not supplied by Aculab may still be
able to use the MTP3 through an MTP3 API. Please contact Aculab support for further
details.

In either case, the MTP does have to be correctly configured with parameters that correspond
to those of the peer MTP nodes to which it connects, and to specify the routing rules for
delivery of User Part traffic via appropriate signalling links. For a full description of how to
configure Aculab MTP, please refer to the SS7 Installation and administration guide.

MAN1200 Revision 6.16.1 PUBLIC Page 24

6 Using Aculab Sigtran M3UA
The IETF specify two methods of working for M3UA, application server / signalling gateway
and peer-to-peer.

In an application server / signalling gateway configuration, MTP3 messages from a traditional
SS7 signalling point are received in the gateway. At the gateway, the MTP3 messages are
converted to M3UA messages and sent over SCTP/IP to the application server. The
application server distributes the messages to the correct SCCP or ISUP user part. In other
words the MTP3 service interface is extended over the IP network.

In contrast, the peer-to-peer method allows two applications to communicate with each other
over M3UA without the need for any traditional SS7 network.

6.1 Application Servers and Signalling Gateways

Figure 10 - M3UA application server and signalling gateway

To configure an application server, an [M3UA] section is required in the stack configuration file
containing a [CLIENT] subsection using the ‘host=hostname’ parameter to identify the IP

address of the signalling gateway to connect to.

To have any effect, a minimum of one routing key is also required to identify a remote
signalling point in the SS7 signalling network. See section 6.3.

To configure a signalling gateway, an [M3UA] section and an [MTP3] is required. The [M3UA]
section should contain a [SERVER] subsection. Since the Aculab SS7 MTP only supports
signalling end point functionality, the local point code of the signalling gateway must match the
local point code of any application servers that wish to connect.

Unless dynamic creation of routing keys is configured (key_management=dynamic) at least

one routing key must be defined. See section 6.3.

For a full description of how to configure application servers or signalling gateways, please
refer to the SS7 Installation and administration guide.

IP Network SS7 Signalling Network

SCTP

M3UA

IP

MTP3

MTP2

MTP1

Interworking
Function

TCAP
SCCP

ISUP

M3UA

IP

SCTP

Application

MTP2

MTP1

MTP3

TCAP
SCCP

ISUP

Application

Application Server
(client)

Signalling Gateway
(server)

Traditional SS7
signalling point

MAN1200 Revision 6.16.1 PUBLIC Page 25

6.2 Peer-to-peer Nodes

Figure 11 - M3UA peer-to-peer

In the peer-to-peer method of working, there is no need for a traditional SS7 signalling
network. All communication between the SCCP or ISUP peers is done directly using M3UA
over SCTP/IP.

Since there is no MTP3, messages can only be sent to the remote peer. M3UA contains no
concept of a routing function. Messages can not be routed beyond the remote peer.

In the IETF specification, RFC 4666, a process that uses M3UA in peer-to-peer mode is
defined as an IP Server Process (IPSP). IP Server Processes are defined within an [M3UA]
section with either an [IPSP_CLIENT] or an [IPSP_SERVER] subsection.

IPSP clients always initiate M3UA associations to the remote peer, whereas IPSP servers
expect the remote peer to begin the initiation. For a system to function correctly, an IPSP
client must be configured at one peer node and an IPSP server at the other.

To configure an IPSP client the IP address of the remote host to connect to must be specified.
This is configured using the ‘host=hostname’ parameter. In addition, a routing key that

identifies the point code of the remote peer must also be defined. See section 6.3.

For IPSP servers, routing keys are required unless dynamic creation of routing keys is
configured (key_management=dynamic). See section 6.3.

For a full description of how to configure peer-to-peer nodes, please refer to the SS7
Installation and administration guide.

IP Network

Peer-to-peer node
(IPSP client)

TCAP
SCCP

ISUP

M3UA

IP

SCTP

Application

Peer-to-peer node
(IPSP server)

TCAP
SCCP

ISUP

M3UA

IP

SCTP

Application

MAN1200 Revision 6.16.1 PUBLIC Page 26

6.3 Routing Keys and Routing Contexts
An M3UA server can distribute received traffic between its clients based on the SS7 point
codes and service indicator (SI) of the received MTP3 routing label. A ‘routing key’ is a group
of point code pairs and SI values that (in the terms of RFC 4666) identifies all the traffic for an
Application Server. A ‘routing context’ is a 32bit unsigned integer that identifies a single
routing key. Since the Aculab SS7 stack only supports a single local point code (per stack
instance) the local point code is fixed.

An M3UA association (SCTP connection) can carry traffic for more than one routing
key/context, and traffic for a single routing key/context can be sent over several M3UA
associations. However an SS7 relation (both point codes + SI) can only occur in a single
routing key.

If the routing key management procedures are not used then the same routing context should
be configured at the client and server (i.e. they should have the same numeric value and
identify the required traffic). If a client has only a single routing context configured, the Aculab
M3UA code will (by default) wait for the first notify message from the server and use any
routing context in it for further requests.

If the key management procedures are used then the routing keys configured at the client and
server must exactly match (i.e. they must specify exactly the same point codes and SI values),
but the routing contexts need not. The server can also be configured to dynamically create
routing keys in response to requests from clients.

Typically a client will use local rules to determine which M3UA connection (or MTP3 link) is
used for outbound data, whereas an M3UA server selects between its connected clients
based on their registered routing keys (or those that are implicitly registered based on the
client’s IP address when the registration procedures aren’t used).

The Aculab M3UA client implementation doesn’t really have the notion of an ‘Application
server’. TCAP applications share a common SCCP using SCCP routing rules. So M3UA treats
a routing key as a set of SS7 relations (point code pair + SI) that are processed (by M3UA) as
a single entity, and a routing context as an integer handle for such a relation. TCAP
applications need know nothing about these address groups – but, if required, may use the
SS7 maintenance API to dynamically activate and deactivate individual routing contexts.

Routing keys are defined in the Aculab SS7 stack configuration file in a [ROUTING_KEY]
subsection of the [M3UA] section. Each [ROUTING_KEY] section contains one or more
[ADDRESS] subsections – each corresponds to a single grouping of destination address,
service indicators and originating point code list within an M3UA routing key parameter to a
registration request message. RFC 4666 marks the ‘originating point code list’ (i.e. the remote
point codes) as optional, and allows a ‘mask’ to be applied to the point code. The Aculab
M3UA code requires the originating point code list and does not support point code masks
here (they are supported in DUNA/DAVA indications).

6.4 Traffic Modes
The three different traffic modes defined in the M3UA standard can be configured in the
Aculab M3UA using the ‘traffic_mode’ parameter. The three modes are:

• Override – indicates that the client or IPSP client requests all traffic. This traffic mode is
used when there is only one client or when a number of clients are used in a working /
standby configuration.

• Loadshare – indicates that this client or IPSP client wishes to share traffic with any other
clients or IPSP clients. This traffic mode is used when the clients are configured to share
the load. In the Aculab M3UA, loadsharing is done on the SLS value of the message.

• Broadcast – indicates that this client or IPSP client wishes to receive the same messages
as any other client or IPSP client. Possible uses for this mode are hot-standby or
monitoring of traffic.

All the users of single routing context must request the same traffic mode.

MAN1200 Revision 6.16.1 PUBLIC Page 27

7 Using Aculab Sigtran M2PA
M2PA signalling links are configured by adding an [M2PA] subsection to the [MTP3]
[DESTINATION] section of the ss7 configuration file. They are completely transparent to the
user parts.

A linkset can contain multiple M2PA signalling links (or even a mixture of MTP2 and M2UA
ones – but that would be silly!).

Multiple connections between the same pair of hosts normally require different port SCTP
numbers. For tests between Aculab systems (eg loopback to 127.0.0.1) a password can be
specified and then the same port number used for all the connections.

Because the socket interface uses the client-server model it isn’t possible to have a socket
repeatedly send out SCTP INIT chunks while ignoring the ABORT responses returned
because there is no peer application. One end of the connection must be configured with
listen=y to wait for the incoming SCTP connection.

MAN1200 Revision 6.16.1 PUBLIC Page 28

8 Using Aculab ISUP

8.1 ISUP API
Aculab’s ISUP API is exactly the same generic API used by other Aculab call control protocols
described in the Call control API guide. The information provided here supplements that API
guide.

It is also necessary to ensure that ISUP is correctly configured with parameters that
correspond to the peer ISUP to which it connects. For a full description of how to configure
Aculab ISUP, refer to the SS7 Installation and administration guide.

Some developers may need to have access to the individual raw protocol messages and
parameters rather than using the Aculab generic abstraction. This includes those who are
“specialised” in SS7 and gain no benefit from the generic API, and those who use the generic
API but need to enhance it for a customised application or network feature. This is possible
using the “Flexible ISUP API” extensions, which provides access to raw ISUP messages and
parameters, and a library of “helper” functions for constructing these parameters.

Refer to the call control API for details of the flexible ISUP raw message and parameter
interface. Further code examples can be found in Appendix A of this document.

8.1.1 Mapping between Aculab API and ISUP protocol parameters

One aim of the generic call control API is to abstract protocol-dependent signalling information
so that the user can largely disregard the underlying protocol details. When an API function is
called that requires an ISUP message to be sent, the SS7 driver will convert the information
provided at the API into a suitable combination of ISUP messages and parameters. When an
ISUP message is received, the SS7 driver converts it into suitable event and parameter
notifications that are delivered via the API. The point to note is that, in each case, the driver
converts between ISUP protocol and the generic API and hence the user does not need to
understand the ISUP protocol details.

Tables 1 to 3 illustrate how some of the generic API functions and parameters may
correspond to ISUP protocol messages. The conversion between API parameters and
protocol equivalents is complex, depends upon state transitions within the drivers, and may
change as Aculab develops the software so these tables should not be relied on under all
circumstances. If an application needs explicit control over ISUP message and parameter
content then it may be advisable to use the flexible ISUP API extensions (see section Error! R
eference source not found.).

Message abbreviations used in tables 1 to 3:

IAM Initial Address Message
SAM Subsequent Address Message
CPG Call Progress
ACM Address Complete Message
REL Release Message
RLC Release Complete Message
COT Continuity Message
CCR Continuity Check Request Message
RSC Reset Circuit Message
GRS Circuit Group Reset
BLO Blocking Message
UBL Unblocking Message
CGB Circuit Group Blocking Message
CGU Circuit Group Unblocking Message

MAN1200 Revision 6.16.1 PUBLIC Page 29

Table 1: ISUP messages sent in response to generic call control API calls

Generic API Call ISUP Protocol Message Notes
call_openout IAM -
call_feature_openout IAM -

call_send_overlap SAM -
call_proceeding ACM or CPG 1
call_incoming_ringing ACM or CPG 1
call_progress ACM or CPG 1
call_disconnect REL or RLC -
call_release REL or RLC -
call_accept CON or ANM, or ACM followed

by ANM
2 3

call_maint_ts_block BLO -

call_maint_ts_unblock UBL -
call_maint_port_block CGB -

call_maint_port_unblock CGU -
call_maint_port_reset GRS or RSC -

Table 1 notes:

1. ACM for the first backwards message, CPG for subsequent requests.

2. For ITU-T variants: ACM (if not already sent) followed by ANM. If the sending of CON is
enabled in the stack configuration file CON will be sent instead of ACM and ANM.

3. For ANSI variants ANM is always sent.

Table 2: Generic call control API events raised on receipt of common ISUP protocol
messages (not including “Extended” API events)

ISUP Protocol
Message

Possible API Events Notes

IAM EV_INCOMING_CALL_DET 1

ACM EV_OUTGOING_PROCEEDING -

SAM EV_DETAILS -

COT EV_DETAILS -

ANM EV_CALL_CONNECTED -

CON EV_CALL_CONNECTED -

REL EV_REMOTE_DISCONNECT

EV_IDLE
-

RLC EV_REMOTE_DISCONNECT

EV_IDLE
-

RSC EV_REMOTE_DISCONNECT

EV_IDLE
1

GRS EV_REMOTE_DISCONNECT

EV_IDLE
1

BLO EV_REMOTE_DISCONNECT

EV_IDLE
1

Table 2 notes:

1. It may be valid for the remote ISUP to send this message for a circuit that is not
associated with an Aculab call handle and in a suitable state for event notification, in
which case the message may be processed and responded to without any event being
generated.

