

Aculab software for Prosody™

Prosody S™ user guide

Prosody S user guide

2 of 37

PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab plc and may be
the subject of patents pending or granted, and must not be copied or disclosed
without prior written permission. It should not be used for commercial purposes
without prior agreement in writing.

All trademarks recognised and acknowledged.

Aculab Plc endeavours to ensure that the information in this document is correct and
fairly stated but does not accept liability for any error or omission.

The development of Aculab’s products and services is continuous and published
information may not be up to date. It is important to check the current position with
Aculab plc.

Copyright © Aculab plc. 2004-2017 all rights reserved.

Document Revision

Rev Date Detail

1.0 28.05.04 First issue

1.1 19.06.04 Updates following initial feedback

1.2 03.10.04 Updates to reflect V6 software release

1.3 03.02.05 Addition of conferencing and media point switching

1.4 02.03.05 Additional conferencing and media point switching
information

1.4.1 23.03.05 Additional media point appendix added.

1.4.2 01.06.05 Minor updates.

2.0 02.03.06 Updates to reflect re-architecting to RTP API.

2.0.1 11.07.06 Copy of version 2 flowchart and new codec support added.

2.2.0 01.12.06 Updates for new version, T.38, SRTP and new codec
support.

3.0.0B1 25.06.08 Updated for Prosody S version 3.0.

3.0.0B5 16.09.08 ACT and AIT updates

3.0.0 10.11.08 Minor updates.

3.0.1 07.04.09 Minor updates – document links fixed.

3.0.2 07.07.09 Minor updates

3.1.0B1 06.05.09 Additions for video.

3.1.0 23.10.09 Additional codecs, updated licensing.

3.2.0 01.04.10 SRTP support removed.

3.3.0 02.06.10 SRTP plugins, modems added.

3.4.0 10.04.14 Align 6.5, remove video references

3.5.1 22.01.15 Updated references, added SILK codec, IPv6

3.5.2 19.02.15 G729 plugin added

3.5.4 29.09.15 Align version with package

3.5.9 13.12.16 Add 6.7 supported platform info, align version with package,
correct log location, extra note regarding plugins

3.5.10 06.03.17 Correct stand alone PS install instruction, extra step note in
config section, mention syslog logging.

3.5.10.1 07.03.17 Correct 2nd stand alone PS install instruction and date

3.5.10.2 11.04.17 Add note on how to add ProsodyS from command line

Prosody S User Guide

3 of 37

CONTENTS

1 About this document .. 5

1.1 Purpose .. 5
1.2 Scope ... 5
1.3 How to use this document ... 5
1.4 References ... 5

2 Introduction .. 6

3 Getting started ... 7

3.1 Minimum system requirements ... 7
3.2 System configuration... 7
3.3 Installation ... 7

3.3.1 Windows Server 2008/2012/2016 installation ... 7
3.3.2 Linux installation ... 8
3.3.3 Alternative installation tools .. 8

3.4 Installing the Prosody S distribution using the Aculab installation tool (AIT) 8
3.5 Optionally install the Prosody S server on remote machines 10
3.6 Check system configuration (Linux) .. 11
3.7 Configuring Aculab components (Linux) .. 11
3.8 Setting up ProsodyS with Aculab configuration tool (ACT). 12

3.8.1 Adding a Prosody S server ... 12
3.8.2 Requesting and installing Prosody S licence keys 14

3.9 Setting up ProsodyS with command line tools ... 14
3.10 Where to find help on developing applications .. 14

4 Using Prosody S ... 16

4.1 Overview ... 16
4.1.1 Call control and IP endpoints .. 16

4.2 Running ProsodyS on local and remote machines .. 19
4.2.1 Installing local servers .. 19
4.2.2 Installing remote servers ... 19
4.2.3 Using remote servers ... 19

4.3 Call control .. 19
4.3.1 Overview .. 19
4.3.2 IP ports ... 19
4.3.3 Call control using the generic call API ... 19
4.3.4 Call control using the extended SIP API ... 20
4.3.5 Call control using proprietary signalling .. 21

4.4 Media processing .. 22
4.4.1 Overview .. 22
4.4.2 Prosody module.. 22
4.4.3 VoIP media processor resources (VMPs) ... 22
4.4.4 Allocating speech processing resources ... 23
4.4.5 Using speech processing resources ... 23
4.4.6 Fax processing ... 25

4.5 Switching .. 26
4.5.1 Connecting speech processing to IP calls .. 26
4.5.2 Connecting IP calls to IP calls... 26

4.6 Configuration file ... 27
4.6.1 <security> settings .. 27
4.6.2 <resources> settings .. 27
4.6.3 <logging> settings .. 28
4.6.4 <buffering> settings .. 29
4.6.5 <affinity> settings .. 30

Prosody S user guide

4 of 37

5 Performance ... 31

5.1 Linux file systems .. 31
5.2 Antivirus .. 31
5.3 Affinity ... 31

6 Technical specification .. 32

7 Support ... 34

7.1 FAQ .. 34
7.1.1 Why are there more than one Prosody S packages? 34
7.1.2 Where is the log file? .. 34
7.1.3 How do I obtain a port Id to use with Prosody S? 34
7.1.4 Why is the switch API not available? .. 34
7.1.5 When is a licence used? ... 34
7.1.6 How do I know how many licences I have? ... 34
7.1.7 How do I increase the number of IP calls I can make? 34
7.1.8 What happens in Prosody S if the CPU activity reaches near 100%? ... 35
7.1.9 How are multi-homed machines handled? .. 35
7.1.10 How do I set the security key? .. 35
7.1.11 Why does acu_get_card_info() return server address 127.0.0.1? 35

7.2 Troubleshooting .. 36
7.2.1 Prosody S server fails to start ... 36
7.2.2 Prosody S starts but API calls return ERR_SM_DISCONNECTED 36
7.2.3 acu_get_system_snapshot() fails to return a Prosody S server 36
7.2.4 acu_open_prosody() fails with error -1 .. 36
7.2.5 sm_vmptx_status()/sm_vmprx_status fail after calling

sm_vmptx_create()/sm_vmprx_create() .. 36
7.2.6 There is nothing audible on the call .. 37
7.2.7 The audio quality is severely degraded ... 37
7.2.8 There are discontinuities in the replayed data 37
7.2.9 Why does recording not terminate? .. 37
7.2.10 Getting ERR_SM_NO_RESOURCES on Linux at low channel counts . 37

Prosody S User Guide

5 of 37

1 About this document

1.1 Purpose
This document provides guidance for users of Aculab Prosody S version 3.5.10 and
later. It contains a brief quick-start guide for Prosody S with information on
installation, configuration, maintenance, and application development.

1.2 Scope
This document provides information for developers of telephony applications,
systems integrators and other users of IP telephony and speech processing.

1.3 How to use this document
First-time users of Prosody S who are already familiar with the Aculab call and
speech APIs should go directly to section 3, Getting started, for a basic installation,
configuration and operation description.

Users who require a more detailed understanding of how to develop applications for
Prosody S should first read section 4, Using Prosody S.

