
 

MANXXXX  

 

 

ProsodyS 

 

User Guide 

MAN1170 



   

MAN1170 PUBLIC 2 

PROPRIETARY INFORMATION 

The information contained in this document is the property of Aculab plc and may be the 
subject of patents pending or granted, and must not be copied or disclosed without prior 
written permission. It should not be used for commercial purposes without prior agreement in 
writing. 

All trademarks recognised and acknowledged.  

Aculab plc endeavours to ensure that the information in this document is correct and fairly 
stated but does not accept liability for any error or omission. 

The development of Aculab’s products and services is continuous and published information 
may not be up to date. It is important to check the current position with Aculab plc. 

Copyright © Aculab plc. 2004-2022 all rights reserved. 

 

Document Revision 

Rev Date By Detail 

1.0 28.05.04 BC First issue 

1.1 19.06.04 BC Updates following initial feedback 

1.2 03.10.04 BC Updates to reflect V6 software release 

1.3 03.02.05 BC Addition of conferencing and media point switching 

1.4 02.03.05 BC Additional conferencing and media point switching 
information 

1.4.1 23.03.05 BC Additional media point appendix added 

1.4.2 01.06.05 BC Minor updates. 

2.0 02.03.06 BC Updates to reflect re-architecting to RTP API 

2.0.1 11.07.06 BC Copy of version 2 flowchart and new codec support 
added 

2.2.0 01.12.06 BC Updates for new version, T.38, SRTP and new codec 
support 

3.0.0B1 25.06.08 BC Updated for Prosody S version 3.0 

3.0.0B5 16.09.08 BC ACT and AIT updates 

3.0.0 10.11.08 BC Minor updates 

3.0.1 07.04.09 BC Minor updates – document links fixed 

3.0.2 07.07.09 BC Minor updates 

3.1.0B1 06.05.09 BC Additions for video 

3.1.0 23.10.09 BC Additional codecs, updated licensing 

3.2.0 01.04.10 BC SRTP support removed 

3.3.0 02.06.10 BC SRTP plugins, modems added 

3.4.0 10.04.14 PGD Align 6.5, remove video references 

3.5.1 22.01.15 PGD Updated references, added SILK codec, IPv6 

3.5.2 19.02.15 PGD G729 plugin added 



   

MAN1170 PUBLIC 3 

3.5.4 29.09.15 PGD Align version with package 

3.5.9 13.12.16 PGD Add 6.7 supported platform info, align version with 
package, correct log location, extra note regarding 
plugins 

3.5.10 06.03.17 PGD Correct stand alone PS install instruction, extra step note 
in config section, mention syslog logging 

3.5.10.1 07.03.17 PGD Correct 2nd stand alone PS install instruction and date 

3.5.10.2 11.04.17 PGD Add note on how to add ProsodyS from command line 

3.5.10.3 19.06.17 PGD Remove obsolete caveats in speech replay/record 
section 

3.5.16 2.8.17 PGD Align with release 3.5.16 

3.5.20 17.10.17 PGD Align with release 3.5.20, Linux optional mem 
configuration 

3.5.27 6.9.18 PGD Align with release 3.5.27, extra config options 

3.5.28 7.12.18 PGD Align with release 3.5.28, Opus codec 

3.5.33 29.11.19 PGD Align with release 3.5.33, update O/S list, fix web links 

3.6.2 26.7.22 PGD Align with release 3.6.2 

3.6.5 12.9.22 PGD Align with release 3.6.5 

 

 

 

  



   

MAN1170 PUBLIC 4 

CONTENTS 

 

1 About this document ...................................................................................................... 5 
1.1 Purpose ...................................................................................................................................... 5 
1.2 Scope .......................................................................................................................................... 5 
1.3 How to use this document ................................................................................................. 5 
1.4 References ................................................................................................................................ 5 

2 Introduction......................................................................................................................... 6 

3 Getting Started .................................................................................................................. 7 
3.1 Minimum system requirements ....................................................................................... 7 
3.2 System configuration ........................................................................................................... 7 
3.3 Installation ................................................................................................................................ 7 
3.4 Installing the Prosody S distribution using AIT ....................................................... 8 
3.5 Optionally install the Prosody S server on remote machines .......................... 10 
3.6 Check system configuration (Linux) ........................................................................... 11 
3.7 Configuring Aculab components (Linux) .................................................................. 11 
3.8 Setting up ProsodyS with Aculab configuration tool (ACT). ............................ 12 
3.9 Setting up ProsodyS with command line tools ...................................................... 14 
3.10 Where to find help on developing applications ...................................................... 14 

4 Using ProsodyS .............................................................................................................. 16 
4.1 Overview .................................................................................................................................. 16 
4.2 Running ProsodyS on local and remote machines .............................................. 19 
4.3 Call control ............................................................................................................................. 19 
4.4 Media processing ................................................................................................................. 21 
4.5 Switching ................................................................................................................................. 25 
4.6 Configuration file ................................................................................................................. 25 

5 Performance ..................................................................................................................... 32 
5.1 Linux file systems ................................................................................................................ 32 
5.2 Windows power options ................................................................................................... 32 
5.3 Antivirus................................................................................................................................... 32 
5.4 Affinity ...................................................................................................................................... 32 
5.5 Linux network stack ........................................................................................................... 32 

6 Technical specification ................................................................................................ 33 

7 Support ............................................................................................................................... 35 
7.1 FAQ ............................................................................................................................................ 35 
7.2 Troubleshooting ................................................................................................................... 37 

 



   

MAN1170 PUBLIC 5 

1 About this document 

1.1 Purpose 
This document provides guidance for users of Aculab Prosody S version 3.6.2 and 
later. It contains a brief quick-start guide for Prosody S with information on 
installation, configuration, maintenance, and application development.  

1.2 Scope 
This document provides information for developers of telephony applications, 
systems integrators and other users of IP telephony and speech processing.  

1.3 How to use this document 
First-time users of Prosody S who are already familiar with the Aculab call and 
speech APIs should go directly to section 3, Getting started, for a basic installation, 
configuration and operation description.  