MAN1200 Revision 6.16.1 PUBLIC Page 30

Table 3: Generic call control API parameters vs. ISUP protocol parameters (the API
parameters may appear in more than one API structure)

API parameter name Protocol parameter Protocol
messages

Notes

service_octet

add_info_octet

bearer

“Transmission Medium
Requirement” parameter.

“User Service Information”
parameter.

Q.931 “Higher Layer
compatibility” in “Access
Transport” parameter.

IAM 1, 2

destination_addr “Address indicators” and
“odd/even indicator” in
“Called party number”
parameter

IAM 1

originating_addr “Address indicators” and
“odd/even indicator” in
“Calling party number”
parameter.

IAM 1

dest_natureof_addr “Nature of address
indicator” in “Called party
number” parameter.

IAM -

dest_numbering_plan “Numbering plan
indicator” in “Called party
number” parameter.

IAM -

dest_int_nw_ind “Internal network number
indicator” in“ Called party
number” parameter.

IAM -

orig_natureof_addr “Nature of address
indicator” in “Calling party
number” parameter.

IAM -

orig_numbering_plan “Numbering plan
indicator” in “Calling party
number” parameter.

IAM -

orig_numbering_presentation “Address presentation
restricted indicator” in
“Calling party number”
parameter.

IAM -

orig_numbering_screening “Screening indicator” in
“Calling party number”
parameter.

IAM -

orig_category “Calling party’s category”
parameter.

IAM -

orig_number_incomplete “Number incomplete
indicator” in “Calling party
number” parameter.

IAM -

connected_addr “Address indicators” and
“odd/even indicator” in
“Connected number”
parameter.

ANM,
CON

1

conn_numbering_screening “Screening indicator” in
“Connected number”
parameter.

ANM,
CON

-

conn_natureof_addr “Nature of address
indicator” in “Connected
number” parameter.

ANM,
CON

-

MAN1200 Revision 6.16.1 PUBLIC Page 31

API parameter name Protocol parameter Protocol
messages

Notes

conn_numbering_plan “Numbering plan
indicator” in “Connected
number” parameter.

ANM,
CON

-

conn_numbering_presentation “Address presentation
restricted indicator” in
“Connected number”
parameter.

ANM,
CON

-

conn_number_req “Connected line identity
request indicator” in
“Optional forward call
indicators” parameter.

IAM -

dest_subaddr Q.931 “called sub-
address” in “Access
Transport” parameter.

IAM -

orig_subaddr Q.931 “calling sub-
address” in “Access
Transport” parameter.

IAM -

hilayer Q.931 “Higher Layer
Compatibility” in “Access
Transport” parameter.

IAM -

lolayer Q.931 “Lower Layer
Compatibility” in “Access
Transport” parameter.

IAM -

progress_indicator Q.931 “Progress” in
“Access Transport”
parameter.

IAM,
ANM,
CON,
ACM,
CPG

-

in_band “In-band indicator” in
“Optional backward call
indicators” parameter.
“In-band information” in
“Event information”
parameter.

ACM,
CPG

-

nat_inter_call_ind “National/international call
indicator” in “Forward call
Indicators” parameter.

IAM -

interworking_ind “Interworking indicator” in
“Forward call Indicators”
and “Backward call
indicators” parameters.

IAM,
ACM,
CON,
ANM,
CPG

-

isdn_userpart_ind “ISDN User part indicator”
in “Forward call
Indicators” and “Backward
call indicators”
parameters.

IAM,
ACM,
CON,
ANM,
CPG

-

isdn_userpart_pref_ind “ISDN User part
preference indicator” in
“Forward call Indicators”
parameter.

IAM -

continuity_check_ind “Continuity check
indicator” in “Nature of
connection indicators”
parameter.

IAM 7

MAN1200 Revision 6.16.1 PUBLIC Page 32

API parameter name Protocol parameter Protocol
messages

Notes

satellite_ind “satellite indicator” in
“Nature of connection
indicators” parameter.

IAM -

charge_ind “Charge indicator” in
“Backward call indicators”
parameter.

ACM,
CON,
ANM,
CPG

-

dest_category “Called party’s category”
in “Backward call
indicators” parameter.

ACM,
CON,
ANM,
CPG

-

add_calling_num_qualifier_ind “Number qualifier
indicator” in “Generic
number” parameter.

IAM -

add_calling_num_natureof_addr “Nature of address
indicator” in “Generic
number” parameter.

IAM -

add_calling_num_plan “Numbering plan
indicator” in “Generic
number” parameter.

IAM -

add_calling_num_presentation “Address presentation
restricted indicator” in
“Generic number”
parameter.

IAM -

add_calling_num_screening “Screening indicator” in
“Generic number”
parameter.

IAM -

add_calling_num_incomplete “Number incomplete
indicator” in “Generic
number” parameter.

IAM -

add_calling_num “Address signals” and
“odd/even indicator” in
“Generic number”
parameter.

IAM 1

diverting_indicator “Redirecting indicator” in
“Redirection Information”
parameter.

IAM,
REL

-

diverting_reason “Redirecting reason” in
“Redirection Information”
parameter.

IAM,
REL

-

original_diverting_reason “Original redirecting
reason” in “Redirection
Information” parameter.

IAM,
REL

-

diverting_counter “Redirection counter” in
“Redirection Information”
parameter.

IAM,
REL

-

diverting_to_addr “Address signals” in
“Redirection number”
parameter.

ACM,
ANM,
CPG,
REL

1,4

diverting_to_type “Nature of address” in
“Redirection number”
parameter.

ACM,
ANM,
CPG,
REL

4

MAN1200 Revision 6.16.1 PUBLIC Page 33

API parameter name Protocol parameter Protocol
messages

Notes

diverting_to_plan “Numbering plan” in
“Redirection number”
parameter.

ACM,
ANM,
CPG,
REL

4

diverting_to_int_nw_indicator “Internal network number
indicator” in “Redirection
number” parameter.

ACM,
ANM,
CPG,
REL

4

diverting_from_addr “Address signals” in
“Redirecting number”
parameter.

IAM 1

diverting_from_type “Nature of address” in
“Redirecting number”
parameter.

IAM -

diverting_from_plan “Numbering plan” in
“Redirecting number”
parameter.

IAM -

diverting_from_presentation “Address presentation
restricted indicator” in
“Redirecting number”
parameter.

IAM -

diverting_from_screening “Screening indicator” in
“Redirecting number”
parameter.

IAM

diverting_to_presentation “Presentation restricted
indicator” in “Redirection
number restriction”
parameter.

ACM,
ANM,
CON,
CPG

5,6

diverting_to_presentation “Presentation restricted
indicator” in “Redirection
number restriction”
parameter.

ACM,
ANM,
CON,
CPG

5,6

notification_options “Notification subscription
options” in “Call diversion
information” parameter.

ACM,
ANM,
CON,
CPG

3

cause “Cause value” in “Cause
indicators” parameter

REL 1

raw (in cause_xparms) “Cause value” in “Cause
indicators” parameter

REL -

location “Location” in “Cause
indicators” parameter

REL -

ts_mask “Range and status”
parameter

GRS,
CGB,
CGU

-

MAN1200 Revision 6.16.1 PUBLIC Page 34

Table 3 notes:

1. Parameter undergoes automatic translation within the API between Aculab generic format
and ISUP protocol format.

2. Generic API does not support all values permitted by the protocol. Values not directly
supported by generic API can be accessed using flexible ISUP.

3. Parameter may be retrieved from received messages, but the generic API does not allow
this parameter to be encoded in any outgoing messages.

4. Parameter may be retrieved from various messages, but the generic API only allows it to
be sent in REL, by using call_feature_send() followed by call_disconnect().

5. Parameter may be retrieved from various messages, but cannot be encoded directly via
the generic API.

6. As a configuration option, Redirection Number Restriction parameter can be included as
a fixed value in all ACM messages.

7. The continuity_check_ind field may accessed via the generic API. It is retrieved from
received IAM messages using call_details(), and set in outgoing IAM messages

using call_openout() or call_feature_openout(). However, if set in outgoing

messages, the ISUP protocol requires that an ISUP COT (Continuity) message is
subsequently sent which can only be done by using flexible ISUP to compose the COT as
a raw message.

MAN1200 Revision 6.16.1 PUBLIC Page 35

8.2 ISUP helper library
To assist in the creation of applications that take advantage of Flexible ISUP features, an
ISUP helper library has been created.

The ISUP library consists of the following files:

Windows:
• isup_lib.dll

• isup_lib.lib

• isup_lib.h

Linux:
• libacu_isup.so.x.y.z (where x,y,z are version numbers)

• isup_lib.h

The following functions are provided:

 isup_get_next_parameter()

 isup_get_parameter()

 isup_get_pcompat_info()

 isup_lib_version()

 isup_set_parameter()

8.2.1 isup_get_next_parameter()

Synopsis
ACU_UCHAR *isup_get_parameter(RAW_MSG_XPARMS *raw, ACU_UCHAR *params);

This function should only be used on RAW_MSG_XPARMS received from ISUP via

call_feature_details(), where the first byte of data[] is a message type.

Input Parameters
raw

Specifies the address of the RAW_MSG_XPARMS to be operated on.

params

Provides a pointer to the start point for the operation. NULL must be specified to begin
parameter retrieval from the start of the received message. If a non-NULL value is specified, it
must point to the type byte of a parameter. Iteration through all parameters in a message may
be accomplished by providing the pointer returned by the previous invocation.

Return Values
The function returns a pointer to the type byte of a parameter, or NULL if no parameter was
found.

8.2.2 isup_get_parameter()

Synopsis
ACU_UCHAR *isup_get_parameter(RAW_MSG_XPARMS *raw,

ACU_UCHAR type,

ACU_UCHAR *params);

This function should only be used on RAW_MSG_XPARMS received from ISUP via

call_feature_details(), where the first byte of data[] is a message type.

Input Parameters
raw

Specifies the address of the RAW_MSG_XPARMS to be searched.

type

An ISUP parameter code from Table 5/Q.763 or equivalent.

params

Provides a pointer to the start point for the search operation. NULL must be specified to begin
searching from the start of the received message. If a non-NULL value is specified, it must
point to the type byte of a parameter. Searches for repeated parameters may be
accomplished by providing a pointer to a previously located parameter.

MAN1200 Revision 6.16.1 PUBLIC Page 36

Return Values
The function returns a pointer to the type byte of a located parameter, or NULL if no
parameter was found.

8.2.3 isup_get_pcompat_info()

Synopsis
ACU_INT isup_get_pcompat_info(RAW_MSG_XPARMS *raw,

ACU_UCHAR type,

ACU_UCHAR *info);

Returns Parameter Compatibility Information instruction indicators for the specified parameter
type, or a negative error code.

Input Parameters
raw

Specifies the address of the RAW_MSG_XPARMS to be searched.

type

An ISUP parameter code from Table 5/Q.763 or equivalent.

info

Specifies a pointer to an ISUP Parameter Compatibility Information parameter. This pointer
must refer to the type byte, which should have the value 0x39.

Return Values
A zero return value indicates success, while a negative value indicates failure. See the section
on error codes that follow.

8.2.4 isup_lib_version()

Synopsis
const char *isup_lib_version(void);

Returns a pointer to a version string.