1.4 References
The following publications are referenced by this document:

[1] Aculab Installation Tool (AIT)
[2] Aculab Configuration Tool (ACT)
[3] Aculab Accessing Prosody S virtual cards reference manual
[4] Aculab Resource Management API Guide
[5] Aculab Call Control API Guide
[6] Aculab Extended SIP API Guide
[7] Aculab SIP Programmer’s Guide
[8] Aculab Prosody™ TiNG Documentation
[9] Aculab Prosody™ Generic API reference manual
[10] Aculab Prosody™ Speech processing API reference manual
[11] Aculab Prosody™ WAV file API reference manual
[12] Aculab Prosody™ High level play/record API reference manual
[13] Aculab Prosody™ RTP API reference manual
[14] Aculab Prosody™ High Level Conferencing API reference manual
[15] Aculab Prosody™ FMP API reference manual (T.38)
[16] Aculab Prosody™ FAX API Guide
[17] Aculab Telephony Software Installation Guide

Copies of Aculab documentation are available from the Aculab web site at:

http://www.aculab.com/documents

http://www.aculab.com/support/pdf_documents/v6_windows/Docs/Aculab_Installation_Tool.pdf
http://www.aculab.com/support/pdf_documents/v6_windows/Docs/Aculab_configuration_tool.pdf
http://www.aculab.com/support/pdf_documents/v6_windows/TiNG/pubdoc/pros_x.html
http://www.aculab.com/support/pdf_documents/v6_windows/docs/resource_api_guide.pdf
http://www.aculab.com/support/pdf_documents/v6_windows/Docs/Call_control_API_guide.pdf
http://www.aculab.com/support/pdf_documents/v6_windows/Docs/Extended_SIP_API_guide.pdf
http://www.aculab.com/support/pdf_documents/v6_windows/Docs/SIP_programmers_guide.pdf
http://www.aculab.com/support/pdf_documents/v6_windows/TiNG/pubdoc/index.html
http://www.aculab.com/support/pdf_documents/v6_windows/TiNG/pubdoc/prosgen.html
http://www.aculab.com/support/pdf_documents/v6_windows/TiNG/pubdoc/prospapi.html
http://www.aculab.com/support/pdf_documents/v6_windows/TiNG/pubdoc/highapi_wavfile.html
http://www.aculab.com/support/pdf_documents/v6_windows/TiNG/pubdoc/highapi_playrec.html
http://www.aculab.com/support/pdf_documents/v6_windows/TiNG/pubdoc/prosrtpapi.html
http://www.aculab.com/support/pdf_documents/v6_windows/TiNG/pubdoc/highapi_conf.html
http://www.aculab.com/support/pdf_documents/v6_windows/TiNG/pubdoc/prosfmpapi.html
http://www.aculab.com/support/pdf_documents/v6_windows/ProsodyLibraries/Group3Fax/doc/API/Fax_API_Guide.pdf
http://www.aculab.com/support/pdf_documents/v6_windows/Docs/Telephony_software_installation_guide.pdf
http://www.aculab.com/support/technical-documents

Prosody S user guide

6 of 37

2 Introduction
Prosody S is a host-based solution used to develop telephony applications such as
IVR, voicemail, fax servers, call centre and conferencing platforms using IP
connectivity. It does not require any proprietary hardware and provides IP telephony
connections that can be terminated on speech processing channels.

An application using Prosody S typically makes and receives IP calls via the Aculab
call API. The Aculab SIP server interacts with the Prosody S server to establish IP
media sessions through which the media streams are sent and received. It uses a
standard PC network interface card (NIC) to send and receive the IP packets. Both
IPv4 and IPv6 packets are supported. Incoming IP packets are processed to produce
a reliable audio stream. Speech-processing channels are created on the host via the
Aculab Prosody API to provide the ability to play/record data from/to memory or file,
handle DTMF or perform conferencing functions. The speech-processing channel
and IP session are software-switched together using the datafeed switching facilities
in the Prosody API.

As far as the Prosody APIs are concerned, the Prosody S server appears as a single
‘virtual’ card providing speech processing resources. These APIs are used in the
same way that they are used when controlling Aculab speech processing hardware
resources such as an Aculab Prosody X card. Prosody S provides a large subset of
features within the Prosody API.

The extended SIP API and RTP API allow applications to have direct control of IP
calls and RTP endpoints. They also provide advanced control of SIP-specific
features.

Remote Prosody S servers

Prosody S can be installed on a machine remote from the controlling application. As
is the case for Prosody X cards, multiple remote Prosody S servers can be controlled
from a single application.

Coexistence with Aculab hardware

Prosody S can be installed on the same machine as an Aculab Prosody or Prosody X
card. An application can therefore provide TDM call connectivity from a Prosody card
while servicing IP calls via Prosody S.

Note, however, that there is no inherent data connectivity between a TDM bus and
Prosody S.

Only IP calls can be attached to Prosody S host-based media processing resources.

TDM calls may only be attached to hardware media processing resources onboard or
accessible over the H.100 bus.

Plugins

The standard distribution of ProsodyS does not include support for secure RTP or
(from version 3.5.3 onwards) use of G.729 codec. However these features are
available from Aculab as optional AIT installable plugins. Contact Aculab support for
more information.

Platforms

From version 3.5.9, ProsodyS can only be run on 64 bit platforms. Applications
interacting with ProsodyS may be 32 bit or 64 bit.

Prosody S User Guide

7 of 37

3 Getting started
This section provides the basic information necessary to install and use Prosody S.

3.1 Minimum system requirements

Network interface

 Standard Ethernet NIC

CPU

 Single processor

 Dual and quad processor systems will significantly improve performance

CPU support for SSE2 – Pentium 4 or later, AMD Athlon 64 or later.

Memory

 512 MB

Operating system

 Microsoft Windows Server 2008 or later (64 bit O/S only)

 Linux 3.x.x kernel or later (64 bit O/S only)

Licensing

Making IP calls requires at least a single-channel Prosody S licence key.

3.2 System configuration
In order to maximise the performance of a Prosody S installation, the hardware and
operating system configuration should be carefully considered. Note that some
aspects system configuration may need to be addressed before Prosody S
installation.

See the section on Performance.

3.3 Installation

3.3.1 Windows Server 2008/2012/2016 installation

The installation procedure for Prosody S under Windows Server 2008 R2, Windows
Server 2012, or Windows Server 2016 includes the following stages:

1. Install the Windows distribution using the Aculab installation tool (AIT)

2. Optionally install the Prosody S server on any remote machines

3. Either run the Aculab configuration tool (ACT) to:

• Add local (and remote) Prosody S server(s)

• Install Prosody S licence keys

• Select the required IP services (SIP)

Or do the same from a command line

Note You must have administrative privileges to install the software. As required, see your
network administrator to set these up.

Prosody S user guide

8 of 37

CAUTION Check that your system’s date and time are correct before installation; if the
date and time are incorrect the licence software may not validate the keys. Changing
the date of the system after the licence keys have been loaded may also invalidate
the keys.

3.3.2 Linux installation

The installation procedure for Prosody S under Linux includes the following stages:

1. Install the Linux distribution using the Aculab installation tool (AIT)

2. Optionally install the Prosody S server on any remote machines

3. Check system configuration

4. Configure Aculab components and start the Aculab resource manager

5. Run the Aculab configuration tool (ACT) to:

• Add local (and remote) Prosody S server(s)

• Install Prosody S licence keys

• Select the required IP services (SIP)

3.3.3 Alternative installation tools

The graphical versions of the Aculab installation applications are described above.
For users who prefer text based tools or require applications that do not rely on a
windowing system, alternative tools are available.

• For installing software a text only version of the AIT is provided

• For adding and configuring cards prosody_ip_card_mgr may be used

• To install licences the LicenceAdmin tool is available.

• To select required IP services, a suitable “voip_rm.cfg” file needs to be present in
installation “cfg” subdirectory. See “Creating configuration files” in Telephony
software installation guide [17]

Note Some tools may not be distributed on all operating systems.