Users who require a more detailed understanding of how to develop applications for 
Prosody S should first read section 4, Using Prosody S.  

1.4 References 
The following Aculab publications are referenced by this document: 

[1] Aculab Installation Tool (AIT) 
[2] Aculab Configuration Tool (ACT) 
[3] Aculab Accessing Prosody S virtual cards reference manual 
[4] Aculab Resource Management API Guide  
[5] Aculab Call Control API Guide 
[6] Aculab Extended SIP API Guide 
[7] Aculab SIP Programmer’s Guide 
[8] Aculab Prosody™ TiNG Documentation 
[9] Aculab Prosody™ Generic API reference manual 
[10] Aculab Prosody™ Speech processing API reference manual 
[11] Aculab Prosody™ WAV file API reference manual 
[12] Aculab Prosody™ High level play/record API reference manual 
[13] Aculab Prosody™ RTP API reference manual 
[14] Aculab Prosody™ High Level Conferencing API reference manual 
[15] Aculab Prosody™ FMP API reference manual (T.38) 
[16] Aculab Prosody™ FAX API Guide 
[17] Aculab Telephony Software Installation Guide 

 

Copies of Aculab documentation are available from the Aculab web site at: 

https://www.aculab.com/help/documentation.  

The following 3rd party publications are referenced by this document: 

[18] How to configure a RHEL 7 or RHEL 8 system to be able to run programs 
requiring Real-Time Scheduling - https://access.redhat.com/articles/3696121 

 

 

https://www.aculab.com/help/documentation
https://access.redhat.com/articles/3696121


   

MAN1170 PUBLIC 6 

2 Introduction 
Prosody S is a host-based solution used to develop telephony applications such as 
IVR, voicemail, fax servers, call centre and conferencing platforms  using IP 
connectivity.  It does not require any proprietary hardware and provides IP telephony 
connections that can be terminated on speech processing channels. 

An application using Prosody S typically makes and receives IP calls via the Aculab 
call API.  The Aculab SIP server interacts with the Prosody S server to establish IP 
media sessions through which the media streams are sent and received. It uses a 
standard PC network interface card (NIC) to send and receive the IP packets. Both 
IPv4 and IPv6 packets are supported. Incoming IP packets are processed to produce 
a reliable audio stream.  Speech-processing channels are created on the host via the 
Aculab Prosody API to provide the ability to play/record data from/to memory or file, 
handle DTMF or perform conferencing functions.  The speech-processing channel 
and IP session are software-switched together using the datafeed switching facilities 
in the Prosody API. 

As far as the Prosody APIs are concerned, the Prosody S server appears as a single 
‘virtual’ card providing speech processing resources.  These APIs are used in the 
same way that they are used when controlling Aculab speech processing hardware 
resources such as an Aculab Prosody X card in a Prosody X chassis.  Prosody S 
provides a large subset of features within the Prosody API. 

The extended SIP API and TiNG RTP API allow applications to have direct control of 
IP calls and RTP endpoints. They also provide advanced control of SIP-specific 
features. 

Remote Prosody S servers 

Prosody S can be installed on a machine remote from the controlling application.  As 
is the case for Prosody X cards in Prosody X chassis, multiple remote Prosody S 
servers can be controlled from a single application. 

Coexistence with Aculab hardware 

Prosody S can be installed on the same machine that controls one or more Prosody 
X chassis.  An application can therefore provide TDM call connectivity from a Prosody 
X chassis while servicing IP calls via Prosody S. 

Note, however, that there is no inherent data connectivity between a TDM trunks and 
Prosody S.   

Only IP calls can be attached to Prosody S host-based media processing resources.   

Plugins 

ProsodyS is shipped as a core server plus a set of standard plugins adding extra 
functionality. The standard distribution of ProsodyS does not include support for 
secure RTP. However a plugin supporting this is available from Aculab as a separate 
AIT installable plugin. Contact Aculab support for more information. Additional plugins 
developed for specific customer needs are occasionally provided to those customers. 

Platforms 

ProsodyS can only be run on 64 bit platforms. Windows applications interacting with 
ProsodyS may be 32 bit or 64 bit. Linux applications must be 64 bit. 

 



   

MAN1170 PUBLIC 7 

3 Getting Started 
This section provides the basic information necessary to install and use Prosody S 

3.1 Minimum system requirements 

Network interface  

 Standard Ethernet NIC 

CPU  

 Single processor 

 Multi processor systems will significantly improve performance 

CPU – x86-64 (AMD64) architecture. 

Use of opus codec requires SSE4.1 capable CPU 

Memory 

 512 MB 

Operating system  

 Microsoft Windows Server 2016 or later (64 bit O/S only) 

 Linux 3.x.x kernel or later (64 bit O/S only, glibc 2.17 or later) 

Licensing 

Making IP calls requires at least a single-channel Prosody S licence key.  

Use of newly introduced features may require updated licence keys. 

 

3.2 System configuration 
In order to maximise the performance of a Prosody S installation, the hardware and 
operating system configuration should be carefully considered.  Note that some 
aspects of system configuration may need to be addressed before Prosody S 
installation.  See the section on Performance. 

3.3 Installation 

3.3.1 Windows Server 2016/2019 installation 

The installation procedure for Prosody S under Windows Server 2016, or Windows 
Server 2019 includes the following stages: 

1. Install the Windows distribution using the Aculab installation tool (AIT) 

2. Optionally install the Prosody S server on any remote machines 

3. Either run the Aculab configuration tool (ACT) to: 

• Add local (and remote) Prosody S server(s) 

• Install Prosody S licence keys 

• Select the required IP services (SIP) 

Or do the same from a command line 



   

MAN1170 PUBLIC 8 

 

NOTE 

You must have administrative privileges to install the software. As required, see 
your network administrator to set these up 

 

 

CAUTION 

Check that your system’s date and time are correct before installation; if the date 
and time are incorrect the licence software may not validate the keys. Changing 
the date of the system after the licence keys have been loaded may also 
invalidate the keys 

 

3.3.2 Linux installation 

The installation procedure for Prosody S under Linux includes the following stages: 

1. Install the Linux distribution using the Aculab installation tool (AIT) 

2. Optionally install the Prosody S server on any remote machines 

3. Check system configuration 

4. Configure Aculab components and start the Aculab resource manager 

5. Run the Aculab configuration tool (ACT) to: 

• Add local (and remote) Prosody S server(s) 

• Install Prosody S licence keys 

• Select the required IP services (SIP) 

3.3.3 Alternative installation tools 

The graphical versions of the Aculab installation applications are described above. 
For users who prefer text based tools or require applications that do not rely on a 
windowing system, alternative tools are available. 