8.2.5 isup_set_parameter()

Synopsis
ACU_INT isup_set_parameter(RAW_MSG_XPARMS *raw,

 ACU_UCHAR type,

 ACU_UCHAR *param,

 ACU_UINT len);

Places a parameter payload into a raw message in preparation for transmission. A negative
error code is returned if the requested operation would result in a write operation beyond the
data[] member of RAW_MSG_XPARMS.

Input Parameters
raw

Specifies the address of the RAW_MSG_XPARMS that the parameter should be written to. In the

absence of errors, the parameter will be placed after any existing data.

type

An ISUP parameter code from Table 5/Q.763 or equivalent.

param

Specifies a pointer to the data payload for the parameter.

len

This parameter specifies the length of the parameter payload, in octets.

Return Values
A zero return value indicates success, while a negative value indicates failure. See the section
on error codes that follow.

MAN1200 Revision 6.16.1 PUBLIC Page 37

8.2.6 Error codes

The following table lists error codes that may be returned from the helper library:

Table 4: Error codes

#define Value Description
ISUP_SUCCESS 0 Success
ISUP_EBADPARAMS -1 Bad parameters
ISUP_EBOUNDSCHK -2 Would require memory access beyond the

data[] member of RAW_MSG_XPARMS
ISUP_ENOTFOUND -3 The requested object was not found

MAN1200 Revision 6.16.1 PUBLIC Page 38

8.3 ISUP feature information
The call control API functions call_feature_openout(),call_feature_send() and

call_feature_details() are used to pass additional information between the application

and the protocol stack. For outbound requests they allow the information for a single ISUP
message be passed using multiple API calls avoiding the need for very large (and ever
extending) parameter structures.

ISUP supports the following feature types:

FEATURE_DIVERSION: Send/receive diversion or forwarding information.

FEATURE_USER_USER: Negotiates the use of, and transfer of user to user information.

FEATURE_RAW_MSG: Gives direct access to ISUP messages and parameters:

- add additional parameters to ISUP messages.
- send complete ISUP messages.
- retrieve received ISUP messages.

When sending feature information, multiple features can be added in any order, but only one
set of information for each feature type is saved.

call_feature_openout() will send the IAM unless CONTROL_DEFERRED or

CONTROL_DEFERRED_MESSAGE is specified in which case it is deferred until a later

call_feature_send() requests it be transmitted.

call_feature_send() will send any built or deferred message if CONTROL_DEFAULT or

CONTROL_LAST_INFO is specified.

A feature_type of zero can simplify coding if multiple features are needed on an IAM.

Specify zero with CONTROL_DEFERRED to call_feature_openout(), add the required features

with CONTROL_EXTRA_INFO, finally use a feature type of zero with CONTROL_LAST_INFO to send

the IAM.

Note The CONTROL_xxx_SETUP requests are treated exactly the same way as their CONTROL_xxx

counterparts.

While feature information is available call_details() will return with the corresponding bit

set (FEATURE_DIVERSION, FEATURE_USER_USER or FEATURE_RAW_MSG) in

feature_information. To read the feature information use call_feature_details() with

the correct bit set in feature_type. If no new information is queued it will return success, but

with feature_type set to 0 (some of the fields are filled in with the state values returned on

the previous call).

With ISUP there is no requirement that the applications reads the feature information in any
specific order, nor that call_details() be called first. With an appropriate CBU (crystal ball

unit) the feature information can be read without waiting for the relevant call control event.

8.3.1 Diversion and forwarding information

Call diversion (Q.730 section 8.7) and call forwarding (Q.732) ISUP supplementary services
are similar procedures and use many of the same message parameters. Basically:

- A REL contains the new number to divert the call to (call diversion only).
- An IAM contains the original called number, and that of the system performing the redirect

(etc).
- An ACM/CPG/ANM/CON/FAC informs the originating exchange that the

diversion/redirection has taken place.

If FEATURE_DIVERSION is specified on call_feature_openout(), or on

call_feature_send() with CONTROL_LAST_INFO or CONTROL_EXTRA_INFO while there is an

IAM waiting to be sent, then the ISUP parameters redirecting number (code 0x0b), redirection
information (code 0x13) and original called number (code 0x28) are added to the IAM
message.

MAN1200 Revision 6.16.1 PUBLIC Page 39

In all other cases the values are saved and the ISUP parameters redirection information (code
0x13) and redirection number (code 0x0c) added to the REL message send when
call_disconnect() is later called.

Diversion information can also be added using FEATURE_RAW_MSG. That is the only way it can

be added to the other message types, or that parameters other than the above can be added.

If a received IAM contains redirection information (code 0x13), redirecting number (code 0x0b)
or original called number (code 0x18) the values are saved and FEATURE_DIVERSION

indicated. If there is a redirection number, or the diverting indicator is non-zero and rnr_value

has been configured, then the ACM will contain a redirection number restriction parameter
with the configured value.

If a received ACM, CPG, ANM or CON contains call diversion information (code 0x36),
redirection number (code 0x0c) or redirection number restriction (code 0x40) the saved values
are updated and FEATURE_DIVERSION indicated once the call is alerting/ringing.

When a REL is received, any existing diversion information is zeroed. If the REL contains
redirection information (code 0x13) or redirection number (code 0x0c) the values are saved
and FEATURE_DIVERSION indicated.

8.3.2 User to user information

The ISUP procedures for user to user information are defined in Q.737.1. There are three
service levels. Service 1 for sending UUI in normal setup and cleardown messages, service 2
for sending USR messages during call setup, and service 3 for sending USR messages once
the call is established. Services 2 and 3 must be negotiated before being used, service 2 must
be requested in the IAM, service 3 can be requested in a later FAR message.

The driver will stop user to user information being sent when it is hasn't been correctly
negotiated.

If FEATURE_USER_USER is specified on call_feature_openout(), or on

call_feature_send() with CONTROL_LAST_INFO or CONTROL_EXTRA_INFO and while there is

as IAM waiting to be sent, then the user to user information is added to the IAM message.

Responses to requests received on an IAM should be sent with CONTROL_NEXT_CC_MESSAGE

so that the UUS parameter is added to the next backwards message (this need not be the first
backwards message), if necessary use call_progress() to send an additional CPG.

Any FAR/FAA/FRJ negotiating UUS 3 is always sent immediately. As is any REL generated
because the service was marked 'essential' and rejected.

If a request from the application contains actual user to user data then it is sent in a USR
message if CONTROL_DEFAULT, CONTROL_DEFERRED or CONTROL_DEFERRED_MESSAGE is

requested, otherwise it is queued and added to the next backwards message (ACM, CPG,
ANM etc).

If a received message contains user to user information or indicators then
FEATURE_USER_USER is indicated, if the message is an IAM then no ACM is sent.

Receipt of facility messages (FAR/FAA/FRJ) raise EV_EXT_UUS_SERVICE_REQUEST. Receipt of

UUI data raises EV_EXT_UUI_PENDING if there is no other UUI data queued.

The first byte of the user to user information (the protocol discriminator) passed to/from the
application in a separate field. A valid protocol discriminator with a zero length user
information field is indicated by setting the first byte of the buffer to UUI_NO_DATA_IN_BUFFER

(0xff)

When FEATURE_USER_USER is read, the state information and oldest user information buffer is

written into the application's buffer. If the values haven't changed the feature_type is

cleared.

MAN1200 Revision 6.16.1 PUBLIC Page 40

8.3.3 Raw parameters and messages

The requirements of applications and networks are too diverse to make is sensible to add API
calls and parameters for all the ISUP message parameters and procedures.

Setting CNF_RAW_MSG in the cnf field to call_openin() or call_openout() requests that a

(reformatted) copy of every received ISUP message be passed to the application. They are
read by calling call_feature_details() with feature_type set to FEATURE_RAW_MSG.

The message type code is written to raw_msg.data[0] with any parameters written to

raw_msg.data[1] onwards encoded code+length+data. This means that the application

doesn't have to know which parameters are fixed and mandatory variable.

Note If multiple subsequent address messages (SAM) are queued, they may be merged into a single raw
message.

The raw message data is queued (and readable) at the start of the message processing. If the
raw message queue was empty an EV_EXT_RAW_MSG event is raised before the first other call

control event. If no call control event is raised than an EV_EXT_RAW_MSG event is always raised

at the end of message processing.

Note Since an EV_EXT_RAW_MSG event is not raised if there is an earlier unread raw message an application
may see fewer than expected events if local processing is delayed. The application should ensure that all
the raw messages are read

The ISUP message data that generated a call control event can be identified by looking at the
raw_msg_seq field of the raw data and event structures. Events that are not associated with

received messages have raw_msg_seq set to zero, otherwise the value is incremented just

before raising the first normal call control event after a raw message is queued (so any
EV_EXT_RAW_MSG event has the same value as the raw message, and the other events a value

one higher).

Note It might have been better to increment the sequence before generating the raw message data, but the
value has always been generated this way.

If call_feature_openout() or call_feature_send() requests FEATURE_RAW_MSG with

CONTROL_DEFAULT (or, unusually, CONTROL_DEFERRED_MESSAGE) a complete ISUP message is

built and sent (deferred to be sent later); raw_msg.data[] should be formatted the same as

for received raw messages above.

Sending a raw message will not change the call state, ISUP message types that would
change the call state cannot be sent as raw messages.

call_feature_openout() will use the generated message instead of the IAM it would

normally create. This can be used in order to make a continuity test call.

If call_feature_openout() or call_feature_send() requests FEATURE_RAW_MSG with any

other CONTROL_xxx values then it defines a list of parameters that will be used to modify the

next ISUP message sent by an API call (or a message deferred by an earlier
call_feature_openout() or call_feature_send() call).

The parameters are passed in raw_msg.data[0] onwards encoded code+length+data.

Usually any existing parameter with the same code is replaced. If the parameter can be
repeated (e.g.: generic number) then an additional copy is added. Specifying a length of zero
will always delete any existing parameter.

Note Any parameter not in the codec tables will be discarded when the message is finally encoded. If a fixed or
mandatory variable parameter is absent the message itself is discarded.

The helper functions defined in section 8.2 can be used to access the parameter data.

See section 8.5.3 and Appendix A for examples.

MAN1200 Revision 6.16.1 PUBLIC Page 41

8.4 Transmission path switching
In addition to the call setup functions of the call control API, an ISUP application must also use
the Aculab Switch API to set up the bearer (voice or data) path for each call, known as the
“transmission path”. The path in the direction from calling to called subscriber is known as the
“forward” path, whilst the path from called to calling subscriber is known as the “backward”
path. The forward and backward paths may be completed at the same time, or each may be
connected at different times, during call establishment.

Careful consideration always needs to be given to the synchronisation between the Call
Control API activity and switching of forward and backward transmission paths, and there may
sometimes be slightly conflicting requirements. Network providers, for example, may impose
restrictions to avoid “early” switching to avoid unauthorised data flow (or conversation) before
charging begins. In the case of a voice call however, subscribers may feel entitled to expect
that switching is already completed by the time the called subscriber first speaks, which may
be just a fraction of a second after the call enters the “connected” state.

The actual rules governing transmission path switching are often a local matter subject to
bilateral agreement between the Aculab customer and the network, but this section attempts
to describe some of the issues that need to be addressed and some of the strategies that may
be adopted.

8.4.1 Originating exchanges

The guidance given in ITU-T Q.764 is that the backward transmission path may be connected
immediately after the Initial Address Message (IAM) has been sent, which corresponds in the
Aculab API to a successful return from call_openout(). In some circumstances, such as if a

continuity test is being performed, this may not be appropriate as it could expose the calling
subscriber to unwanted test tones. Where the backward path cannot be connected
immediately, it may be better to wait for the first event notification
(“EV_OUTGOING_PROCEEDING”) before connecting the voice paths (this is in line with the API

guidance for other Aculab protocols). Specific applications may be constrained by other
factors (such as network-specific rules and regulations) that require them to wait until later in
the call setup sequence before connecting the backward paths. In this case extra care should
be taken to cater for unexpected tones and announcements that should be played to the
caller, as described in section 8.4.4.