3.4 Installing the Prosody S distribution using the Aculab installation tool (AIT)
The Prosody S package is downloaded and installed using the Aculab Installation tool
(AIT). A generic description of the AIT, including how to create self-extracting .zip
files, is covered in the Aculab installation tool [1] document.

1. Run the Aculab installation tool (AIT) application.

Select Connection Details from the Connection menu. You will be presented with a
dialogue window.

Prosody S User Guide

9 of 37

The dialogue window options available are:

Distributions – a list of supported operating systems and/or applications.

Package Name – a user defined unique identifier for the new package.

Installation Path – the installation directory for the distribution. The default can
be edited if required or Browse can be selected to choose another location.

2. Make the required selections then select OK to complete the request. The AIT
will read the current component information for the selected distribution and
display the details in the main AIT window.

3. All components are included by default, this is the full install of all available
Aculab software. It is not necessary to download all the Aculab software
components in order to use Prosody S, although it is safe to do so. Users that
wish to download and install only the components that are required for Prosody S
should right-click on Included Components and select Exclude from the menu.

This will move all components to the Excluded Components list. Select Prosody
S Software from the Excluded Components list and use the right-click menu to
Include just this component.

Note Installing just the Prosody S component and its dependencies will give you a minimal
installation that allows the use of Prosody S and SIP. Users wishing to use other
features must download any additional components that may be required.

Note SRTP and G.729 support are supplied as separate packages that should be installed
in addition to the Prosody S package. The Prosody S package on its own does not
support SRTP or use of G.729.

4. To install the Prosody S software, right click on the Prosody S Software entry
(now in the Included Components list) then select Install, this will download and

Prosody S user guide

10 of 37

then install only the Prosody S component and its dependencies from the Aculab
distribution server to your system.

5. When you are prompted with notification of component dependencies, select
Yes.

6. Users are presented with the Aculab licence agreement and are required to
decline or accept the agreement. If the agreement is declined the Aculab
software will not be installed.

7. The output window will give feedback regarding the progress of the installation.
Any errors that occur during installation will be reported here.

8. Once installation has completed successfully, close the AIT.

 Windows

The installed Prosody S server will now be running as a service and you are now
ready to configure the Prosody S server using the Aculab configuration tool (see 3.8
Running the Aculab configuration tool).

 Linux

The Aculab components need to be configured for this system and the Aculab
resource manager needs to be started prior to configuring the Prosody S server.

3.5 Optionally install the Prosody S server on remote machines
Prosody S can be installed and run on a machine with a minimum of other Aculab
software installed and controlled from a remote application.

To install Prosody S in isolation, on remote machine just install ProsodyS and
Licencing elements from AIT, create aculab.config file and set up security key on
Windows, by running (with bin\amd64 directory in PATH):

ProsodySServ.exe –stop

ProsodySServ.exe –securitykey xxxx

ProsodySServ.exe –start

or on Linux, run by running (with bin64 directory in PATH)::

ProsodySServ –stop

ProsodySServ –securitykey xxxx

ProsodySServ –start

where xxxx is a unique alphanumeric string. This string must match that entered in
the ACT Prosody S details page when adding the server on the controlling machine.

Next install licences for remote machine ProsodyS instance by using Act or
LicenceAdmin tool on controlling machine.

Prosody S User Guide

11 of 37

3.6 Check system configuration (Linux)
It is advisable to check the configuration of some Linux system parameters before
running Prosody S.

1. IP/hostname lookup - Prosody S attempts to verify that an IP address passed to

sm_vmprx_create() is valid for the local machine. This requires that the IP

address can be mapped to a valid hostname. Generally this lookup is controlled
by the Named Service Switch (NSS) scheme (see man nsswitch.conf). In
systems where the local machine is not looked up via DNS, it is common to add a
line mapping IP address to hostname to the /etc/hosts file.

2. File descriptor limit – the number of file descriptors used by Prosody S is related
to the number of vmp pairs opened. Therefore in order to support this it may be
necessary to raise the file descriptor limit. Typically this is configured by the
limits.conf file (see man limits.conf).

3.7 Configuring Aculab components (Linux)
The configuration scripts are located in the driver directory, which is beneath the
Aculab installation directory. To configure a system to use a Prosody S server, follow
the steps below:

3. In the Aculab installation directory, source setV6.sh. This will set up the Aculab

environment.

4. In the driver directory, with super-user privileges, run: dacpinst build.

5. A number of questions are posed, make sure that you answer “yes” when asked
if you would like Prosody S support.

6. When dacpinst has completed another script is generated: aculab_dacp.

This script can be used to start the Aculab components that you have configured.

7. Run: aculab_dacp start to start the Aculab components.

At this point both the Aculab resource manager and the Prosody S service should be
running.

Prosody S user guide

12 of 37

3.8 Setting up ProsodyS with Aculab configuration tool (ACT).

3.8.1 Adding a Prosody S server

1. Start the Aculab V6 ACT [2] application. You will be presented with the following
dialogue.

2. Select the Prosody S view to display the list of configured Prosody S servers.

3. Select the Add button to configure and add a Prosody S server.

Both a Prosody S server running locally and a Prosody S server running on a remote
machine can be added to the local Prosody S configuration.

If Prosody S has been correctly installed via the AIT locally, then it will be running

Prosody S User Guide

13 of 37

already as a service.

 Enter a unique serial number for the instance of Prosody S that is being added.

 If a local Prosody S server is being added the IP address field remains greyed out
and the address will subsequently be reported as 127.0.0.1 via the resource
manager APIs.

If a remote Prosody S server is being added, click the Remote Host check box
and enter either the hostname or IP address of the remote machine on which it is
running.

 Use the default port values for the Utility Port, CardInfo Port and Licence Manager
Port unless there is a conflict with another application on the machine where the
selected server is running. Note: these values do not actively set the port
settings in the server, but must match those configured locally for that
server in its configuration file.

 Enter a (security) Key value or press the Generate Key button to create a new
one. This property is used to ensure the security of communication between
application and server. It can be any alpha-numeric string. Note: For remote
servers, this Key must match the –securitykey argument entered when the
server was started/installed and that is persisted in the configuration file.
For a server local to the ACT this key is configured and the server restarted

automatically.

4. The Prosody S view shows the currently configured Prosody S servers.

The status of each Prosody S server is indicated in the Status column.

Once the IP Address and Utility Port settings for a Prosody S server are correct and
applied, the status of the running Prosody S server will be displayed as connected. If
there is no network connectivity, the address is incorrect, the server is not running or
the utility port does not match that configured on the specified server, the status is
displayed as Connection attempt failed.

Prosody S user guide

14 of 37

3.8.2 Requesting and installing Prosody S licence keys

Please refer to the Aculab Configuration Tool (ACT) document for details on how to
request and install Prosody S licence keys.

3.9 Setting up ProsodyS with command line tools
The equivalent procedure to the ACT set up described in the previous section can be
effected through the command line using a “prosody_ip_card_mgr” add command
similar to the following (the name of the server in this example will be

“MY_PS_SERVER” and its security key will be “my_security_key” and the TCP

port for ProsodyS licence management will be 2546:

sudo -E prosody_ip_card_mgr --add --serial MY_PS_SERVER --key

my_security_key --ip 127.0.0.1 --licence 2546 --S

Licence key information (machine id) may be requested using the LicenceAdmin
command line tool, and once the ProsodyS licence obtained, the licence key may be
installed using the same tool. When LicenceAdmin is invoked, before issuing other
commands, use command option “1” to set the port number to “2546” as was
specified when adding ProsodyS server, for example:

IP address (default Local system):

Port number (default 54821): 2546

3.10 Where to find help on developing applications
Starting development with Prosody S is straightforward for those developers who are
familiar with Aculab’s APIs. These APIs are used to control the IP media and speech
processing resources of Prosody S in the same way that they are used to control
similar Aculab card based resources.