• For installing software a text only version of the AIT is provided 

• For adding and configuring cards prosody_ip_card_mgr may be used 

• To install licences the LicenceAdmin tool is available. 

• To select required IP services, a suitable “voip_rm.cfg” file needs to be present in 
installation “cfg” subdirectory.  See “Creating configuration files” in Telephony 
software installation guide [17] . 

Some tools may not be distributed on all operating systems 

3.4 Installing the Prosody S distribution using AIT 
The Prosody S package is downloaded and installed using the Aculab Installation tool 
(AIT). A generic description of the AIT, including how to create self-extracting .zip 
files, is covered in the Aculab installation tool [1] document. 

  



   

MAN1170 PUBLIC 9 

1. Run the Aculab installation tool (AIT) application. 

Select Connection Details from the Connection menu. You will be presented with a 
dialogue window. 

 

 

The dialogue window options available are: 

Distributions – a list of supported operating systems and/or applications. 

Package Name – a user defined unique identifier for the new package. 

Installation Path – the installation directory for the distribution. The default can 
be edited if required or Browse can be selected to choose another location. 

2. Make the required selections then select OK to complete the request. The AIT 
will read the current component information for the selected distribution and 
display the details in the main AIT window. 

 

3. All components are included by default, this is the full install of all available 
Aculab software. It is not necessary to download all the Aculab software 
components in order to use Prosody S, although it is safe to do so. Users that 
wish to download and install only the components that are required for Prosody S 
should right-click on Included Components and select Exclude from the menu.  

 

This will move all components to the Excluded Components list. Select Prosody 
S Software from the Excluded Components list and use the right-click menu to 
Include just this component. 

  



   

MAN1170 PUBLIC 10 

 

NOTE 

Installing just the Prosody S component and its dependencies will give you a 
minimal installation that allows the use of Prosody S and SIP. Users wishing to 
use other features must download any additional components that may be 
required. 

 

NOTE 

SRTP, V.34 fax modem, and G.729 support are supplied as separate packages 
that should be installed in addition to the Prosody S package.  The Prosody S 
package on its own does not support SRTP, V.34 fax modem, or G.729. 

 

4. To install the Prosody S software, right click on the Prosody S Software entry 
(now in the Included Components list) then select Install, this will download and 
then install only the Prosody S component and its dependencies from the Aculab 
distribution server to your system.  

5. When you are prompted with notification of component dependencies, select 
Yes. 

6. Users are presented with the Aculab licence agreement and are required to 
decline or accept the agreement. If the agreement is declined the Aculab 
software will not be installed.  

7. The output window will give feedback regarding the progress of the installation. 
Any errors that occur during installation will be reported here.  

8. Once installation has completed successfully, close the AIT. 

 

 Windows 

The installed Prosody S server will now be running as a service and you are now 
ready to configure the Prosody S server using the Aculab configuration tool (see 3.8 
Running the Aculab configuration tool). 

 Linux 

The Aculab components need to be configured for this system and the Aculab 
resource manager needs to be started prior to configuring the Prosody S server.  

 

3.5 Optionally install the Prosody S server on remote machines 
Prosody S can be installed and run on a machine with a minimum of other Aculab 
software installed and controlled from a remote application. 

To install Prosody S in isolation, on remote machine just install ProsodyS and 
Licencing elements from AIT, create aculab.config file and set up security key on 
Windows, by running (with bin\amd64 directory in PATH): 

ProsodySServ.exe –stop 

ProsodySServ.exe –securitykey xxxx 

ProsodySServ.exe –start 

  



   

MAN1170 PUBLIC 11 

or on Linux, run by running (with bin64 directory in PATH):: 

ProsodySServ –stop 

ProsodySServ –securitykey xxxx 

ProsodySServ –start 

where xxxx is a unique alphanumeric string.  This string must match that entered in 
the ACT Prosody S details page when adding the server on the controlling machine. 

Next install licences for remote machine ProsodyS instance by using Act or 
LicenceAdmin tool on controlling machine.  

3.6 Check system configuration (Linux) 
It is advisable to check the configuration of some Linux system parameters before 
running Prosody S. 

1. IP/hostname lookup - Prosody S attempts to verify that an IP address passed to 

sm_vmprx_create() is valid for the local machine.  This requires that the IP 

address can be mapped to a valid hostname.  Generally this lookup is controlled 
by the Named Service Switch (NSS) scheme (see man nsswitch.conf).  In 
systems where the local machine is not looked up via DNS, it is common to add a 
line mapping IP address to hostname to the /etc/hosts file. 

2. File descriptor limit – the number of file descriptors used by Prosody S is related 
to the number of vmp pairs opened. Therefore in order to support this it may be 
necessary to raise the file descriptor limit (NOFILE). Typically this is configured 
by the limits.conf file (see man limits.conf).  

3. Cgroups – ProsodyS needs ability to create threads with real time scheduling, if 

Linux system is configured with “cpu,cpuacct cgroup” activated (for example 

through use of systemd CPUAccounting or CPUQuota unit settings), such thread 
type creation may be refused (logged as “failed to set thread priority: Operation 
not permitted”), in these cases it would be necessary to run ProsodyS under a 
realtime systemd slice, or disable the cpu cgroup by adding kernel boot 

parameter “cgroup_disable=cpu”. A redhat article [18] gives useful 

information on doing this. 

4. ProsodyS requires the Linux capability NET_RAW in order to create raw mode 
sockets. 

3.7 Configuring Aculab components (Linux) 
The configuration scripts are located in the driver directory, which is beneath the 
Aculab installation directory. To configure a system to use a Prosody S server, follow 
the steps below: 

1. In the Aculab installation directory, source setV6.sh. This will set up the Aculab 

environment. 