The Q.764 guidance for switching of the forward path is that it should normally be completed
on receipt of a Connect or Answer message, which corresponds to an EV_CALL_CONNECTED

event. For 3.1KHz audio calls, Q.764 also allows the forward path to be completed at the
same time as the backward path (immediately after call_openout()). This may, for example,

be required for calls that might undergo interactive dialogue (e.g. DTMF or voice recognition)
during call establishment.

8.4.2 Intermediate exchanges

The guidance in Q.764 is that the path in both directions can normally be connected
immediately after calling call_openout(). As with originating exchanges however, there are

exceptions such as continuity testing, where the same considerations should be applied.

8.4.3 Destination exchanges

The destination exchange is responsible for completing the connection path to the called party
apparatus. In the case of a voice call, for example, this may be the connection to the
subscriber line.

In most cases, the destination exchange can complete the path in both directions as soon as
the decision to answer the call is taken. In ISUP protocol terms this corresponds to an Answer
or Connect message being sent, while in terms of the Aculab API, it corresponds to calling
call_accept(). In the case of a voice call, completing the voice path in both directions

immediately before call_accept() is usually appropriate.

MAN1200 Revision 6.16.1 PUBLIC Page 42

8.4.4 Tones and announcements - general

Availability of tones or announcements is conveyed in ISUP messages using an “in-band
indicator”, which appears in various ISUP protocol parameters such as the “optional backward
call indicators”. It is used during call setup to indicate that audible messages, such as ring
tone, are being connected and that the backward transmission path should be completed to
the calling subscriber. This applies to all tones and announcements. Further advice specific to
ring tone is provided in section 8.4.5.

At the Aculab API, the in-band indicator appears in many of the call control structures allowing
it to be set in messages that are sent. It is also available for reading from the uniquex_isup

structure used by call_details(), which allows an application to detect that the remote

exchange is applying tones or announcements. When making an outgoing call, if the
backward path is not connected when the call commences, then call_details() should be

called after all event notifications to see if the in_band field is set. If it is set, the backward

voice path should be connected.

As described in section 2.4.3, a call in an Intelligent Network may require DTMF or voice
interaction with the caller during the call setup phase in response to tones or announcements
from the network. In that case, the in-band indicator would still be used, but it would be
necessary to ensure the forward path is also connected. Such issues may need to be
discussed with the network provider when an application is being developed.

8.4.5 Ring tone

For ISUP calls, ring tone is usually generated by the destination (called) exchange. This is
preferable to ring tone generated by the originating exchange as it removes certain delays that
would otherwise be required by subsequent voice path switching when the call is answered.
This is clearly evident when making international voice calls to fixed-line phones when the ring
tone heard by the caller is usually that of the remote country’s network.

In some situations, a call may originate in an ISUP network, but subsequently pass through a
different network, such as a mobile network, in which case special arrangements may exist for
ring tone. For example, the exchange that provides inter-working with the other network may
provide ring tone.

Exchanges that provide ring tone should indicate it using the ISUP protocol in-band indicator
as described in section 8.4.4, but many exchanges do not conform to this requirement and
may fail to set the in-band indicator even though they provide ring tone. If in doubt when
developing an application, it is best to ask the network provider to confirm which exchange
should provide ring tone and/or whether the in-band indicator can be relied upon to detect it.

Applications using Aculab ISUP that generate ring tone, should always set the “in_band” field

in the corresponding call control API structures.

MAN1200 Revision 6.16.1 PUBLIC Page 43

8.5 ISUP Continuity test
The ISUP procedures allow bearer continuity tests to be done either during call establishment
(requested in the IAM) or as a separate test (CCR). The CCR test is also done periodically
after an initial failure. Since an ISUP call might pass through multiple ISUP exchanges, a
continuity test on an IAM can be on the 'current' or 'previous' circuit. The procedures for these
are similar, except that the voice path loopback isn't required if a previous circuit is being
tested.

The basic procedure is:
a) An IAM is sent with 'continuity check required on this circuit' set in the 'Nature of

connection indicators'. 2000±20Hz (2010±8Hz for ANSI) tone sent on the voice channel,
and a tone detector placed on the receive voice channel.

b) On receipt of the IAM a loopback is applied to the voice channel.
c) If the reflected tone is received a COT message is sent indicating 'success' and the tone

removed, on receipt of the COT the loop is removed and call processing continues.
d) If the reflected tone isn't received a COT message is sent indicating 'failure' and the tone

removed, on receipt of the COT the loop is removed and the call discarded.
e) After a delay a CCR is sent to perform a retest, tone sent and detector enabled.
f) On receipt of the CCR a loopback is applied to the voice channel (and for ANSI an LPA

sent).
g) If the reflected tone is received a REL is sent to release the circuit.
h) If the reflected tone is not received a COT message is sent indicating 'failure' is sent and

the CCR procedure is repeated.

Refer to Q.764 section 2.1.8 and Q.724 section 7 for further details.
The receiving system runs appropriate timers and will reset the circuit if they expire.
The retest procedures are aborted if an IAM is received.
ANSI ISUP may require a 2-wire test be performed, in this case the loopback has to be
replaced with a tone detector and a 1780±20Hz tone sent back while the 2008Hz tone is being
received.

The Aculab ISUP driver code has support for inward continuity test requests, but as it is not
capable of generating or detecting tones only partial support for outbound continuity tests. An
application can use TiNG to generate and detect the tones for outbound tests.

8.5.1 Inward continuity check (IAM)

The behaviour of the driver on receipt of an IAM that requests continuity check depends on
the apply_continuity_loop and continuity_defer_event ISUP configuration parameters.

If both parameters are set to yes (the default) then the driver will apply a loopback. The

EV_INCOMING_CALL_DETECTED (and EV_RAW_MSG) call control events will not be generated until

a COT is received indicating that the test has passed. If the continuity test fails the application
will see an EV_IDLE event and should do another call_openin().

With the default parameters inward continuity test should be transparent to the application.

If continuity_defer_event=no then the call control events are generated immediately. The

application must look at the continuity_check_ind field of the call details and if it is non-

zero wait for the EV_DETAILS event generated when COT is received (after which

continuity_check_ind will be zero) before connecting the voice path or accepting the call.

Any ACM will be buffered by the driver and sent when the continuity test completes.

If apply_continuity_loop=no as well then the driver will not apply the loopback, the

application must apply a loop when an incoming call is received with continuity_check_ind

is set to CCI_REQUIRED (value 1). This allows a 2-wire transponder be created.

At the end of the test the driver may remove any loopback it applied (based on the configured
continuity_check_output_value). The default is A-law silence for ITU/China variants and

µ-law silence for ANSI variants.

Note The driver does not currently remove the loop if the test passes; this ensures that the driver doesn't set
the output data after the application has connected the audio path.

MAN1200 Revision 6.16.1 PUBLIC Page 44

8.5.2 Inward continuity check test call (CCR)

The behaviour of the driver on receipt of a CCR depends on the apply_continuity_loop,

ccr_application and ccr_auto_lpa ISUP configuration parameters.

By default the CCR test is handled within the ss7 driver.

If ccr_application= yes then a received CCR is passed to the application as an incoming

call with continuity_check_ind set to CCI_CCR_TEST (value 4).

If additionally apply_continuity_loop=no the application can then add an appropriate loop -

e.g.: a 2-wire transponder.

For ANSI networks an LPA is sent unless ccr_auto_lpa=no, in which case the application

should create the loop and then use flexible ISUP to send an LPA.

At the end of the test (e.g.: COT + fail or REL received) the driver will use the configured
continuity_check_output_value to remove any loop it applied, and an EV_IDLE sent to any

application.

8.5.3 Outbound continuity test (IAM)

A continuity test can be requested by making an outward call with continuity_check_ind set

to CCI_REQUIRED (test on this circuit) or CCI_PREVIOUS (test on previous circuit). In the former

case the application is responsible for generating and checking the tone.

Once the tone has been verified (or an indication that the test on the previous circuit has been
completed) the application must remove the test tone use flexible ISUP to send the COT
message. The following C function could be used:

ACU_ERR

send_continuity(ACU_CALL_HANDLE handle, int passed)

{

 FEATURE_DETAIL_XPARMS fdxp;

 INIT_ACU_CL_STRUCT(&fdxp);

 fdxp.handle = handle;

 fdxp.feature_type = FEATURE_RAW_MSG;

 fdxp.message_control = CONTROL_DEFAULT; /* Whole message specified */

 fdxp.feature.raw_msg.length = 4;

 fdxp.feature.raw_msg.data[0] = 0x05; /* Continuity */

 fdxp.feature.raw_msg.data[1] = 0x10; /* Continuity indicators */

 fdxp.feature.raw_msg.data[2] = 0x01; /* Length */

 fdxp.feature.raw_msg.data[3] = passed; /* 1 if passed, 0 if failed */

 return call_feature_send(&fdxp);

}

If the test is successful the call processing continues as normal.

If the test fails the application can either use the same call handle for the retest, or call
call_release() and perform the retest on another call handle. Releasing the call handle

after a continuity test has failed is a purely local action.

8.5.4 Outbound continuity check test call (CCR)

To send a CCR on a new call handle, use call_openout() with continuity_check_ind set

to CCI_CCR_TEST, this will send a CCR instead of an IAM.

To send CCR on an existing call handle (after a previous continuity test has failed) use flexible
ISUP. As send_continuity() above except set raw_msg.length = 1 and raw_msg.data[0]

= 0x11.

The application then needs to generate and test the tone (on ANSI networks it should wait for
LPA first).

Test failure is indicated by sending COT + fail (as for continuity test on IAM above, in this case
the driver will convert all COT to COT + fail). The application should then schedule another
retest.

Test success is indicated by sending a REL - use call_disconnect().

MAN1200 Revision 6.16.1 PUBLIC Page 45

8.6 System performance considerations
Aculab ISUP allows customers to construct large-scale platforms with many hundreds or
thousands of voice channels. Such applications need to be carefully structured to ensure that
the processing power of the platform is sufficient to meet the demands of call traffic.

It is assumed that developers will already posses the necessary programming skills to
implement efficient applications. This section provides further insight into some aspects of
performance optimisation that are specific to the Aculab ISUP API.

8.6.1 Maximising throughput

The following guidelines may be of assistance in writing performance-critical applications:

• Avoid unnecessary API calls. For an incoming call, apart from handling event
notifications, it is often sufficient simply to call call_incoming_ringing(), and then

sometime later to call call_accept(). There are some circumstances where

call_proceeding() or call_progress() may need to be called, but if they are not

needed they should not be used.

• Avoid “thread-heavy” applications. With most platforms, multi-threaded applications
become inefficient with large numbers of threads. If an ISUP application is handling tens
or more of E1/T1 trunks, thread management within the OS can become a serious
bottleneck if a separate thread is used for each timeslot. A better approach for a large-
scale application might be to have a thread per E1/T1 rather than a thread per timeslot.
Alternatively, a “worker thread” strategy may be possible where threads are dispatched to
perform tasks as and when they arise, without permanently associating a task with any
single timeslot or network port.

8.6.2 Avoiding missed calls

Missed calls can occur when a circuit (timeslot) is re-used for a call immediately after a
previous call on the same circuit has been cleared down, but before the application has had
time to open a new handle using call_openin(). Aculab ISUP offers various solutions to this

problem.

• “Call queuing” - The driver can be configured to silently queue calls that repeat rapidly on
a timeslot, to allow a short additional time (up to 900mS) for an incoming handle to be
opened. If an incoming handle is opened within the queuing time, it is presented with the
queued call. Otherwise the call is rejected when the queuing timer expires.

• “Timeslot -1” - The application can maintain a pool of handles, all using timeslot -1. The
API treats -1 as “any timeslot”, so any handle in the pool can accept the next call
regardless of which timeslot it concerns.