Resource management API [4] – discovering the Aculab Prosody S server

Call control API [5] – generic call control

Extended SIP API [6] – extended SIP call control

Prosody APIs. [8] – speech, wav file, DTMF, conferencing audio processing
resources.

For those developers new to Aculab’s generic APIs, the wealth of documentation and
example code that is available eases the developer into building simple applications
that perform both call control and speech processing.

Prosody S supports most of the functionality that is available through the Prosody
APIs.

RTP session handling is controlled via the Prosody RTP API [13]

Playback and record sessions are managed via the ‘high-level’ or ‘low-level’
interfaces in the Prosody Speech Processing API [10] and WAV File API [11].
DTMF generation and detection, and universal tone generation and detection are
supported using the methods in the Prosody Speech Processing API [10] and
Prosody Generic API [9].

Conferencing is controlled via the Prosody High-Level Conferencing API [14] or,

http://www.aculab.com/support/pdf_documents/v6_windows/docs/aculab_configuration_tool.pdf

Prosody S User Guide

15 of 37

for low-level control, the Prosody Speech Processing API [10].

Prosody S supports the event-driven model for the Prosody APIs.

Prosody S supports the use of datafeeds to enable switching of data between IP calls
and speech processing resources.

For further details on available API functions, please refer to the appropriate manuals
mentioned above.

Prosody S user guide

16 of 37

4 Using Prosody S
4.1 Overview

Aculab Prosody S provides audio media processing facilities for use on standard PC
hardware. It does not require any specialised hardware and uses any standard
network interface card (NIC) to provide IP connectivity.

4.1.1 Call control and IP endpoints

Prosody S supports control of VoIP calls and VoIP media resources using the
Session initiation protocol (SIP) and the Aculab RTP API. It also supports simple call
and media control using the generic Call API.

Aculab call control is accessed via two alternative means:

 Aculab generic call control API

or

 Aculab extended SIP API.

Proprietary call control is also supported.

The RTP media sessions send and receive audio data on IP connections in a variety
of codec types.

Media Gateway

1 2 3

4 5 6

7 8 9

* 8 #

IP Phone

PSTN

1 2 3

4 5 6

7 8 9

* 8 #

PSTN Phone

Wireless Phone

Media Server

ProsodyS

Media App

Media Server

ProsodyS

Media Server

ProsodyS

IP

Prosody S basic scenario

A Prosody S media application provides IP endpoints in the IP network. It controls
the local media processing resources for tasks such as IVR, voicemail, conferencing
or similar. The IP network may be connected to the PSTN via an IP-PSTN media
gateway based on hardware such as Aculab’s Groomer II.

Media applications can control a Prosody S server on its local machine and also
control Prosody S servers on remote machines over a network connection.

Prosody S User Guide

17 of 37

Prosody S itself is represented by a single ‘virtual card’ with zero call ports and a
single media processing module.

Media Application

ProsodyS Server

NIC Card
VoIP Media

Processing

Speech

Processing

IP
Datafeeds

Application Code

Aculab Call Control

API

Aculab Speech

Processing API

Aculab RTP

API

Media Handler Plugin

Aculab

Datafeed API

Aculab SIP Server

An Audio media application using the generic call control API

This diagram shows how a Prosody S audio media application can use the existing
Aculab generic call control API to control the Aculab IP signalling servers and
Prosody S server. ‘Under the hood’ the media handler plugin (MHP) module controls
both the IP signalling and the VoIP media processors (VMP) for each call. The
application uses the RTP API to create VMPs, which the MHP manages in response
to SIP events.

The audio media application uses the call control API just as it would for an Aculab
Prosody X card.

Prosody S user guide

18 of 37

Media Application

Aculab SIP Server

ProsodyS Server

NIC Card
VoIP Media

Processing

Speech

Processing

IP
Datafeeds

Application Code

Aculab Extended

SIP API
Aculab Speech

Processing API

Aculab RTP

API
Aculab Datafeed

API

An Audio media application using the extended SIP API

This diagram shows how a Prosody S media application can use the Aculab
extended SIP API to control the Aculab SIP server directly. This exposes a high level
of SIP detail to the application and provides support for more specialised SIP
functionality.

The application is responsible for handling the special SIP events and using the
returned SIP details to then control the VMPs (both for Tx and Rx) to establish the
media session.

The media application uses the extended SIP API just as it would for an Aculab
Prosody X card.

The Prosody S server provides much of the speech processing functionality that an
Aculab Prosody X card provides via the Prosody speech processing API.

Speech processing channels are connected to VMPs using objects called datafeeds.
These are sources of data, for example: VMP receivers and replay channels.

Prosody S User Guide

19 of 37

4.2 Running ProsodyS on local and remote machines

4.2.1 Installing local servers

Prosody S can be installed and run on the local machine (where the controlling
telephony application resides) by installing the AIT Prosody S package. This installs
the server as a local running service.

4.2.2 Installing remote servers

Prosody S can be installed and run on a machine with no other Aculab software
installed and controlled from a remote application. See section 3.5 for instructions.

4.2.3 Using remote servers

acu_get_card_info() now returns the IP address that has been configured in the

ACT for a PS server. For remote servers this will be the address specified. For a
local server this will be the loopback address 127.0.0.1.

4.3 Call control

4.3.1 Overview

IP calls are created and controlled via either the generic Aculab call API or the
extended SIP API.

A telephony application with simple signalling requirements can use the generic call
API to communicate with the SIP IP signalling server to control how IP calls are
established and closed down. It does not have to handle the details negotiated by
the signalling and control the media session directly. This is managed under-the-
hood and the VMPs that handle the RTP tx and rx are configured automatically.

4.3.2 IP ports

Prosody S does not expose an IP port for call control purposes. It is solely an RTP
media server.

The Aculab SIP server implements its own system-wide IP port that can be used in
the generic call API.

4.3.3 Call control using the generic call API

In order to use the generic call API with Prosody S there are two specific steps that
must be taken. Firstly, the application must obtain the system-wide IP (SIP) port.
Secondly the application must create a pair of VMPs and pass these to the call API.

4.3.3.1 Obtaining the IP port

An application obtains the IP-specific signalling port using the function:

call_open_iptel_port()

specifying which protocol (SIP) is required.

This port can then be used when opening an IP call using the generic call control

methods call_openin() and call_openout().

Prosody S user guide

20 of 37

4.3.3.2 Creating the VMP objects

The application must create a pair of VMPs (one tx, one rx) and pass these to

call_openout() or xcall_accept().

These are then managed internally to control the RTP streams in accordance with the
IP signalling negotiation. Address and port details, codec details etc. are required to
set up the media sessions.

Note The lifetime of vmprx and vmptx objects is licensed. A vmp will fail to startup if a
suitable licence is not available.

Note vmp creation is asynchronous and therefore failure to startup, either due to licence
unavailability or for other reasons, is indicated by a corresponding error returned by
sm_vmprx_status() or sm_vmptx_status(). A non-error return from
sm_vmprx_create() or sm_vmptx_create() DOES NOT imply that a licence has been
obtained.

Creating a vmprx

Use sm_vmprx_create() to create a vmprx.

The address parameter passed to this function specifies the IP address of a local
network interface card (NIC) that will be used to receive RTP packets for that vmprx.

It must be set either to 0 or to the IP address of an enabled local NIC.