2. In the driver directory, with super-user privileges, run: dacpinst build. 

3. A number of questions are posed, make sure that you answer “yes” when asked 
if you would like Prosody S support. 

4. When dacpinst has completed another script is generated: aculab_dacp. 

This script can be used to start the Aculab components that you have configured. 

5. Run: aculab_dacp start to start the Aculab components.  

 

At this point both the Aculab resource manager and the Prosody S service should be 
running. 



   

MAN1170 PUBLIC 12 

3.8 Setting up ProsodyS with Aculab configuration tool (ACT).  

3.8.1 Adding a Prosody S server 

1. Start the Aculab V6 ACT [2] application.  You will be presented with the following 
dialogue. 

 

 
 

2. Select the Prosody S view to display the list of configured Prosody S servers. 

 

 
 

3. Select the Add button to configure and add a Prosody S server. 

 

 
 



   

MAN1170 PUBLIC 13 

Both a Prosody S server running locally and a Prosody S server running on a remote 
machine can be added to the local Prosody S configuration. 

If Prosody S has been correctly installed via the AIT locally, then it will be running 
already as a service. 

 Enter a unique serial number for the instance of Prosody S that is being added.   

 If a local Prosody S server is being added the IP address field remains greyed out 
and the address will subsequently be reported as 127.0.0.1 via the resource 
manager APIs. 

If a remote Prosody S server is being added, click the Remote Host check box 
and enter either the hostname or IP address of the remote machine on which it is 
running. 

Use the default port values for the Utility Port, CardInfo Port and Licence Manager 
Port unless there is a conflict with another application on the machine where the 
selected server is running. 

NOTE 

These values do not actively set the port settings in the server, but must match 
those configured locally for that server in its configuration file. 

 

Enter a (security) Key value or press the Generate Key button to create a new 
one.  This property is used to ensure the security of communication between 
application and server.  It can be any alpha-numeric string.  

NOTE 

For remote servers, this Key must match the –securitykey argument entered 
when the server was started/installed and that is persisted in the configuration 
file.  For a server local to the ACT this key is configured and the server restarted 
automatically. 

 

 

4. The Prosody S view shows the currently configured Prosody S servers. 

 

 



   

MAN1170 PUBLIC 14 

 

The status of each Prosody S server is indicated in the Status column. 

 

Once the IP Address and Utility Port settings for a Prosody S server are correct and 
applied, the status of the running Prosody S server will be displayed as connected. If 
there is no network connectivity, the address is incorrect, the server is not running or 
the utility port does not match that configured on the specified server, the status is 
displayed as Connection attempt failed. 

3.8.2 Requesting and installing Prosody S licence keys 

Please refer to the Aculab Configuration Tool (ACT) [2] document for details on how 
to request and install Prosody S licence keys. 

3.9 Setting up ProsodyS with command line tools 
The equivalent procedure to the ACT set up described in the previous section can be 
effected through the command line using a “prosody_ip_card_mgr” add command 
similar to the following (the name of the server in this example will be 

“MY_PS_SERVER” and its security key will be “my_security_key” and the TCP 

port for ProsodyS licence management will be 2546: 

sudo -E prosody_ip_card_mgr --add --serial MY_PS_SERVER --key 

my_security_key --ip 127.0.0.1 --licence 2546 --S 

Licence key information (machine id) may be requested using the LicenceAdmin 
command line tool, and once the ProsodyS licence obtained, the licence key may be 
installed using the same tool. When LicenceAdmin is invoked, before issuing other 
commands, use command option “1” to set the port number to “2546” as was 
specified when adding ProsodyS server, for example: 

IP address (default Local system): 

Port number (default 54821): 2546 

3.10 Where to find help on developing applications 
Starting development with Prosody S is straightforward for those developers who are 
familiar with Aculab’s APIs.  These APIs are used to control the IP media and speech 
processing resources of Prosody S in the same way that they are used to control 
similar Aculab card based resources. 

Resource management API [4] – discovering the Aculab Prosody S server 

Call control API  [5] – generic call control 

Extended SIP API [6] – extended SIP call control 

Prosody APIs [8] – speech, wav file, DTMF, conferencing audio processing 
resources.  

For those developers new to Aculab’s generic APIs, the wealth of documentation and 
example code that is available eases the developer into building simple applications 
that perform both call control and speech processing. 

Prosody S supports most of the functionality that is available through the Prosody 
APIs.   

RTP session handling is controlled via the Prosody RTP API [13] 

Playback and record sessions are managed via the ‘high-level’ or ‘low-level’ 



   

MAN1170 PUBLIC 15 

interfaces in the Prosody Speech Processing API [10] WAV File API [11]. DTMF 
generation and detection, and universal tone generation and detection are supported 
using the methods in the Prosody Speech Processing API [10] and Prosody 
Generic API [9].  

Conferencing is controlled via the Prosody High-Level Conferencing API [14] or, 
for low-level control, the Prosody Speech Processing API [10]. 

Prosody S supports the event-driven model for the Prosody APIs. 

Prosody S supports the use of datafeeds to enable switching of data between IP calls 
and speech processing resources. 

For further details on available API functions, please refer to the appropriate manuals 
mentioned above. 

 

 



   

MAN1170 PUBLIC 16 

4 Using ProsodyS 

4.1 Overview 
Aculab Prosody S provides audio media processing facilities for use on standard PC 
hardware.  It does not require any specialised hardware and uses any standard 
network interface card (NIC) to provide IP connectivity. 

4.1.1 Call control and IP endpoints 

Prosody S supports control of VoIP calls and VoIP media resources using the 
Session initiation protocol (SIP) and the Aculab RTP API.  It also supports simple call 
and media control using the generic Call API. 

Aculab call control is accessed via two alternative means: 

 Aculab generic call control API  

or  

 Aculab extended SIP API.   

Proprietary call control is also supported. 

The RTP media sessions send and receive audio data on IP connections in a variety 
of codec types. 