• “Early openin” - The application can open a new handle, using call_openin(), for the

same timeslot before disconnecting (or releasing) the previous call on the same timeslot.
This ensures there is a handle available for each call as soon as it arrives. After opening
the new handle the application proceeds to disconnect and release the handle of the
previous call, regardless of whether a new call has arrived.

The “call queuing” solution is very similar to the approach used in other Aculab protocols. It is
configured using the “isup_timer_openin” configuration option as described in the SS7

Installation and administration guide. The drawback of this approach is that ISUP protocols
may set strict limits on the latency that is allowed when responding to a message. It is
generally expected that an exchange should respond immediately (either pass on the call or
reject it), but this approach introduces a delay that runs counter to the intentions of the
protocol.

The “early openin” and “Timeslot –1” solutions overcome the drawback of delay introduced by
call queuing, they each allow a well-written application to always react immediately to an
incoming call. Note however, that not all Aculab protocols allow a new handle to be opened
before closing the old one for the same timeslot, so application code that uses the “early
openin” approach may not be portable to other protocols.

MAN1200 Revision 6.16.1 PUBLIC Page 46

8.7 Using Aculab ISUP with national variants
Aculab SS7 has built-in “basic call setup” support for some of the common variants such as
ITU-T, ANSI, and China, but there are many other national variants in use around the world.
To allow other variants to be supported, or for further tuning of an existing variant, users are
able to add or modify message and parameter definitions by defining coder/decoder (codec)
extensions, which the SS7 driver uses when encoding and decoding network messages.
Messages and parameters that have been defined with codec extensions can then be
accessed at the API using the flexible ISUP API extensions, as described in section Error! R
eference source not found..

By selecting one of the basic pre-configured variants, modifying appropriate parameters such
as timers and extending the message codec tables, it becomes possible to use Aculab SS7
ISUP in many parts of the world above and beyond those areas in which it has already been
deployed. Full details of parameter and codec configuration are provided in the SS7
Installation and administration guide.

MAN1200 Revision 6.16.1 PUBLIC Page 47

9 Using Aculab SCCP
SCCP may be used to convey TCAP message traffic via the TCAP API or may be used
directly through an SCCP API.

The APIs provide the necessary functions for sending and receiving SCCP address
information and also receiving SCCP status information (See sections 9.1 and 9.2).

The SCCP must also be correctly configured with parameters that correspond to those of the
peer SCCP nodes with which it converses. It may be configured to automatically perform
global title address translation on messages sent and received. For a full description of how to
configure Aculab SCCP, please refer to the SS7 Installation and administration guide

9.1 SCCP Addressing
TCAP and SCCP API users need to provide SCCP addressing information when sending
messages. The information may be provided in a user-provided text configuration file or via
the API itself. SCCP address information from received messages can be obtained through
the API. The relevant functions for configuring, sending and receiving SCCP addresses are
documented in the TCAP API guide (see also section 10.2.5) and the SCCP API guide.

9.1.1 Routing on SSN

This is the simplest method of sending an SCCP message. The API user provides a remote
point code and subsystem number for SCCP to deliver the message to. SCCP uses the
remote point code as a destination point code for the underlying transport (MTP3/M3UA) and
encodes the SSN into the called party address. The calling party address may be routed on
SSN or routed on global title and is usually obtained by the text configuration file of the API.

For received messages routed on SSN, the SCCP will distribute the message to the
appropriate application using the SSN in the called party address.

9.1.2 Routing on Global Title

There are two methods an SCCP user can send messages routed on global title. In the first
method, the application provides a remote global title and a remote point code and optionally
an SSN. In this case, SCCP has sufficient information to send the message and a global title
translation is not required. The remote point code is used as a destination point code for the
underlying transport and the global title is encoded into the called party address.

In the second method, the application provides a global title only. Since SCCP requires a
destination to send the message to, global title translation will be attempted. If a rule is found
that matches the supplied global title, SCCP will apply the translation and send the message
to the destination specified by the rule.

To receive messages routed on global title, a global title translation table has to be written,
specifying a [ROUTE_SSN] subsection. The destination should be set to the local point code
and optionally, the SSN of the SCCP user that wishes to receive the message. If no SSN is
specified in the rule, then SCCP will use the SSN from the called party address of the
received message. The message will be delivered to the SCCP user with both the called and
calling party addresses unmodified; that is as they were received from the network. Hence, if
a called or calling party address does not contain a point code, then a point code will not be
included as part of the global title. However, it is possible to obtain from the API the point
codes from the MTP routing label.

9.2 SCCP status information
The Aculab TCAP/SCCP APIs include functions, which provide the user with SCCP status
information about a remote system. In addition an event-driven mechanism, using the
message interface, provides notification of changes in status. Such event reporting is disabled
by default, so if the user wants to see these events then they must be enabled using the
relevant functions described in the TCAP or SCCP API guides.

MAN1200 Revision 6.16.1 PUBLIC Page 48

10 Using Aculab TCAP
The Aculab distributed TCAP API provides the means for an application to use the services of
the Transaction Capabilities Application Part, as defined in ITU-T recommendations, currently
Q.771-Q.775. The API also supports ANSI TCAP, which is described in ANSI T1.114.

Section 10.1 provides an overview of those aspects of TCAP protocol procedures and
terminology that are relevant to the Aculab API. For a detailed and authoritative description of
TCAP, refer to the aforementioned ITU and ANSI recommendations.

Section 10.2 provides specific guidance on how to use the Aculab API to implement a TCAP
application. The API is described in detail in the TCAP API guide, to which you should refer
for a full definition of the interface functions and how they should be used.

10.1 TCAP protocol and procedures

10.1.1 TCAP messages

TCAP applications communicate with one another using the SS7 SCCP network functions to
exchange messages.

Each TCAP message contains a number of different so-called ‘portions’. All messages
contain a ‘transaction portion’ that is provided in Aculab’s case by the TCAP library. The
transaction portion includes the TCAP message type (known in ANSI TCAP as “package
type”), and various transaction-specific protocol parameters such as the transaction identifiers
described in section 10.1.6.

Some messages may also contain either or both of two optional portions, called the
‘component portion’ and the ‘dialogue portion’. The dialogue portion is mandatory in some
messages and under some circumstances, but optional at other times. These portions are
described in sections 10.1.2 and 10.1.3 respectively.

10.1.2 TCAP components and operations

TCAP ‘components’ are the means by which local and remote TCAP users request that one
another perform operations and by which they reply to such operations.

There are four different component types, namely ‘invoke’, ‘return result’, ‘return error’, and
‘reject’. The ‘invoke’ component initiates a new operation, for which the TCAP user supplies
an ‘invoke identifier’. The other component types are alternative responses to an earlier
invoke, and contain the same invoke identifier. Each TCAP message may contain several
different components in its component portion, allowing several operations to be invoked by
the same message, or a mixture of replies and new invocations.

As an example of TCAP component use, a TCAP user may need to request that a remote
database translates a given telephone number to some other telephone number. Such a
translation is an ‘operation’. It is requested by sending an ‘invoke’ component that specifies
the translation operation together with a parameter containing the number to be translated. In
response, the remote database completes the operation by sending a ‘return result’
component together with a parameter containing the translated number.

10.1.3 TCAP dialogues and transactions

TCAP provides users with a means to establish a dialogue with some remote TCAP user
elsewhere in the network. There are two types of dialogue, known as ‘structured’ and
‘unstructured’, as described later in this section. Within either type of dialogue, TCAP users
are able to send and reply to components.

Dialogues, as perceived by the TCAP user, are implemented by TCAP as ‘transactions’. In
order for a TCAP user to establish a dialogue, TCAP needs to establish a transaction. In
many respects the terms ‘transaction’ and ‘dialogue’ can be used interchangeably.

TCAP messages may include an area called the ‘dialogue portion’. This allows the TCAP
users to convey information to one another that identifies the purpose of the dialogue.

MAN1200 Revision 6.16.1 PUBLIC Page 49

Examples are the inclusion of an ‘application context name’ which defines the protocol that is
being used (e.g. GSM-MAP), and the protocol version. Other application-specific user
information may also be included. The dialogue portion is used at the start of a dialogue to
confirm that the two users have implemented the same (or compatible) versions of a protocol.

In some circumstances a dialogue portion is mandatory, but more often it is only included in
the message if requested by the API user. When a dialogue portion is mandatory and is not
provided by the user, the Aculab TCAP library will automatically include an appropriate
portion.

10.1.4 Unstructured Dialogue

The unstructured dialogue has no specific beginning or ending. The two TCAP users send
components to one another, requesting and/or responding to different operations in ‘single
shot’ mode and expecting no replies.

10.1.5 Structured dialogue

A structured dialogue has an explicit beginning and either an explicit or implicit end.

To start a structured dialogue the user requests TCAP to establish a transaction, by sending a
‘BEGIN’ message which may contain operation invocation components. Thereafter, the two
users continue the dialogue by exchanging TCAP ‘CONTINUE’ messages in the same
transaction. The CONTINUE messages may contain components that reply to previous
invocations, and/or that invoke new operations.

A structured dialogue may be explicitly ended with a TCAP END message or, in the case of
exception conditions, a TCAP ABORT message. A dialogue may also be implicitly ended
using a “pre-arranged end”. If both users are able to recognise that a point has been reached
where there are no more messages to be sent, the TCAP transaction can simply be
discarded.

ANSI structured dialogue is similar to ITU in concept, but uses different message types and
naming conventions.

10.1.6 Dialogue identifiers

The ITU TCAP recommendations refer to a ‘dialogue identifier’, which allows TCAP users to
associate messages that belong to a single dialogue with one another. The dialogue identifier
is only meaningful to the local TCAP user and it is not transmitted in TCAP messages, hence
it is a rather abstract concept that can be implemented in different ways.

In practice, a typical application might want to associate the address of some block of memory
with each dialogue, so the Aculab API implements the dialogue id as a (void *) ‘userptr’ that
may be associated with a transaction. After the API user has associated a userptr with a
transaction, the same userptr will be returned to the API user when subsequent messages are
received within the transaction.

10.1.7 Transaction identifiers

Transaction identifiers are similar to dialogue identifiers (see section 10.1.6), but unlike
dialogue identifiers, which only have local-user significance, the transaction identifiers are
encoded within the TCAP messages sent to other applications. In Aculab’s case, transaction
identifiers are managed entirely within the TCAP library.

Although the API user may completely ignore transaction identifiers, the values can be
accessed at the Aculab API. This can be useful when testing or debugging, as it allows
diagnostic data captured from a line trace to be correlated with a specific dialogue as seen by
the API user.

MAN1200 Revision 6.16.1 PUBLIC Page 50

10.2 Writing Aculab TCAP applications
This section of the document provides some guidance on how to write TCAP applications
using the Aculab API. It is intended simply as an introduction, and is not intended to be an
exhaustive definition of the API.

10.2.1 Configuration parameters

Most TCAP parameters need to be configured on a per SSN basis. For all TCAP parameters,
the API user has the choice of either specifying the name of a plain text configuration file for
each SSN, or applying (or modifying) the configuration parameters using a programmatic
interface at the API.

If TCAP configuration parameters are included in a text file, the name of the file is provided
when the SCCP Service Access Point is created, as mentioned in section 10.2.3. Individual
parameters can be set using acu_tcap_set_cfg_int/str().

10.2.2 ASN.1 API parameters

The format of TCAP messages, and the different portions within the message, is defined in a
language called Abstract Syntax Notation 1 (ASN.1). ASN.1 is a sophisticated, and
sometimes complex notation but TCAP uses ASN.1 in one of its simplest forms known as
Basic Encoding Rules (BER).

To a large extent, the Aculab TCAP library handles the ASN.1 encoding and decoding,
simplifying things for the API user. Nevertheless, some parts of the component and dialogue
portions need to be encoded by the user in ASN.1. An API user has a number of alternative
ways of encoding/decoding the ASN.1 data, some of which are described in section 10.2.10.