If the address parameter is set to 0, then a local IP address will be selected
automatically.

Note The automatic selection of connection address assumes that IP signalling and RTP
stream is to go over the same network for the call.

Creating a vmptx

Use sm_vmptx_create() to create a vmptx.

4.3.4 Call control using the extended SIP API

The extended SIP API provides a more flexible means of controlling SIP signalling. It
also supports 3rdparty call control and re-Invites.

In order to use the extended call API with Prosody S the application must obtain the

system-wide SIP port. It must use the sip-specific sip_ functions where they are

provided and handle the extra sip-specific events when they occur and control the
media sessions themselves using the Prosody RTP API.

4.3.4.1 Obtaining the SIP port

An application that requires extended SIP control obtains a SIP-specific signalling
port using the function:
sip_open_port()

This port can then be used when opening a SIP call using the extended SIP API

methods sip_openin() and sip_openout().

4.3.4.2 Extended SIP functions

From then on, where available, the sip-specific methods must be used in place of the
generic methods. Additionally the extended SIP events such as

EV_MEDIA_PROPOSE need to be handled (see V6 Extended SIP API Guide [6] and

SIP programmer’s guide [7]).

Prosody S User Guide

21 of 37

4.3.4.3 Managing the media sessions

When using the extended SIP API it is the application’s responsibility to respond to
the sip-specific events as appropriate. The application must create and configure

vmprx and vmptx objects as required and manage their lifetime (see Prosody RTP

API manual [13]).

4.3.5 Call control using proprietary signalling

Proprietary IP signalling can be used by an application that uses Prosody S media
sessions.

Media sessions can be controlled in the same way as for use with the extended SIP
API described above.

Prosody S user guide

22 of 37

4.4 Media processing

4.4.1 Overview

Prosody speech-processing resources in Prosody S are created and controlled via
the standard Aculab Prosody API (Version 2 TiNG). A telephony application using
Prosody S to perform speech processing communicates directly with the Prosody S
server to control these resources.

The Prosody S server currently provides a subset of the functionality available in the
Prosody API. The main features supported at present include VMP and VidMP RTP
endpoints, audio playback and record, conferencing, DTMF detection, DTMF
generation and video playback and record.

4.4.2 Prosody module

For a Prosody S server, the speech module count is always 1. Hence module index

0 should be used in a subsequent call to sm_open_module().

Note The algorithms available on a Prosody S ‘module’ are not configurable and Prosody S
does not support the API methods associated with firmware configuration.

4.4.3 VoIP media processor resources (VMPs)

4.4.3.1 Overview

VMPTxs and VMPRxs are VoIP endpoints which handle the transmission and
reception of RTP streams.

4.4.3.2 VMPTx

A VMPTx is created using the sm_vmptx_create() function.

This function initiates the startup of a VMPTx.

Startup can fail if a valid licence is not available in which case an

ERR_SM_NO_LICENCE error is returned by sm_vmptx_status().

The VMPTx needs to be configured to send RTP and RTCP data to a specific IP

address and port number using the sm_vmptx_config() function.

A VMPTx does not have inherent IPv6 or IPv4 type until it is configured with
destination address. For IPv6 this would be done with sm_vmptx_config_ipv6.

Note the equivalent field to the IPv4 TOS_RTP for IPv6 is bits 20..27 of
destination_rtp.sin6_flowinfo which will get placed in the RTP IP packets Traffic Class
8 bit field. Due to Operating System limitations, this setting of traffic class functionality
is not currently available under Windows.

Note if an IPv6 source address is specified when configuring VMPTx, both source
and destination addresses must be of same scope, i.e. either both global or both link
local.

4.4.3.3 VMPRx

A VMPRx is created using the sm_vmprx_create() function. When creating a

VMPRx, it is necessary to specify whether it is to accept IPv6 RTP or IPv4 RTP using

the type field

This function initiates the startup of a VMPRx.

Startup can fail if a valid licence is not available in which case an ERR_SM_NO_LICENCE

Prosody S User Guide

23 of 37

error is returned by sm_vmprx_status().

The VMPRx is allocated two local ports numbers (for RTP and RTCP), the values of

which are returned by sm_vmprx_status() for the kSMVMPrxStatusGotPorts

or kSMVMPrxStatusGotPortsIPv6 status. The range of ports numbers defaults

to the maximum allowable range 1024-65531. This range can be reduced by
specifying max and min port numbers in the configuration file.

In the parameters for this function, the IP address of a local network interface card
(NIC) can be specified. This limits reception of RTP packets to the specified address,
and consequently packets arriving with a different address will be ignored. If no
address is specified in this function, RTP packets addressed to all local interfaces will
be processed.

4.4.4 Allocating speech processing resources

A Prosody S channel is allocated in the normal way using

sm_channel_alloc_placed(), using the module id returned from

sm_open_module().

4.4.5 Using speech processing resources

Conferencing, replay, record, DTMF detection and DTMF generation are all
supported in Prosody S. Both the low-level and high-level replay/record APIs are
supported, as is the WAV file API.

4.4.5.1 Replaying data

In the sm_replay_parms structure that is passed Page 23 of 37to

sm_replay_start() and sm_replay_file_start() methods, the

background and speed elements are not supported in this version and do not have

any effect.

Using the low-level playback API

The sm_replay_start(), sm_replay_put_data() and associated functions

can be used to control data replay as described in the speech processing API guide
[10].

Using the high-level playback API

The sm_replay_file_start(), sm_replay_file_progress() and

associated function can be used to control data replay as described in the high-level

play/record API application note. The functions sm_replay_wav_start() (and

sm_replay_wav_close()) are also supported.

4.4.5.2 Recording data

When the sm_record_parms structure is passed to sm_record_start() and

sm_record_file_start(), the silence_elimination,

tone_elimination_mode, and tone_elimination_set_id, elements are not

supported in this version, setting them has no effect.

Prosody S does not record data when the Prosody channel is not switched to a
datafeed. As a consequence, care should be taken when using the recording

termination options max_octets and max_silence.

Prosody S user guide

24 of 37

max_octets is no longer equivalent to max_elapsed_time in that a channel that

is not switched to an active datafeed will never achieve max_octets of data, and

will therefore not terminate.

Using the low-level record API

The sm_record_start(), sm_get_recorded_data() and associated

functions can be used to control data recording as described in the Prosody generic
API documentation.

Using the high-level record API

The sm_record_file_start(), sm_record_file_progress() and

associated functions can be used to control data recording as described in the high-

level play/record API application note. The functions sm_record_wav_start()

(and sm_record_wav_close()) are also supported.

4.4.5.3 Detecting tones and DTMF

DTMF signals on IP calls are usually sent via a special packet, not as audio data. The
VMP Rx can detect and report these packets, and optionally convert them to an audio
representation.

Detecting DTMF using the VMP Rx

When a DTMF RTP packet is received the VMP’s event will be signalled and

sm_vmprx_status() will return kSMVMPrxStatusDetectTone with the tone ID

and volume received. The tone ID refers to RFC2833.

Detecting tones using the signal detector

The sm_listen_for() function is used for detecting DTMF and other tones. This

should be used in conjunction with the Prosody event mechanism and the function

sm_get_detected(), described in the Prosody generic API [9] and speech

processing API [10] documentation respectively.

DTMF will not be detected by the tone detector unless the VMP Rx has been
configured to convert incoming DTMF packets into their audio representation. See the

function sm_vmprx_config_tones() in the Prosody RTP API manual [13] for

controlling the conversion.