 

Media Gateway

1 2 3

4 5 6

7 8 9

* 8 #

IP Phone

PSTN

1 2 3

4 5 6

7 8 9

* 8 #

PSTN Phone

Wireless Phone

Media Server

ProsodyS

Media App

Media Server

ProsodyS

Media Server

ProsodyS

IP

Prosody S basic scenario 

 

A Prosody S media application provides IP endpoints in the IP network.  It controls 
the local media processing resources for tasks such as IVR, voicemail, conferencing 
or similar.  The IP network may be connected to the PSTN via an IP-PSTN media 
gateway based on hardware such as Aculab’s Groomer III. 
 

Media applications can control a Prosody S server on its local machine and also 
control Prosody S servers on remote machines over a network connection.  



   

MAN1170 PUBLIC 17 

Prosody S itself is represented by a single ‘virtual card’ with zero call ports and a 
single media processing module. 
 

Media Application

ProsodyS Server

NIC Card
VoIP Media

Processing

Speech

Processing

IP
Datafeeds

Application Code

Aculab Call Control

API

Aculab Speech

Processing API

Aculab RTP

API

Media Handler Plugin

Aculab

Datafeed API

Aculab SIP Server

An Audio media application using the generic call control API 

 

This diagram shows how a Prosody S audio media application can use the existing 
Aculab generic call control API to control the Aculab IP signalling servers and 
Prosody S server.  ‘Under the hood’ the media handler plugin (MHP) module controls 
both the IP signalling and the VoIP media processors (VMP) for each call.  The 
application uses the RTP API to create VMPs, which the MHP manages in response 
to SIP events. 

The audio media application uses the call control API just as it would for an Aculab 
Prosody X card in a Prosody X chassis. 

 



   

MAN1170 PUBLIC 18 

Media Application

Aculab SIP Server

ProsodyS Server

NIC Card
VoIP Media

Processing

Speech

Processing

IP
Datafeeds

Application Code

Aculab Extended

SIP API
Aculab Speech

Processing API

Aculab RTP

API
Aculab Datafeed

API

An Audio media application using the extended SIP API 

 

This diagram shows how a Prosody S media application can use the Aculab 
extended SIP API to control the Aculab SIP server directly.  This exposes a high level 
of SIP detail to the application and provides support for more specialised SIP 
functionality. 

The application is responsible for handling the special SIP events and using the 
returned SIP details to then control the VMPs (both for Tx and Rx) to establish the 
media session. 

The media application uses the extended SIP API just as it would for an Aculab 
Prosody X card in a Prosody X chassis.   

The Prosody S server provides much of the speech processing functionality that an 
Aculab Prosody X card provides via the Prosody speech processing API.   

Speech processing channels are connected to VMPs using objects called datafeeds.  
These are sources of data, for example: VMP receivers and replay channels. 

 

 

 

  



   

MAN1170 PUBLIC 19 

4.2 Running ProsodyS on local and remote machines 
 

4.2.1 Installing local servers 

Prosody S can be installed and run on the local machine (where the controlling 
telephony application resides) by installing the AIT Prosody S package.  This installs 
the server as a local running service. 

4.2.2 Installing remote servers 

Prosody S can be installed and run on a machine with no other Aculab software 
installed and controlled from a remote application. See section 3.5 for instructions. 

4.2.3 Using remote servers 

acu_get_card_info() now returns the IP address that has been configured in the 

ACT for a PS server.  For remote servers this will be the address specified.  For a 
local server this will be the loopback address 127.0.0.1. 

4.3 Call control 

4.3.1 Overview 

IP calls are created and controlled via either the generic Aculab call API or the 
extended SIP API.   

A telephony application with simple signalling requirements can use the generic call 
API to communicate with the SIP IP signalling server to control how IP calls are 
established and closed down.  It does not have to handle the details negotiated by 
the signalling and control the media session directly.  This is managed under-the-
hood and the VMPs that handle the RTP tx and rx are configured automatically. 

4.3.2 IP ports 

Prosody S does not expose an IP port for call control purposes.  It is solely an RTP 
media server.   

The Aculab SIP server implements its own system-wide IP port that can be used in 
the generic call API. 

4.3.3 Call control using the generic call API 

In order to use the generic call API with Prosody S there are two specific steps that 
must be taken.  Firstly, the application must obtain the system-wide IP (SIP) port.  
Secondly the application must create a pair of VMPs and pass these to the call API. 

4.3.3.1 Obtaining the IP port 

An application obtains the IP-specific signalling port using the function: 

call_open_iptel_port() 

specifying which protocol (SIP) is required. 

This port can then be used when opening an IP call using the generic call control 

methods call_openin() and call_openout(). 

4.3.3.2 Creating the VMP objects 

The application must create a pair of VMPs (one tx, one rx) and pass these to 

call_openout() or xcall_accept().   



   

MAN1170 PUBLIC 20 

These are then managed internally to control the RTP streams in accordance with the 
IP signalling negotiation.  Address and port details, codec details etc. are required to 
set up the media sessions. 

 

NOTE 

The lifetime of vmprx and vmptx objects is licensed.  A vmp will fail to startup if a 
suitable licence is not available. 

 

NOTE 

vmp creation is asynchronous and therefore failure to startup, either due to 
licence unavailability or for other reasons, is indicated by a corresponding error 

returned by sm_vmprx_status() or sm_vmptx_status().  A non-error 

return from sm_vmprx_create() or sm_vmptx_create() DOES NOT imply 

that a licence has been obtained. 

 

Creating a vmprx 

Use sm_vmprx_create() to create a vmprx. 

 

The address parameter passed to this function specifies the IP address of a local 
network interface card (NIC) that will be used to receive RTP packets for that vmprx. 

It must be set either to 0 or to the IP address of an enabled local NIC. 

If the address parameter is set to 0, then a local IP address will be selected 
automatically. 

 

NOTE 

The automatic selection of connection address assumes that IP signalling and 
RTP stream is to go over the same network for the call. 

 

Creating a vmptx 

Use sm_vmptx_create() to create a vmptx. 