The following API parameters convey information that may need to be obtained from an
ASN.1 application protocol specification, such as MAP or INAP:

• Component parameter data in transmitted messages, using the ‘param’ and ‘param_len’
parameter for acu_tcap_msg_add_comp_invoke(), acu_tcap_msg_add_comp_result(),
acu_tcap_msg_add_comp_error() and acu_tcap_msg_add_comp_reject().

• Component parameter data in received messages, from the tc_param and tc_param_len
fields in an acu_tcap_component_t structure resolved by
acu_tcap_msg_get_component().

• Dialogue user information in transmitted messages, using the ‘uinfo’ and ‘len’ parameters
for acu_tcap_msg_add_dlg_userinfo().

• Dialogue user information in received messages, from the td_ui and td_ui_len fields in an
acu_tcap_dialogue_t structure resolved by acu_tcap_msg_get_decode().

• Global operation identifiers in transmitted messages, using the op_code and op_code_len
parameter for acu_tcap_msg_add_comp_invoke(), acu_tcap_msg_add_comp_result().

• Global operation identifiers in received messages, from the tc_op_code and
tc_op_code_len fields in a component structure resolved by
acu_tcap_msg_get_component().

• Application context name in transmitted messages, using the appl_ctx and appl_ctx_len
parameters for acu_tcap_msg_add_dialogue(). Note however that the ANSI protocol
variant also supports the use of numeric values, in which case the API user can simply
pass it as an integer.

• Application context name in received messages, from the td_app_ctx and td_app_ctx_len
fields in an acu_tcap_dialogue_t structure resolved by acu_tcap_msg_get_component().
Note however that the ANSI protocol variant also supports the use of numeric values, in
which case it is presented in the td_app_ctx_val field.

MAN1200 Revision 6.16.1 PUBLIC Page 51

10.2.3 SCCP Service Access Points

Before a dialogue can be started, the TCAP Application needs to perform an initialisation
sequence that includes establishing a connection with the SCCP protocol layer that will
convey messages to and from the remote application(s). Details of the connection, and
associated SCCP addressing parameters, are maintained in an SCCP Service Access Point
structure (SSAP).

SSAPs are created using acu_tcap_ssap_create(), and the connection with SCCP is

requested using acu_tcap_ssap_connect(). Other acu_tcap_ssap...() functions are

provided for modifying SSAP configuration, accessing addresses, and deleting SSAPs.

10.2.4 TCAP transaction structures

A TCAP transaction structure is needed in order to exchange messages with a remote TCAP
user. These structures can be created on demand, or may be created automatically
depending upon the type and direction of the dialogue. The transaction structure inherits the
current values of its configurable parameters (including the SCCP address information) from
the SSAP.
Transaction structures (acu_tcap_trans_t) can be created for outgoing dialogues using

acu_tcap_transaction_create(). For incoming dialogues, they are created automatically

when the first message is received. At the end of a transaction, they are be deleted using
acu_tcap_transaction_delete(). Additional acu_tcap_trans...() functions allow

configuration modifications to be made, and provide access to transaction addresses,
transaction ids, etc.

10.2.5 Building messages

In order to send a TCAP message, the user must provide the address of a valid transaction
structure which TCAP will use to derive appropriate protocol parameters and queue the
message for transmission. The required sequence of API calls can vary, and the following is
just one example:

• acu_tcap_msg_alloc()is used to allocate a buffer wherein the message will be built. As

an alternative to this function, an existing message buffer that was previously used within
the same transaction can be re-used.

• acu_tcap_trans_get_remaddr() may be used to obtain the address of the structure

containing the address information. This is only necessary if the user wants to modify the
SCCP addressing for the message.

• acu_tcap_msg_init() is used to initialise the message, and set the message type

(BEGIN/CONTINUE/END etc.).

• acu_tcap_msg_add_dialogue()may be used of the user wants to add information to the

dialogue portion.

• If components are to be included, pass them to the API using
acu_tcap_msg_add_comp_invoke()/_result()/_error()/_reject() may be called

repeatedly to add components to the message.

10.2.6 Sending messages

After a message has been built as described in section 10.2.5, it is sent to the remote TCAP
user as follows:

• acu_tcap_msg_send() causes the message to be sent to a remote TCAP user over the

SS7 network.

After sending the message the message buffer must either be freed, or re-used for sending
another message within the same transaction:

MAN1200 Revision 6.16.1 PUBLIC Page 52

• acu_tcap_msg_free() may optionally be used to free the message. Alternatively, follow

the steps in section 10.2.5 to re-use the message buffer for another message.

10.2.7 Receiving messages

The API user may receive TCAP messages from a remote user, and/or may receive locally
generated messages from the local SCCP, advising of MTP or SCCP status changes. Such
messages may be received using one of the three functions listed below:

• acu_tcap_ssap_msg_get() can be used to receive any message that meets the SCCP

address requirements that were provided when the SSAP was created. This function
blocks until a message is available or a timeout expires.

• acu_tcap_trans_msg_get() can be used to receive only messages that belong to an

existing transaction. This function blocks until a message is available or a timeout
expires.

• acu_tcap_event_msg_get() may be used to receive messages from an event queue

(see section 10.2.9), following an event indicating that a TCAP message is available. This
function does not block, it returns immediately even if no message is available.

After receiving the message, the message buffer must either be freed, or re-used to send a
message within the same transaction:

• acu_tcap_msg_free() may optionally be used to free the message. Alternatively, follow

the steps in section 10.2.5 to re-use the message buffer for another message.

Note Messages returned by these functions reference the ‘ring buffer’ used to receive data from the TCP
connection to SCCP. Failure to free them will cause the receive side to block.

10.2.8 Decoding messages

After a message has been received using one of the functions described in section 10.2.7, the
information that it contains can be obtained using the following steps:

• acu_tcap_msg_decode()performs an initial message decode, identifying the message

type (BEGIN/CONTINUE/END etc.), and identifying the transaction to which the message
belongs. If the message is the first message for a new incoming transaction, the
transaction buffer is automatically allocated and added to the tm_trans field of the

message structure. If the message contains a dialogue portion, this function also
resolves a pointer to a structure that describes it.

• If the message is an SCCP status report, then acu_tcap_msg_get_sccp_status() may

be called to resolve a pointer to a structure that describes the status at the time the
message was generated. A separate API funcion, acu_tcap_get_sccp_status(), may

be called to resolve a similar structure that provides the current status, which may have
changed during the time the message was queued.

• acu_tcap_msg_has_components()determines whether or not the message contains any

components. This step is optional, and is not a prerequisite to receiving the individual
components as described below.

• acu_tcap_msg_get_component()may be called to obtain a structure that describes an

individual component from the message portion. The API user must then process the
component after which, if further components may be present, the function may be called
again.

10.2.9 Message event notification

It is often the case that an application needs to be able to wait for TCAP messages in the
same thread as that used for waiting for events from other parts of the system, such as ISUP
call control activity. In these circumstances the functions acu_tcap_ssap_msg_get() and

acu_tcap_trans_msg_get() are unsuitable, as some other event could arrive while the

MAN1200 Revision 6.16.1 PUBLIC Page 53

calling thread is blocked within the TCAP library.

The event mechanism allows an application thread to wait for both TCAP messages and
other events in a single thread, using the platform’s native event notification mechanism
(poll/select for Unix-style systems, WaitForMultipleObjects for Windows). When the

application receives an event notification that a TCAP message is available, it can receive the
message using the non-blocking function ss7_tcap_event_msg_get(), process the message,

and then continue to wait for further events.

To improve scalability, the application creates an event and then attaches transactions (or the
ssap structure itself) to the event. Thus a single native event can be used for large numbers of
transactions.

10.2.10 Encoding/Decoding ASN.1

As mentioned elsewhere, the API user will have to encode and decode ASN.1 data. The
Aculab TCAP API gives the user freedom to choose from a number of ways of doing this, as
described below.

10.2.10.1 Aculab ASN.1 encode/decode functions

The Aculab TCAP API includes interface functions that may be used for encoding and
decoding ASN.1. The Aculab functions have been designed into the API in such a way as to
optimise code paths, maximise performance, and have the benefit of full support from Aculab.
In the absence of other constraints, Aculab would encourage customers to use these
functions in preference to the alternative methods described in sections 10.2.10.2 and
10.2.10.3.

In order to use the Aculab ASN.1 functions, the user must refer to the ASN.1 specification of
the protocol that he is implementing, and call the appropriate functions to encode/decode the
data accordingly. Sometimes, this task is much simpler than it may appear. For example, the
GSM MAP protocol specification is many hundreds of pages long, but a typical application will
use only a tiny subset of that specification. Once that subset is identified, the amount of
relevant ASN.1 is often reduced to a few pages.

A limitation of the Aculab ASN.1 decode functions is that they will simply attempt to decode
whatever is requested, in the order they are called. It is the application’s responsibility to
ensure that all expected ASN.1 parameters are recovered, and to ensure there are no “extra”
parameters beyond those which are permitted.

10.2.10.2 Third party ASN.1 ‘toolkits’

There are a number of commercially available ASN.1 toolkits, which usually include a so-
called ASN.1 ‘compiler’. These are designed to take a textual ASN.1 specification as input,
and generate ‘C’ or ‘C++’ source code, with interfaces to encode and decode the data
according to the specification.

ASN.1 toolkits are probably the most commonly used options for software development using
ASN.1. Their main advantage is that in theory the user is isolated from, and doesn’t need to
understand, the actual protocol specification.

In practice, ASN.1 compilers do suffer from some drawbacks. The generated ‘C’ or ‘C++’
interfaces can be hard to understand and difficult to use, and the generated code for encoding
and decoding the ASN.1 is often inefficient. This can present a significant performance
impact, and it can be difficult to contrive test strategies that prove the generated code actually
works correctly under all conditions. Theses issues are further exacerbated by the fact that
ASN.1 compilers will generally operate on an entire protocol specification, generating much
more code than the application actually needs.

Another drawback is that the authors will have published the ASN.1 specification in human-
readable form. The ASN.1 compilers, of course, require machine-readable input and it is quite
common to have to manually edit (‘tweak’) the specification text in places to ensure 100%
format compatibility with the compiler’s expectations.

MAN1200 Revision 6.16.1 PUBLIC Page 54

10.2.10.3 Third party application-part APIs

It is possible to purchase application APIs for many TCAP application protocols such as INAP,
MAP, CAMEL etc. These APIs provide a documented and supported ‘C’ or ‘C++’ interface
that an application writer can use to encode and decode his ASN.1 data.

If using such an API, there should be no need to refer to the ASN.1 specification itself. A
further advantage is that the API vendor may be able to offer assistance and consultancy with
writing an application, thus reducing development timescales.

On the downside, third party APIs can be expensive to purchase or license, and there can be
additional costs for support. Frequently, the APIs are generated using an ASN.1 compiler as
described in section 10.2.10.2 and so they suffer from many of the same drawbacks,
sometimes being over complex and inefficient.

MAN1200 Revision 6.16.1 PUBLIC Page 55

11 Sample applications
This section describes a sample network and application that allow a “hands-on” approach to
learning how to install and use Aculab SS7. If you just wish to install, configure, and test the
sample network, then you can do so. You do not need to install and build the actual
applications if you only intend to test the configuration.

The sample applications described in this section are intended to illustrate some of the first
steps to get you started with Aculab SS7. As such, they have been deliberately simplified and
do not necessarily handle all the circumstances and events that may arise in a real-world
scenario.

To reduce complexity, and to avoid the need for additional hardware, these samples do not
involve any “voice” traffic. The basic interactions with the Aculab Switch API are illustrated by
data-filling the “voice” channel with a constant pattern. A real-world application would also
have to deal with the required switching of the voice/bearer channels using the Aculab Switch
API.

The TCAP portion of the sample applications illustrates the use of Aculab’s Distributed TCAP
product by way of a small set of ITU INAP operations.

Source code and TCAP configuration files for the samples are available for download from the
Aculab AIT server.