The following parameters to sm_listen_for() are supported:

• tone_detection_mode : all modes are supported

• active_tone_set_id : this will be set to zero for DTMF detection. Non-zero

tone sets are supported if the appropriate calls to sm_add_input_tone_set()

have been made.

• map_tones_to_digits : both kSMNoDigitMapping and

kSMDTMFToneSetDigitMapping are supported

• enable_grunt_detection : is supported, along with the corresponding

grunt_latency

Following a call to to sm_get_recognised(), the type member of

sm_recognised_parms() will be one of: kSMRecognisedNothing,
kSMRecognisedDigit, kSMRecognisedTone, kSMRecognisedGruntStart,

kSMRecognisedGruntEnd, kSMRecognisedOverrun.

According to the type, the parameters param0 and param1 are as documented in

the Prosody speech processing API [10].

Prosody S User Guide

25 of 37

The following tone detection manipulation functions are supported in Prosody S, as
documented in Prosody speech processing API [10]:

sm_add_input_freq_coeffs(), sm_add_input_tone_set(),

sm_adjust_input_tone_set()

4.4.5.4 Generating tones and DTMF

DTMF signals on IP calls are usually sent via a special packet, not as audio data. The
VMP Tx can directly generate these packets, or it can monitor the audio data passed
to it and convert detected audio DTMF into the correct packet.

Generating DTMF packets using the VMP Tx

Call sm_vmptx_generate_tones() from the Prosody RTP API manual [13] to

directly generate DTMF packets.

Generating tones and DTMF packets using the signal generator

The following API functions are supported in Prosody S, as documented in Prosody
speech processing API [10]:

sm_play_digits(), sm_play_digits_status(), sm_play_tone(),

sm_play_tone_abort(), sm_play_tone_status(),

sm_add_output_freq(), and sm_add_output_tone()

These functions will directly generate audio data which will be transmitted as-is
unless the VMP Tx has been configured to detect DTMF in audio data via

sm_vmptx_config_tones() (see the Prosody RTP API manual [13]). Only tones

with a corresponding RTP tone ID can be converted.

4.4.5.5 Using conferencing

Using the low-level conferencing primitives

Prosody S supports all features of the low-level conferencing API. See the Prosody
speech processing API [10] for details on how to create and manage conferences. In
particular, the Prosody guide ‘How to perform conferencing’.

Using the high-level conferencing API

The high-level conferencing API can be used to implement simple conferences where
all parties are equal. See the Prosody high level conferencing API [14] and the
Prosody guide ‘How to perform conferencing’.

4.4.5.6 Recording from a conference output

A recorder is set up in the normal way using the low-level recording API.

In the call to sm_record_start() specify the alt_data_source_type to be

kSMRecordAltSourceOutput and alt_data_source to be the channel of the

conference output.

4.4.6 Fax processing

See the Fax Library documentation [16].

Prosody S user guide

26 of 37

4.5 Switching

4.5.1 Connecting speech processing to IP calls

IP calls typically will involve a VMP Tx and VMP Rx.

A VMP Rx owns a datafeed object, the Id of which can be retrieved using

sm_vmprx_get_datafeed(). Input speech processing channels can source their

data from this datafeed using sm_channel_datafeed_connect().

An output speech processing channel, similarly, owns a datafeed object, the Id of

which can be retrieved using sm_channel_get_datafeed(). A VMP Tx can

source its data from this datafeed using sm_vmptx_datafeed_connect().

sm_vmptx_datafeed_connect()

sm_channel_datafeed_connect()

IP Call

VoIP Media

Processor

(Tx)

VoIP Media

Processor

(Rx)

RTP

RTP
Datafeed

Prosody

Channel

(output)

Prosody

Channel

(input)

Datafeed

4.5.2 Connecting IP calls to IP calls

IP calls can also be connected together using the datafeed objects as follows:

sm_vmptx_datafeed_connect()

IP Call

VoIP Media

Processor

(Tx)

VoIP Media

Processor

(Rx)

RTP

RTP
Datafeed

Allternatively, use may be made of sm_vmprx_config_forwarding API call.

Prosody S User Guide

27 of 37

4.6 Configuration file
Prosody S stores a number of global parameters in an xml configuration file called
aculab.config which is read on server startup.

This file will be first written by Prosody S when a local Prosody S server is added via
the ACT or when the Prosody S server is run from the command line with the security
key argument.

In Windows this file is located in $(ACULAB_ROOT)\cfg\.

If $(ACULAB_ROOT) is not set (e.g. a minimum remote installation of Prosody S) this
configuration file will be located in the same directory as the Prosody S executable.

In Linux this file is always located in /etc/aculab/.

<?xml version="1.0" encoding="UTF-8"?>

<config>

<aculab>

 <v6>

 <cards>

 <card type="prosodys_v3">

 <security key="1234"/>

 <resources>

 <ports>

 <port value="16385" name="assp"/>

 <port value="2031" name="asspmon"/>

 <port value="2030" name="cardinfo"/>

 <port value="6583" name="utility"/>

 <port value="2546" name="licence-manager"/>

 </ports>

 <rtpports>

 <rxrange minvalue="1024" maxvalue="65531"/>

 <defaulttx value="65535"/>

 </rtpports>

 </resources>

 <logging>

<log type="file" minlevel="0"

maxlevel="2" filename="ProsodySServ.log"/>

 </logging>

 </card>

 </cards>

 </v6>

 </aculab>

</config>

4.6.1 <security> settings

This element defines the security parameters associated with the Prosody S server.

It has a single attribute:

 key (no default) – that is used to secure the communication between authorised
applications and the Prosody S server. It must match the value set in the ACT
Prosody S details dialog – security key field.

4.6.2 <resources> settings

4.6.2.1 <ports>

This element contains a number of port values that are used by the application layer
and Prosody S to communicate. A number of them must match those settings
specified in the ACT.

 assp port (default 16385) - this determines the port used for ASSP message

Prosody S user guide

28 of 37

passing between applications and Prosody S.

 cardinfo (default 2030) – this is used by the resource manager and must match
the value set in the ACT Prosody S details dialog – cardinfo port field.

 asspmon (default 2031) – this is used by the TiNG library and should be 1 greater
than the cardinfo setting.

 utility (default 6583) – this is used by the ACT to determine the current status of
the selected Prosody S server and must match the value set in the ACT Prosody
S details dialog – utility port field.

 licence-manager (default 2546) – this provides access to the licence manager
facilities in Prosody S and must match the value set in the ACT Prosody S Details
dialog – licence manager port field.

4.6.2.2 <rtpports>

This element contains a number of settings relating to the rtp ports used to transmit
and receive rtp packets.

 rxrange – this defines the range of local ports that can be allocated by the
Prosody S server in order to receive rtp packets. It has the following attributes:

 minvalue (default 1024)

 maxvalue (default 65531)

The range of allowable values for these settings is 1024-65535. However it is
sensible for this range not to overlap the defaulttx port.

Registered port numbers:

The well-known port range 0-1023 is unavailable for use.

The range of ports that should be formally registered by applications is 1024-
49151.

The remaining range (49152-65535) is for dynamic use by applications.

Note If the extent of this range is decreased too far it can increase the likelihood of
sm_vmprx_create() failures as there is a delay between closing a vmprx and the
allocated port becoming available for reallocation.

 defaulttx (default 65535) – this determines the value that is to be used as the
UDP src port in transmitted RTP packets if none is specified for a vmptx via

sm_vmptx_config().

4.6.3 <logging> settings

This element contains the settings for any loggers that are required.

Typically a file logger may be configured to record only errors. For various reasons,
further diagnostic logging may be required. In which case either the logging level for
the file logger can be increased or additional loggers can be added to the
configuration.