4.3.4 Call control using the extended SIP API 

The extended SIP API provides a more flexible means of controlling SIP signalling.  It 
also supports 3rd party call control and re-invites. 

In order to use the extended call API with Prosody S the application must obtain the 

system-wide SIP port.  It must use the sip-specific sip_ functions where they are 

provided and handle the extra sip-specific events when they occur and control the 
media sessions themselves using the Prosody RTP API. 

4.3.4.1 Obtaining the SIP port 

An application that requires extended SIP control obtains a SIP-specific signalling 
port using the function: 
sip_open_port() 



   

MAN1170 PUBLIC 21 

This port can then be used when opening a SIP call using the extended SIP API 

methods sip_openin() and sip_openout().   

4.3.4.2 Extended SIP functions 

From then on, where available, the sip-specific methods must be used in place of the 
generic methods.  Additionally the extended SIP events such as 

EV_MEDIA_PROPOSE need to be handled (see V6 Extended SIP API Guide [6] and 

SIP programmer’s guide [7]). 

4.3.4.3 Managing the media sessions 

When using the extended SIP API it is the application’s responsibility to respond to 
the sip-specific events as appropriate.  The application must create and configure 

vmprx and vmptx objects as required and manage their lifetime (see Prosody RTP 

API manual [13]). 

4.3.5 Call control using proprietary signalling 

Proprietary IP signalling can be used by an application that uses Prosody S media 
sessions. 
 

Media sessions can be controlled in the same way as for use with the extended SIP 
API described above. 

4.4 Media processing 

4.4.1 Overview 

Prosody speech-processing resources in Prosody S are created and controlled via 
the standard Aculab Prosody API.  A telephony application using Prosody S to 
perform speech processing communicates directly with the Prosody S server to 
control these resources.   

The Prosody S server provides a subset of the functionality available in the Prosody 
API supporting the features listed in the Technical specification section of this 
document. 

4.4.2 Prosody module 

The API model has concept of cards populated with media processing modules For a 
Prosody S server, the module count for any Prosody S “card” is always 1.  Hence 

module index 0 should be used in a subsequent call to sm_open_module(). 

 

NOTE 

The algorithms available on a Prosody S ‘module’ are not configurable and 
Prosody S does not support the API methods associated with firmware 
configuration. Additional customer specific algorithms over and above the base 
set can be added through installation of Prosody S plugins. 

 

4.4.3 VoIP media processor resources (VMPs) 

4.4.3.1 Overview 

VMPTxs and VMPRxs are VoIP endpoints which handle the transmission and 
reception of RTP streams.   



   

MAN1170 PUBLIC 22 

4.4.3.2 VMPTx 

A VMPTx is created using the sm_vmptx_create() function. 

This function initiates the startup of a VMPTx.   

Startup can fail if a valid licence is not available in which case an 

ERR_SM_NO_LICENCE error is returned by sm_vmptx_status(). 

The VMPTx needs to be configured to send RTP and RTCP data to a specific IP 

address and port number using the sm_vmptx_config() function.  

A VMPTx does not have inherent IPv6 or IPv4 type until it is configured with 

destination address. For IPv6 this would be done with sm_vmptx_config_ipv6().  

 

NOTE 

The equivalent field to the IPv4 TOS_RTP for IPv6 is bits 20..27 of 

destination_rtp.sin6_flowinfo which will get placed in the RTP IP 

packets Traffic Class 8 bit field. Due to Operating System limitations, this setting 
of traffic class functionality is not currently available under Windows. 

 

 

 

NOTE 

Note if an IPv6 source address is specified when configuring VMPTx, both 
source and destination addresses must be of same scope, i.e. either both global 
or both link local. 

 

4.4.3.3 VMPRx 

A VMPRx is created using the sm_vmprx_create() function. When creating a 

VMPRx, it is necessary to specify whether it is to accept IPv6 RTP or IPv4 RTP using 

the type field 

This function initiates the startup of a VMPRx.   

Startup can fail if a valid licence is not available in which case an ERR_SM_NO_LICENCE 

error is returned by sm_vmprx_status(). 

The VMPRx is allocated two local ports numbers (for RTP and RTCP), the values of 

which are returned by sm_vmprx_status() for the kSMVMPrxStatusGotPorts 

or kSMVMPrxStatusGotPortsIPv6 status.  The range of ports numbers defaults 

to the maximum allowable range 1024-65531.  This range can be reduced by 
specifying max and min port numbers in the configuration file. 

In the parameters for this function, the IP address of a local network interface card 
(NIC) can be specified.  This limits reception of RTP packets to the specified address, 
and consequently packets arriving with a different address will be ignored.  If no 
address is specified in this function, RTP packets addressed to all local interfaces will 
be processed. 

4.4.4 Allocating speech processing resources 

A Prosody S channel is allocated in the normal way using 



   

MAN1170 PUBLIC 23 

sm_channel_alloc_placed(), using the module id returned from 

sm_open_module(). 

4.4.5 Using speech processing resources 

Conferencing, replay, record, DTMF detection and DTMF generation are all 
supported in Prosody S.  Both the low-level and high-level replay/record APIs are 
supported, as is the WAV file API. 

4.4.5.1 Replaying data 

Using the low-level playback API 

The sm_replay_start(), sm_replay_put_data() and associated functions 

can be used to control data replay as described in the speech processing API guide 
[10]. 

Using the high-level playback API 

The sm_replay_file_start(), sm_replay_file_progress() and 

associated functions can be used to control data replay as described in the high-level 

play/record API application note. The functions sm_replay_wav_start() (and 

sm_replay_wav_close()) are also supported. There is a parallel set of “bfile” 

variants of these functions that can be used to overcome stdio limit of number of 

simultaneous file streams being read/written.  

4.4.5.2 Recording data  

Using the low-level record API 

The sm_record_start(), sm_get_recorded_data() and associated 

functions can be used to control data recording as described in the Prosody generic 
API documentation. 

Using the high-level record API 

The sm_record_file_start(), sm_record_file_progress() and 

associated functions can be used to control data recording as described in the high-

level play/record API application note. The functions sm_record_wav_start() 

(and sm_record_wav_close()) are also supported. As for replay case there is a 

parallel set of “bfile” variants of these functions. 