Note Aculab may continue to improve and develop the sample applications after publication of this document.
Therefore you may find that the version downloaded from the website differs in detail from that described
here.

11.1 What the samples do
The samples consist of three separate programs that, in turn, illustrate use of the ISUP API in
isolation, use of the TCAP API in isolation and use of the two APIs together.

11.1.1 Call generator

This is a command-line tool for generating calls and uses only the ISUP API. This program
acts as a simple ISUP local exchange with no network “intelligence”, and provides the input
stimulus for the other sample programs. The timeslot, called number, and (optionally) the data
fill pattern for the forward speech circuit, are command-line arguments.

The sequence of event notifications relating to the call, whether it is rejected or progresses to
the “alerting” and “connected” phase, is provided as textual output. If the data pattern sampled
from the backward speech circuit is not as expected, this is also reported.

11.1.2 “SSP” Call handler

This program simulates an ISUP exchange with intelligent switching capability in keeping with
the SSP model described in section 2.4.1. It uses both the ISUP API and the TCAP API.

The program asks a remote instance of the SCP sample program whether each call should be
allowed to proceed and accepts only those calls that the SCP permits. Calls not permitted by
the SCP are rejected.

11.1.3 “SCP” Call validation

This program uses only the TCAP API, and illustrates an Intelligent Network control node in
keeping with the SCP model described in section 2.4.2. It waits for INAP initialDP

operations from the SSP sample program to validate a call’s destination address. The SCP
responds to the SSP with connect or releaseCall, instructing it to either accept or reject the

call respectively, depending upon the digits in the called party number.

The following two diagrams illustrate the message exchanges between the three sample
programs:

MAN1200 Revision 6.16.1 PUBLIC Page 56

Figure 12 - Unsuccessful call attempt

acuss7_caller acuss7_ssp acuss7_scp

IAM (called party number = 789)

BEGIN: initialDP (calledPartyNumber = 789)

CONTINUE: releaseCall

[pre-arranged end]

REL

RLC

MAN1200 Revision 6.16.1 PUBLIC Page 57

Figure 13 - Successful call attempt

acuss7_caller acuss7_ssp acuss7_scp

IAM (called party number = 123)

BEGIN: initialDP (calledPartyNumber = 123)

CONTINUE: connect

[pre-arranged end]

ACM

RLC

ANM

REL

Transmit pattern on audio

timeslot and check pattern

received

Loop back pattern received

on audio timeslot

MAN1200 Revision 6.16.1 PUBLIC Page 58

11.2 The sample network
The sample applications are based upon a simple network consisting of three signalling points
as illustrated in figure 12. The entire network is simulated using a 4 port Aculab card installed
in a single chassis, as illustrated in figure 13.

Figure 14 - Network diagram for sample applications

Call

Control

API

Call

Control

API

TCAP

API

TCAP

API

ISUP, MTP3,

Point code 2

ISUP, MTP3,

Point code 3

ISUP, MTP3,

Point code 1

Call

Generator

Application

SSP

Application

SCP

Application

Aculab 4 port Line Interface Module

MTP2, MTP1,

Port 0

MTP2, MTP1,

Port 1

MTP2, MTP1,

Port 2

MTP2, MTP1,

Port 3

RJ 45 crossover

Cable

RJ 45 crossover

cable

Figure 15 - Single-chassis implementation of the sample network using a 4-port PM
module and two crossover cables (simpler networks could be tested using just two
ports and a single cable)

MAN1200 Revision 6.16.1 PUBLIC Page 59

11.3 Installation and configuration

11.3.1 Hardware and software installation

In order to use the sample applications, at least one Aculab digital access card must be
installed in the test chassis. The sample assumes four network ports are present, although
simpler networks could be simulated using just two network ports. The exact procedure
depends upon which hardware modules are purchased; please refer to the corresponding
card installation guide for detailed instructions. In addition, the software for SS7, Distributed
TCAP and call control components must be installed using the Aculab Installer Tool, as
described in the Aculab installation tool - FTP downloads utility guide.

11.3.1.1 Stack configuration file

A stack configuration file suitable for the sample applications can be found in the file ss7.cfg

that accompanies the sample source code.
The stack must be started using “ss7maint start”.

11.3.1.2 Firmware configuration

The firmware configuration is provided when the firmware is downloaded to the card, which
can be performed by several alternative methods. The Interactive Aculab Configuration Tool
(ACT) or the fwdspldr command-line tool may be used, or it may be downloaded using the

programmatic interface of the call control API. No matter which method you choose for
firmware download, the parameters for the four-firmware ports should be similar to the
following:

Port 0: -cOPC1 -cDPC2 -cTS16 -cSLC0 -cCIC200

Port 1: -cOPC2 -cDPC1 -cTS16 -cSLC0 -cCIC200

Port 2: -cOPC2 -cDPC3 -cTS16 –cSLC0

Port 3: -cOPC3 -cDPC2 -cTS16 –cSLC0

You will also need to configure a suitable clocking mode. This can be done using the ACT, or
using the swcmd command-line utility. Clocking modes are described in more detail in the

Aculab Switch API guide.

11.3.2 Verifying network connectivity

Once you have completed the configuration, started the SS7 protocol stack, and all firmware
downloads are complete, you can perform some checks to confirm network connectivity. This
can be done before any attempts to build or run the sample code. The tool used is ss7maint,

which is fully described in the Aculab SS7 Installation and administration guide. Please
refer to that document when performing the tasks below, as you may want to explore other
useful options such as “-v” (verbose) that requests more detailed output, and “-hi200” which

provides a continuous display updated every 200 milliseconds.

11.3.2.1 MTP2 checks

Use “ss7maint linkstatus –2” to confirm the links are in service at level 2.

11.3.2.2 MTP3 checks

Use “ss7maint linkstatus –3” to confirm the links are in service at level 3. Use “ss7maint

mtp3status” with additional options to confirm specific accessibility and status of signalling

routes and signalling points.

11.3.2.3 ISUP checks

Use “ss7maint isupstatus” with various options to confirm correct ISUP circuit availability.

11.4 Running the samples

11.4.1 Compiling and linking

You will need to compile the source code and link it with the call control and/or Distributed
TCAP libraries. The exact procedure for this depends upon which operating system you are
using, as well as your own personal preferences.

MAN1200 Revision 6.16.1 PUBLIC Page 60

11.4.2 Running the SSP

Ensure that the application’s Distributed TCAP configuration file acuss7_ssp.cfg is in the

current directory when the application is started. The application accepts no command line
arguments.

While running, the application reports call events and the call handle for each event. The
representation of the call handles is not significant and they only serve to distinguish calls in
the output. E.g.:

$ acuss7_ssp

ssp: waiting for connection to SCCP.

ssp: Connected to SCCP.

ssp: INCOMING_CALL_DET 00A41801

ssp: calledPartyNumber: 84 00 87 f9

ssp: sending initialDP.

ssp: response for call 0040AE60

ssp: releaseCall.

ssp: IDLE 00A41801

ssp: INCOMING_CALL_DET 00A41C01

ssp: calledPartyNumber: 84 00 21 f3

ssp: sending initialDP.

ssp: response for call 0040AE74

ssp: connect.

ssp: CALL_CONNECTED 00A41C01

ssp: REMOTE_DISCONNECT 00A41C01

ssp: IDLE 00A41C01

11.4.3 Running the SCP

Ensure that the application’s TCAP configuration file acuss7_scp.cfg is in the current

directory when the application is started. The application accepts no command line
arguments.

While running, the application reports each destination address it is requested to validate and
whether that address has “passed” or “failed” the validation. E.g.:

$ acuss7_scp

scp: entering event loop.

scp: host a (127.0.0.1:8256) in service

scp: initialDP.

scp: serviceKey: 1234.

scp: calledPartyNumber: 84 00 87 f9

scp: fail for calledPartyNumber: 84 00 87 f9

scp: initialDP.

scp: serviceKey: 1234.

scp: calledPartyNumber: 84 00 21 f3

scp: pass for calledPartyNumber: 84 00 21 f3

11.4.4 Generating calls

When the application is started, the user supplies the timeslot on which the call is to be made
and the destination address of the call. Optionally, a data pattern may be supplied which will
be fed into the speech path instead of conventional voice traffic. If this argument is omitted,
the “idle” pattern (silence) is used.

While running, the application reports events for the call as it progresses. E.g.:

$ acuss7_caller 1 789 0xa5

caller: WAIT_FOR_OUTGOING

caller: DETAILS

caller: OUTGOING_PROCEEDING

caller: REMOTE_DISCONNECT

caller: IDLE

$ acuss7_caller 1 123 0xa5

caller: WAIT_FOR_OUTGOING

caller: DETAILS

MAN1200 Revision 6.16.1 PUBLIC Page 61

caller: OUTGOING_PROCEEDING

caller: CALL_CONNECTED

caller: IDLE

MAN1200 Revision 6.16.1 PUBLIC Page 62

Appendix A: Code examples
This section contains further examples of code extracts that are intended to supplement the
information provided elsewhere in this document and in the API guides.

A.1 Example 1 – Flexible ISUP parameter edit on a supported message
type
An application can use Flexible ISUP to override parameters that are normally provided by the
ISUP driver, or to add standard parameters that the driver does not normally include. In this
example, the Backward Call Indicators parameter in an Address Complete Message (ACM) is
overridden with an application-supplied value. Backward Call Indicators is a standard
parameter in an ACM, so no codec extensions are necessary.

 /* Flexible ISUP Example 1

 * Code fragment to demonstrate use of Flexible ISUP to edit an existing

 * parameter. No codec extensions are needed to modify standard White

 * Book ISUP parameters. */

 FEATURE_DETAIL_XPARMS fdxp;

 PROCEEDING_XPARMS procxp;

 INIT_ACU_CL_STRUCT(&fdxp);

 /* Queue up a replacement Backward Call Indicators of 0x1016

 * i.e bits B, C, E and M are set (ref: Table21/Q.763). */

 fdxp.handle = handle;

 fdxp.feature_type = FEATURE_RAW_MSG;

 fdxp.message_control = CONTROL_NEXT_CC_MESSAGE;

 fdxp.feature.raw_msg.length = 4;

 fdxp.feature.raw_msg.data[0] = 0x11; /* Backward Call Indicators */

 fdxp.feature.raw_msg.data[1] = 0x02; /* Length in octets */

 fdxp.feature.raw_msg.data[2] = 0x16; /* bits A-H */

 fdxp.feature.raw_msg.data[3] = 0x10; /* bits I-P */

 call_feature_send(&fdxp);

 INIT_ACU_CL_STRUCT(&procxp);

 procxp.handle = handle;

 /* an ACM generated by call_proceeding() will contain the BCI value

 * 0x1016 */

 call_proceeding(&procxp);

 /* End Flexible ISUP Example 1 */

MAN1200 Revision 6.16.1 PUBLIC Page 63

A.2 Example 2 – Supporting a nationally significant message
Flexible ISUP can be used to implement support for nationally significant messages, such as
the Charge Information (CRG) message. The format of a CRG message is not internationally
agreed, so the ISUP driver must be configured to recognise a national CRG message. One
possible coding of a CRG message is described by the following codec extension sample:

[ISUPCodec]

 name = national_charge

 # CRG

 [Msg]

 code = 0x31

 prm = 0xff, O, 3 # Charge band number

 prm = 0xfe, O, 3 # Number of charging units

 prm = 0x38, O, 3 # Message compatibility information

 prm = 0x39, O, 4 # Parameter compatibility information

 [EndMsg]

[EndISUPCodec]

The following application code illustrates methods for the transmission of the above CRG
message:

/* Flexible ISUP Example 2

 * Code fragment to demonstrate use of Flexible ISUP.