File loggers write their output to the specified filenames in specific locations:

In Windows, this is typically located in $(ACULAB_ROOT)\log\.

If $(ACULAB_ROOT) is not set (for example, for a minimum remote installation of
Prosody S) the log file will be located in the same folder as the Prosody S executable.

In Linux, this file is always located in “/var/log/aculab/”.

Prosody S User Guide

29 of 37

4.6.3.1 Logging level

In the following descriptions of available loggers the minlevel and maxlevel

attributes determine the range of logs that are to be logged for that logger and can be
set to values from the following range:

 1 LogLevelAlways - critical log entries such as version details, startup

 2 LogLevelError - errors

 3 LogLevelWarning - unexpected results that are not serious

 4 LogLevelInfo - normal operational information

 5 LogLevelVerbose - intensive operational information

4.6.3.2 File logger

The following line enables a logger that logs all information of the specified range of

levels to a single file of name filename.

<log type="file" minlevel="0" maxlevel="2" filename="ProsodySServ.log"/>

4.6.3.3 Rotating file logger

The following line enables a logger that logs all information of the specified range of
levels to a series of files.

<log type="rotatingfile" minlevel="0" maxlevel="2" filename="ProsodySServ"

fileext="log" maxlines="1000" maxfiles="5" />

Each file has name filenameDD.fileext where DD indicate a two digit identifier

which increments from 00.

The maxlines attribute determines the maximum number of lines in each file. Log

entries that exceed this number of lines will cause the next file in the series to be
opened.

The maxfiles attribute determines the maximum number of files written. Log

entries that exceed this number of files will then be written to file 00, overwriting the
original log data and so on.

4.6.3.4 Console logger

The following line enables a logger that logs all information of the specified range of
levels to the screen console. Typically this will only be useful if running the server in
‘debug’ mode using the –d command option.

<log type="console" minlevel="0" maxlevel="2"/>

4.6.3.5 Syslog logger

For Linux only, the following line redirects log output through invocations of Linux
“syslog”

<log type="syslog" minlevel="0" maxlevel="2"/>

4.6.4 <buffering> settings

This element contains the settings that can override the default buffer size for

ProsodyS replay (fromhost attribute) and record (tohost attribute) activities.

Normally the default settings are appropriate but if responsiveness of application to

Prosody S user guide

30 of 37

read/write wakeup events is very slow and it suffers from reported replay underruns
or record overruns, larger buffers can be assigned. Zero sets a default value of 8192
bytes of buffering (about 1s if replay/record format is 8KHz A-law samples), larger
values can be specified for more leeway in application wakeup responsiveness.

<host fromhost="0" tohost="0" />

4.6.5 <affinity> settings

This element allows finer control over ProsodyS exploitation of system CPUs which
may be necessary for a system where the telephony application cohabits with
ProsodyS and handles a large number of simultaneous calls. By default ProsodyS will
use all CPU cores on a system for processing TiNG tasks, thus have N task
processing threads on a N CPU core machine. However this can be restricted to a

smaller number using the affinity count attribute. These task processing threads are

normally scheduled freely among available CPU cores, however if the affinity pin

attribute is set to “1”, the task processing threads will be pinned to CPU cores starting

from a selected base CPU core (normally that specified by affinity base attribute). On

some (generally Linux) systems with multiple CPUs, the cores are numbered
alternating between CPUs, in order to place task processing threads on same

physical CPU in these systems, a step attribute may be specified which will be

added to base for each task processing thread. For some system configurations,

where further control of other elements of ProsodyS scheduling may be necessary
(for example packet handling), additional attributes may be applicable – contact
Aculab support for more details).

<host base="1" count="4" step="2" pincores="1"/>

Prosody S User Guide

31 of 37

5 Performance

5.1 Linux file systems
The Linux "ext4" file system is commonly used on modern Linux installations for
partitions / mounts points where data integrity is paramount. However, when high
data throughput is the main consideration, it may be advantageous to use an
alternative non-journaling file system such as “xfs”. This is particularly of note for high
load applications that record data to file.

Using the "xfs" file system on the partition where files are to be recorded can in some
systems substantially increase the number of supported recordings to be performed
simultaneously by the same application.

5.2 Antivirus
Some anti-virus tools implement packet scanning on incoming network packets. This
can introduce overhead to handling network activity that can be difficult to diagnose
as it is at such a low level. In windows this can show up as kernel activity related to
deferred procedure calls associated with network interrupts from incoming packets.

5.3 Affinity
On systems where ProsodyS cohabits with telephony application, it may be desirable
to partition use of system CPUs between ProsodyS and other processes. See section
4.6.5 for details of configuration of ProsodyS affinity.

Prosody S user guide

32 of 37

6 Technical specification
IP call control

SIP using extended API
SIP using generic call control API
Proprietary call control

API availability
Call control API via the Aculab call API
Speech processing via the Aculab Prosody API
Virtual switching via the Aculab Prosody API (datafeeds)

Network interface
Standard Ethernet connection

Audio IP media streaming:
RTP - frame sizes, multiples of 10ms
Codecs:

G.711 A-law
G.711 μ-law
G.729AB (plugin required)
G.726 (16, 24, 32 and 40 Kbit/s)
G.723.1 (5.3 and 6.3 Kbit/s)

 G.728
 G.722
 G.722.1
 iLBC
 EVRC
 AMR-NB
 AMR-WB (G.722.2)
 GSM-FR
 Tetra
 Speex

SILK
 Voice activity detection (VAD)

Discontinuous transmission (DTx)
Packet loss concealment
RTCP
RTP TOS settings
RFC 2833 tones
In-band tones

T.38
Over UDP as an Internet aware Fax (IAF) device
Via the Aculab datacomms API

 Data rate management method 2 (transferred TCF)
Versions 0, 1 and 2 of the ASN.1 syntax
ECM and non-ECM image transfer
UDPTL redundancy

T.30
Modems: V.17, V.21, V.27, V.29

Audio processing features
Replay: Volume control

Automatic gain control
Record: Volume control

Automatic gain control

Prosody S User Guide

33 of 37

Termination on silence
Tone elimination

Tone generation:
DTMF generation
Universal tone generation

Tone detection:
DTMF detection
ANSAM detection
Universal tone detection
Call progress tone detection

File formats:
G.711 A-law PCM
G.711 µ-law PCM
OKI ADPCM
IMA ADPCM
16 bit data
8 bit data
8 bit (signed) data

Multiparty conferences (up to 448 parties per conference)
 Noise gating
 AGC
 DTMF clamping

Signal categorisation:
 Identification of live speakers

Sample rate conversion:
 Audio data can be re-sampled using the signal path processing API

Licence management
Per VMP licensing via a software licence key.

Optional Plugins
Secure RTP
G.729

Prosody S user guide

34 of 37

7 Support

7.1 FAQ

7.1.1 Why are there more than one Prosody S packages?

The ProsodyS_Standalone_Server package contains only the Prosody S server,
without any dependencies. This package can be installed on its own for use as a
remote standalone server.

The ProsodyS package contains documentation and dependencies on a variety of
other packages that are required in order to connect to a local or remote Prosody S
server and build and run Prosody S applications.

The ProsodyS_SRTP_Plugin package contains a plugin to the Prosody S server that
provides SRTP support.

The ProsodyS_G729_Plugin package contains a plugin to the Prosody S server that
provides G729AB support.

7.1.2 Where is the log file?

By default Prosody S writes error level log entries to a log file in the following
locations:

In Windows this is typically $(ACULAB_ROOT)\log\.