4.4.5.3 Detecting tones and DTMF 

DTMF signals on IP calls are usually sent via a special (RFC2833) packet, not as 
audio data. The VMP Rx can detect and report these packets, and/or convert them to 
an audio representation. 

Detecting DTMF using the VMP Rx 

When a DTMF RTP packet is received a suitably configured VMP’s event will be 

signalled and sm_vmprx_status() will return kSMVMPrxStatusDetectTone with 

the tone ID and volume received. 

Detecting tones and speech energy using the signal detector 

The sm_listen_for() function is used for detecting in-band DTMF and other 

tones. This should be used in conjunction with the Prosody event mechanism and the 

function sm_get_recognised(), described in the Prosody generic API [9] and 

speech processing API [10] documentation respectively. 



   

MAN1170 PUBLIC 24 

RFC2833 DTMF will not be detected by the tone detector unless the VMP Rx has 
been configured to convert incoming DTMF packets into their audio representation. 

See the function sm_vmprx_config_tones() in the Prosody RTP API manual [13] 

for controlling the conversion. 

4.4.5.4 Generating tones and DTMF 

DTMF signals on IP calls are usually sent via a special packet, not as audio data. The 
VMP Tx can directly generate these packets, or it can monitor the audio data passed 
to it and convert detected audio DTMF into the correct packet. 

Generating DTMF packets using the VMP Tx 

Call sm_vmptx_generate_tones() from the Prosody RTP API manual [13] to 

directly generate DTMF packets. 

Generating tones and DTMF packets using the signal generator 

The following API functions are supported in Prosody S, as documented in Prosody 
speech processing API [10]: 

 

sm_play_digits(), sm_play_digits_status(), sm_play_tone(), 

sm_play_tone_abort(), sm_play_tone_status(), 

sm_add_output_freq(), and sm_add_output_tone() 
 

These functions will directly generate audio data which will be transmitted as-is 
unless the VMP Tx has been configured to detect DTMF in audio data via 

sm_vmptx_config_tones() (see the Prosody RTP API manual [13]). Only tones 

with a corresponding RTP tone ID can be converted. 

4.4.5.5 Using conferencing 

Using the low-level conferencing primitives 

Prosody S supports all features of the low-level conferencing API. See the Prosody 
speech processing API [10] for details on how to create and manage conferences. In 
particular, the Prosody guide ‘How to perform conferencing’. 

Using the high-level conferencing API 

The high-level conferencing API can be used to implement simple conferences where 
all parties are equal. See the Prosody high level conferencing API [14] and the 
Prosody guide ‘How to perform conferencing’. 

4.4.5.6 Recording from a conference output 

A recorder is set up in the normal way using the low-level recording API. 

 

In the call to sm_record_start() specify the alt_data_source_type to be 

kSMRecordAltSourceOutput and alt_data_source to be the channel of the 

conference output. 

4.4.6 Fax processing 

ProsodyS supports T.30 fax over G.711 RTP and T.38 fax. See the Fax Library 
documentation [16] for more details. 



   

MAN1170 PUBLIC 25 

4.5 Switching 

4.5.1 Connecting speech processing to IP calls 

IP calls typically will involve a VMP Tx and VMP Rx. 

A VMP Rx owns a datafeed object, the Id of which can be retrieved using 

sm_vmprx_get_datafeed().  Input speech processing channels can source their 

data from this datafeed using sm_channel_datafeed_connect(). 

 

An output speech processing channel, similarly, owns a datafeed object, the Id of 

which can be retrieved using sm_channel_get_datafeed(). A VMP Tx can 

source its data from this datafeed using sm_vmptx_datafeed_connect(). 

 

 

sm_vmptx_datafeed_connect()

sm_channel_datafeed_connect()

IP Call

VoIP Media

Processor

(Tx)

VoIP Media

Processor

(Rx)

RTP

RTP
Datafeed

Prosody

Channel

(output)

Prosody

Channel

(input)

Datafeed

 

4.5.2 Connecting IP calls to IP calls 

IP calls can also be connected together using the datafeed objects as follows: 

 

 

sm_vmptx_datafeed_connect()

IP Call

VoIP Media

Processor

(Tx)

VoIP Media

Processor

(Rx)

RTP

RTP
Datafeed

 

Alternatively, use may be made of sm_vmprx_config_forwarding API call. 

4.6 Configuration file 
Prosody S stores a number of global parameters in an xml configuration file called 
aculab.config which is read on server startup. 

This file will be first written by Prosody S when a local Prosody S server is added via 
the ACT or when the Prosody S server is run from the command line with the security 
key argument. 



   

MAN1170 PUBLIC 26 

In Windows this file is located in $(ACULAB_ROOT)\cfg\.   

If $(ACULAB_ROOT) is not set (e.g. a minimum remote installation of Prosody S) this 
configuration file will be located in the same directory as the Prosody S executable. 

In Linux this file is always located in /etc/aculab/. 

A simple example of the configuration file is shown below. The attributes that control 
Prosody S are located within the XML element <card type=”prosodys_v3”>...</card> 

<?xml version="1.0" encoding="UTF-8"?> 

<config> 

<aculab> 

  <v6> 

   <cards> 

    <card type="prosodys_v3"> 

     <security key="1234"/> 

     <resources> 

      <ports> 

       <port value="16385" name="assp"/> 

       <port value="2031" name="asspmon"/> 

       <port value="2030" name="cardinfo"/> 

       <port value="6583" name="utility"/> 

       <port value="2546" name="licence-manager"/> 

      </ports> 

      <rtpports> 

       <rxrange minvalue="1024" maxvalue="65531"/> 

       <defaulttx value="65535"/> 

      </rtpports> 

     </resources> 

     <logging> 

<log type="file" minlevel="0" 

maxlevel="2" filename="ProsodySServ.log"/> 

     </logging> 

    </card> 

   </cards> 

  </v6> 

 </aculab> 

</config> 

 

4.6.1 <security> settings 

This element defines the security parameters associated with the Prosody S server. 