 * Send a custom Charge Information message, containing a Charge Band Number. */

ACU_ERR

send_charge_band(ACU_CALL_HANDLE handle, ACUSS7_OCTET charge_band)

{

 FEATURE_DETAIL_XPARMS fdxp;

 INIT_ACU_CL_STRUCT(&fdxp);

 fdxp.handle = handle;

 fdxp.feature_type = FEATURE_RAW_MSG;

 fdxp.message_control = CONTROL_DEFAULT; /* Whole message specified */

 fdxp.feature.raw_msg.length = 8;

 fdxp.feature.raw_msg.data[0] = 0x31; /* Charge Information message */

 fdxp.feature.raw_msg.data[1] = 0x39; /* Parameter Compatibility Info */

 fdxp.feature.raw_msg.data[2] = 0x02; /* Length */

 fdxp.feature.raw_msg.data[3] = 0xff; /* Charge Band Number */

 fdxp.feature.raw_msg.data[4] = 0x86; /* Release Call / Send Notification */

 fdxp.feature.raw_msg.data[5] = 0xff; /* Charge Band Number */

 fdxp.feature.raw_msg.data[6] = 0x01; /* Length */

 fdxp.feature.raw_msg.data[7] = charge_band;

 return call_feature_send(&fdxp);

}

/* Send a custom Charge Information message, containing a Number Of Charging

 * Units. */

ACU_ERR

send_charging_units(ACU_CALL_HANDLE handle, ACUSS7_OCTET num_charge_units)

{

 FEATURE_DETAIL_XPARMS fdxp;

 INIT_ACU_CL_STRUCT(&fdxp);

 fdxp.handle = handle;

 fdxp.feature_type = FEATURE_RAW_MSG;

 fdxp.message_control = CONTROL_DEFAULT; /* Whole message specified */

 fdxp.feature.raw_msg.length = 8;

 fdxp.feature.raw_msg.data[0] = 0x31; /* Charge Information message */

 fdxp.feature.raw_msg.data[1] = 0x39; /* Parameter Compatibility Info */

 fdxp.feature.raw_msg.data[2] = 0x02; /* Length */

 fdxp.feature.raw_msg.data[3] = 0xfe; /* Number Of Charging Units */

 fdxp.feature.raw_msg.data[4] = 0x86; /* Release Call / Send Notification */

 fdxp.feature.raw_msg.data[5] = 0xfe; /* Number Of Charging Units */

 fdxp.feature.raw_msg.data[6] = 0x01; /* Length */

 fdxp.feature.raw_msg.data[7] = num_charge_units;

 return call_feature_send(&fdxp);

}

/* End Flexible ISUP Example 2 */

MAN1200 Revision 6.16.1 PUBLIC Page 64

A.3 Example 3 – Enabling, receiving, and handling of
EV_EXT_RAW_MSG
Flexible ISUP provides the extended event EV_EXT_RAW_MSG to indicate to an application that

a network message has arrived. The ISUP driver holds a queue of messages on a per-call
basis. An EV_EXT_RAW_MSG event is only generated when a call’s queue becomes non-empty,

so it is very important that an application reads all available messages after receipt of
EV_EXT_RAW_MSG. In this example, an application uses Flexible ISUP to receive CRG

messages and perform some simple processing.

A.3.1 Enabling EV_EXT_RAW_MSG

An application must request EV_EXT_RAW_MSG events by setting the CNF_RAW_MSG bit in the cnf

word:
 /* Flexible ISUP Example 3.1

 * Code fragment to demonstrate use of Flexible ISUP.

 * Enable receipt of raw messages */

 OUT_XPARMS oxp;

 if (strlen(dest) >= sizeof oxp.destination_addr) {

 printf("destination address \"%s\" too long\n", dest);

 return EXIT_FAILURE;

 }

 INIT_ACU_CL_STRUCT(&oxp);

 oxp.net = opp.port_id;

 oxp.ts = ts;

 oxp.cnf = CNF_REM_DISC | CNF_RAW_MSG;

 oxp.sending_complete = 1;

 strcpy(oxp.destination_addr, dest);

 res = call_openout(&oxp);

 /* End Flexible ISUP Example 3.1 */

A.3.2 Receiving EV_EXT_RAW_MSG and processing raw messages
This sample illustrates detection and collection of raw messages. The ISUP helper function
isup_get_parameter() is used to locate a Number Of Charging Units parameter in a

received CRG message.

 /* Flexible ISUP Example 3.2

 * Code fragment to demonstrate use of Flexible ISUP.

 * Handle received EV_EXT_RAW_MSG events */

 STATE_XPARMS sxp;

 FEATURE_DETAIL_XPARMS fdxp;

 ACU_ERR res;

 ACU_UCHAR *prmp;

 for (;;) {

 /* Collect an event ... */

 INIT_ACU_CL_STRUCT(&sxp);

 sxp.timeout = 30000;

 res = call_event(&sxp);

 if (res)

 bail_out("call_event", res);

 if (sxp.handle != handle)

 return EXIT_FAILURE;

 switch (sxp.state) {

 /* :

 : Handle other events here

 : */

 case EV_EXTENDED:

 switch (sxp.extended_state) {

 case EV_EXT_RAW_MSG:

 printf("EXT_RAW_MSG");

 /* loop to ensure all raw messages for this call are read from

 * the driver. The application won't receive a subsequent

 * EV_EXT_RAW_MSG event for this call otherwise. */

 for (;;) {

 INIT_ACU_CL_STRUCT(&fdxp);

MAN1200 Revision 6.16.1 PUBLIC Page 65

 fdxp.handle = handle;

 fdxp.feature_type = FEATURE_RAW_MSG;

 res = call_feature_details(&fdxp);

 if (res)

 bail_out("call_feature_details", res);

 if (!(fdxp.feature_type & FEATURE_RAW_MSG))

 break; /* call's raw message queue is now empty */

 printf("RAW_MSG:0x%02x seq:%u\n", fdxp.feature.raw_msg.data[0],

 (unsigned int)fdxp.feature.raw_msg.raw_msg_seq);

 /* Only Charge Information messages (message type 0x31) will

 * be scrutinised */

 if (fdxp.feature.raw_msg.data[0] != 0x31)

 continue;

 /* Look for Number Of Charging Units parameter (0xfe) */

 prmp = isup_get_parameter(&fdxp.feature.raw_msg, 0xfe, NULL);

 /* prmp will point to Type octet, or NULL if not found.

 * prmp[0] = Type

 * prmp[1] = Length

 * prmp[2] = First octet of parameter data */

 if (prmp)

 printf("Charge: %d units\n", prmp[2]);

 };

 break;

 default:

 printf("unexpected extended event: 0x%lX\n", sxp.extended_state);

 return EXIT_FAILURE;

 }

 break;

 default:

 printf("unexpected event: 0x%lX\n", sxp.state);

 return EXIT_FAILURE;

 }

 }

 /* End Flexible ISUP Example 3.2 */

MAN1200 Revision 6.16.1 PUBLIC Page 66

A.4 Example signalling trace
The following ISUP signalling trace was captured and formatted using the ss7maint tool, and

shows the effects of some of the code examples in Appendix A. Note the overridden
Backward Call Indicators value in the ACM and the presence of CRG messages, coded in
accordance with the national_charge codec extension of example A.2.

******************************* Protocol decode *******************************

* Line 17

*

[13262 15:22:58.086] MTP2 2020-7070 slc 0 TX card 111(0) ts 16 55s335

 00: c3 be 14 85 9e 1b f9 81 c8 00 01 00 00 00 0a 00

 10: 02 00 04 04 00 21 f3

BSN/BIB=67/1, FSN/FIB=62/1, Type=MSU, LI=20, Actual length=23

Network Indicator=2 (National), Service indicator=0x5, Spare/priority=0

Decode=ITU, ISUP

LABEL: OPC=2020, DPC=7070, SLS=8

CIC=200,Type=IAM (Initial Address)

Nature of connection indicators=0x00

Forward call indicators=0x0000

Calling party category=0x0a

Transmission medium requirement=0x00

Called party number:

 0x04, 0x00, "123f"

Pointer to optional part is zero

******************************* Protocol decode *******************************

* Line 90

*

[13262 15:22:58.119] MTP2 2020-7070 slc 0 RX card 111(0) ts 16 55s365

 00: bf c5 0b 85 e4 87 e7 86 c8 00 06 16 10 00

BSN/BIB=63/1, FSN/FIB=69/1, Type=MSU, LI=11, Actual length=14

Network Indicator=2 (National), Service indicator=0x5, Spare/priority=0

Decode=ITU, ISUP

LABEL: OPC=7070, DPC=2020, SLS=8

CIC=200,Type=ACM (Address Complete)

Backwards call indicators=0x1016

Pointer to optional part is zero

******************************* Protocol decode *******************************

* Line 102

*

[13262 15:22:58.122] MTP2 2020-7070 slc 0 RX card 111(0) ts 16 55s370

 00: bf c6 11 85 e4 87 e7 86 c8 00 31 01 ff 01 01 39

 10: 02 ff 86 00

BSN/BIB=63/1, FSN/FIB=70/1, Type=MSU, LI=17, Actual length=20

Network Indicator=2 (National), Service indicator=0x5, Spare/priority=0

Decode=ITU, ISUP

LABEL: OPC=7070, DPC=2020, SLS=8

CIC=200,Type=CRG (Charge)

DECODE WARNING: No message decode available.

******************************* Protocol decode *******************************

* Line 117

*

[13262 15:22:58.125] MTP2 2020-7070 slc 0 RX card 111(0) ts 16 55s375

 00: bf c7 0e 85 e4 87 e7 86 c8 00 09 01 11 02 00 10

 10: 00

BSN/BIB=63/1, FSN/FIB=71/1, Type=MSU, LI=14, Actual length=17

Network Indicator=2 (National), Service indicator=0x5, Spare/priority=0

Decode=ITU, ISUP

LABEL: OPC=7070, DPC=2020, SLS=8

MAN1200 Revision 6.16.1 PUBLIC Page 67

CIC=200,Type=ANM (Answer)

Optional parameter: 0x11 (Backward call inds):

 00: 00 10

Optional parameter: 0x00 (End of optional parameters):

******************************* Protocol decode *******************************

* Line 130

*

[13262 15:22:58.128] MTP2 2020-7070 slc 0 RX card 111(0) ts 16 55s375

 00: bf c8 11 85 e4 87 e7 86 c8 00 31 01 fe 01 0a 39

 10: 02 fe 86 00

BSN/BIB=63/1, FSN/FIB=72/1, Type=MSU, LI=17, Actual length=20

Network Indicator=2 (National), Service indicator=0x5, Spare/priority=0

Decode=ITU, ISUP

LABEL: OPC=7070, DPC=2020, SLS=8

CIC=200,Type=CRG (Charge)

DECODE WARNING: No message decode available.

******************************* Protocol decode *******************************

* Line 145

*

[13262 15:23:00.090] MTP2 2020-7070 slc 0 TX card 111(0) ts 16 57s340

 00: c8 c0 0d 85 9e 1b f9 81 c8 00 0c 02 00 02 82 90

BSN/BIB=72/1, FSN/FIB=64/1, Type=MSU, LI=13, Actual length=16

Network Indicator=2 (National), Service indicator=0x5, Spare/priority=0

Decode=ITU, ISUP

LABEL: OPC=2020, DPC=7070, SLS=8

CIC=200,Type=REL (Release)

Cause:

 00: 82 90

Pointer to optional part is zero

******************************* Protocol decode *******************************

* Line 173

*

[13262 15:23:00.101] MTP2 2020-7070 slc 0 RX card 111(0) ts 16 57s350

 00: c0 c9 09 85 e4 87 e7 86 c8 00 10 00

BSN/BIB=64/1, FSN/FIB=73/1, Type=MSU, LI=9, Actual length=12

Network Indicator=2 (National), Service indicator=0x5, Spare/priority=0

Decode=ITU, ISUP

LABEL: OPC=7070, DPC=2020, SLS=8

CIC=200,Type=RLC (Release Complete)

Pointer to optional part is zero

MAN1200 Revision 6.16.1 PUBLIC Page 68