If $(ACULAB_ROOT) is not set (for example, for a minimum remote installation of
Prosody S) this is in the same folder as the Prosody S executable.

In Linux this is always /var/aculab/log.

7.1.3 How do I obtain a port Id to use with Prosody S?

Either: use the call_open_iptel_port() function - when using the generic call

API.

Or: use the sip_open_port() function - when using the extended SIP API.

7.1.4 Why is the switch API not available?

Prosody S does not use the standard switching API as this is designed for use with
TDM systems.

All switching is performed using datafeed objects and associated functions in the
Prosody API.

7.1.5 When is a licence used?

A single licence enables the creation of two media processing (VMP) objects.

Typically this will be a vmprx and a vmptx that go to make up a single bidirectional

call. VMPs subsequently release their licences when they are destroyed.

7.1.6 How do I know how many licences I have?

The Aculab configuration tool (ACT) provides information on the number of licences
currently available on any particular Prosody S server.

7.1.7 How do I increase the number of IP calls I can make?

Additional licences can be purchased directly from Aculab, contact your Aculab
Account Manager for further assistance.

Prosody S User Guide

35 of 37

7.1.8 What happens in Prosody S if the CPU activity reaches near 100%?

As happens on dedicated telephony boards, if the CPU activity reaches near 100%
there may be some degradation of audio quality due to missing packets or packets
not being transmitted at the required rate. This is due to the CPU not being able to
fully service each call sufficiently regularly to supply the call with the expected amount
of data.

The Prosody S server should continue to operate correctly during periods of high
CPU activity but the audio quality may be affected.

7.1.9 How are multi-homed machines handled?

A machine with multiple network interface cards (NICs) requires some care in
detailing which addresses to use for both IP signalling and RTP transmission and
reception.

The source address for an RTP packet transmitted by a vmptx is that of the interface

card on which it is sent. This is determined from the current routing table
configuration of the machine.

Note The source address parameter supplied to sm_vmptx_config() is deprecated.

The address on which each vmprx is to listen for RTP packets is specified in the

sm_vmprx_create() function. Only packets received on the specified address will

be processed. If address 0.0.0.0 is specified (the default) in sm_vmprx_create()

then packets received on any local addresses will be processed.

7.1.10 How do I set the security key?

The security key needs to be known both by the Prosody S server and the application
communicating with it.

The security key can be configured for the application via the ACT – Prosody S
settings page, either when adding a server or via the edit button.

For a Prosody S server local to the application, setting this key in the ACT will
configure the key in the server and restart it.

For Prosody S servers remote to the application, the key can be configured on the
server via the Prosody S command line. The same key must then be entered in the
ACT for use by the application.

7.1.11 Why does acu_get_card_info() return server address 127.0.0.1?

acu_get_card_info() returns the IP address of the specified server as stored in the
Resource Manager. This is typically configured via the ACT when adding a Prosody
S card.

When installed locally, Prosody S will default to reporting its IP address as 127.0.0.1,
the loopback address.

Prosody S user guide

36 of 37

7.2 Troubleshooting

7.2.1 Prosody S server fails to start

Check the log file. Startup errors will typically be reported here.

Reasons for startup failure include:

 The server may have been unable to open one of more of its ports. Some ports
may be unavailable if they are in use by other applications. Alternative port
numbers may be configured in the config file (see the section on Configuration
file).

e.g. log extract:

11:54:50:671 | 2fc0 | Error | Utility Server startup error (10048)

11:54:50:671 | 2fc0 | Error | Aborting startup...

 Only one instance of Prosody S can run on a single host.

 Prosody S requires a CPU that supports at least the SSE2 instruction set.

 File permissions on Linux.

7.2.2 Prosody S starts but API calls return ERR_SM_DISCONNECTED

Check the security keys used by the server and the application match. Ensure the
security key is set correctly in the aculab.config file and that it is in the correct location
for the server to read.

On Linux ensure the server is running with super-user privileges. The server may not
operate correctly with standard user rights.

7.2.3 acu_get_system_snapshot() fails to return a Prosody S server

A Prosody S server is not running or has not been added to the resource manager or
is not in the connected state.

The act of installing the ProsodyS_Standalone_Server package via the Aculab Install
Tool (AIT) installs the Prosody S server as a running service. Reinstall this package
to ensure the server is running.

The Prosody S server can then be added to the resource manager’s known list of
Prosody S servers via the Aculab configuration tool (ACT).

The resource manager will try to connect to the running Prosody S server via the
utility port and display ‘connected’ status when successful. The utility port setting
must match that set in the server’s configuration file.

7.2.4 acu_open_prosody() fails with error -1

If a Prosody S server has been added to the resource manager, is running and
connected, then this error may be returned if the cardinfo port setting in the ACT does
not match that configured on the Prosody S server itself via its configuration file.

7.2.5 sm_vmptx_status()/sm_vmprx_status fail after calling
sm_vmptx_create()/sm_vmprx_create()

One possible cause of this is mismatched security key configuration.

The security key used by the Prosody S server must match the security key used by
the application. If the Prosody S server security key is configured from the command
line (e.g. on a remote server) it must match that specified for the server in the ACT.

Prosody S User Guide

37 of 37

A second cause may be the lack of a valid licence.

Use of either of the functions sm_vmptx_create() or sm_vmprx_create() will

result in licence acquisition. If the number of licences installed are already in use

then sm_vmptx_status()or sm_vmprx_status() will subsequently report an

error ERR_SM_NO_LICENCE.

Another possible cause is when the vmp is requested to use a feature that is not
supported by Prosody S, such as the melpe codec. In this case

sm_vmptx_status()or sm_vmprx_status() will report

ERR_SM_NO_SUCH_FIRMWARE.

Only on Linux, this may also be caused by passing in a local address to

sm_vmprx_create() that cannot be found and that is not entered in the

/etc/hosts file. In this case sm_vmprx_stats() will return

ERR_SM_BAD_PARAMETER.

7.2.6 There is nothing audible on the call

No RTP packets will be transmitted on an IP call unless the input of the call’s vmptx is

switched to a valid datafeed, using the sm_vmptx_datafeed_connect() function.

7.2.7 The audio quality is severely degraded

If the recorded or outgoing audio quality is very noisy and barely recognisable as
speech, a common cause is incorrect configuration of the file companding settings.

The file format of the replayed file must be specified correctly in the relevant speech

processing functions, sm_replay_start() for example.

7.2.8 There are discontinuities in the replayed data

If VAD is disabled or there are no periods of low audio level in the replayed data then
the discontinuities may be due to either a highly loaded network or an overloaded
CPU.

Ensure the CPU is not being loaded by excessive logging from either the Prosody S
server or one of the VoIP servers.

Except for the purposes of diagnosis the logging for all these servers should be
minimised to logging only errors at most.

Ensure that other applications or services are not putting undue load on the CPU.

7.2.9 Why does recording not terminate?

If max_silence or max_octets are used to trigger the termination of a recording,

the Prosody channel must be switched to any valid datafeed using
sm_channel_datafeed_connect().

Prosody S does not record anything if no data is supplied to its input and hence both

max_silence and max_octets will not be applied.

max_elapsed_time does not have this limitation and should stop the recording

after the specified time whether data is switched to the channel or not.

7.2.10 Getting ERR_SM_NO_RESOURCES on Linux at low channel counts

If Prosody API calls return ERR_SM_NO_RESOURCES at low channel counts, it is

possible that there are insufficient files descriptors available to the current process. It
is often necessary to raise the per process limit for file descriptors when running
applications that use the Prosody API.