It has a single attribute: 

 key (no default) – that is used to secure the communication between authorised 
applications and the Prosody S server.  It must match the value set in the ACT 
Prosody S details dialog – security key field. 

4.6.2 <resources> settings 

4.6.2.1 <ports> 

This element contains a number of port values that are used by the application layer 
and Prosody S to communicate.   A number of them must match those settings 
specified in the ACT. 

 assp  (default 16385) - this determines the port used for ASSP message passing 
between applications and Prosody S. 

 cardinfo (default 2030) – this is used by the resource manager and must match 
the value set in the ACT Prosody S details dialog – cardinfo port field. 

 asspmon (default 2031) – this is used by the TiNG library and should be 1 greater 
than the cardinfo setting. 



   

MAN1170 PUBLIC 27 

 utility (default 6583) – this is used by the ACT to determine the current status of 
the selected Prosody S server and must match the value set in the ACT Prosody 
S details dialog – utility port field. 

 licence-manager (default 2546) – this provides access to the licence manager 
facilities in Prosody S and must match the value set in the ACT Prosody S Details 
dialog – licence manager port field. 

4.6.2.2 <rtpports> 

This element contains a number of settings relating to the rtp ports used to transmit 
and receive rtp packets. 

 rxrange – this defines the range of local ports that can be allocated by the 
Prosody S server in order to receive rtp packets. It has the following attributes: 

 minvalue (default 1024) 

 maxvalue (default 65531)  

The range of allowable values for these settings is 1024-65535.  However it is 
sensible for this range not to overlap the defaulttx port. 

Registered port numbers: 

The well-known port range 0-1023 is unavailable for use. 

The range of ports that should be formally registered by applications is 1024-
49151. 

The remaining range (49152-65535) is for dynamic use by applications. 

 

NOTE 

If the extent of this range is decreased too far it can increase the likelihood of 

sm_vmprx_create() failures as there is a delay between closing a vmprx and 

the allocated port becoming available for reallocation. 

 

 defaulttx (default 65535) – this determines the value that is to be used as the 
UDP src port in transmitted RTP packets if none is specified for a vmptx via 

sm_vmptx_config(). 

 namespace – Linux only - this defines net namespace used for RTP ports, it has 
following attribute: 

 net (default is not to use a namespace) 

For example if there was namespace added for rtp: 

ip netns add rtp 

 
Then this element should be  
 

<namespace> net=”rtp” /> 

 
 

4.6.3 <logging> settings 

This element contains the settings for any loggers that are required. 



   

MAN1170 PUBLIC 28 

Typically a file logger may be configured to record only errors.  For various reasons, 
further diagnostic logging may be required.  In which case either the logging level for 
the file logger can be increased or additional loggers can be added to the 
configuration. 

File loggers write their output to the specified filenames in specific locations: 

In Windows, this is typically located in $(ACULAB_ROOT)\log\.  

If $(ACULAB_ROOT) is not set (for example, for a minimum remote installation of 
Prosody S) the log file will be located in the same folder as the Prosody S executable. 

In Linux, this file is always located in “/var/log/aculab/”. 

4.6.3.1 Logging level 

In the following descriptions of available loggers the minlevel and maxlevel 

attributes determine the range of logs that are to be logged for that logger and can be 
set to values from the following range: 

 1  LogLevelAlways  - critical log entries such as version details, startup  

 2  LogLevelError  - errors 

 3  LogLevelWarning  - unexpected results that are not serious 

 4  LogLevelInfo  - normal operational information 

 5  LogLevelVerbose  - intensive operational information 

4.6.3.2 File logger 

The following line enables a logger that logs all information of the specified range of 

levels to a single file of name filename. 

<log type="file" minlevel="0" maxlevel="2" filename="ProsodySServ.log"/> 

4.6.3.3 Rotating file logger 

The following line enables a logger that logs all information of the specified range of 
levels to a series of files. 

<log type="rotatingfile" minlevel="0" maxlevel="2" filename="ProsodySServ" 

fileext="log" maxlines="1000" maxfiles="5" /> 

Each file has name filenameDD.fileext where DD indicate a two digit identifier 

which increments from 00. 

The maxlines attribute determines the maximum number of lines in each file. Log 

entries that exceed this number of lines will cause the next file in the series to be 
opened. 

The maxfiles attribute determines the maximum number of files written.  Log 

entries that exceed this number of files will then be written to file 00, overwriting the 
original log data and so on.   

4.6.3.4 Console logger 

The following line enables a logger that logs all information of the specified range of 
levels to the screen console.  Typically this will only be useful if running the server in 
‘debug’ mode using the –d command option. 

<log type="console" minlevel="0" maxlevel="2"/> 



   

MAN1170 PUBLIC 29 

4.6.3.5 Syslog logger 

For Linux only, the following line redirects log output through invocations of Linux 
“syslog” 

<log type="syslog" minlevel="0" maxlevel="2"/> 

4.6.4 <buffering> settings 

This element contains the settings that can override the default buffer size for 

ProsodyS replay (fromhost attribute) and record (tohost attribute) activities. 

Normally the default settings are appropriate but if responsiveness of application to 
read/write wakeup events  is very slow and it suffers from reported replay underruns 
or record overruns, larger buffers can be assigned. Zero sets a default value of 8192 
bytes of buffering (about 1s if replay/record format is 8KHz A-law samples), larger 
values can be specified for more leeway in application wakeup responsiveness. 

<host fromhost="0" tohost="0" /> 

4.6.5 <affinity> settings 

This element allows finer control over ProsodyS exploitation of system CPUs which 
may be necessary for a system where the telephony application cohabits with 
ProsodyS and handles a large number of simultaneous calls, or a system with a large 
number of CPU cores where it is advantageous to dedicate some to packet 
processing or other uses. By default ProsodyS will use all CPU cores on a system for 
processing TiNG tasks, thus will have N task processing threads on a N CPU core 

machine. However this can be restricted to a smaller number using the affinity count 

attribute. To specify use of N CPU cores, a value of N should be specified.  To 
specify use of all except M CPU cores, a value of –M should be specified.   

These task processing threads are normally scheduled freely among available CPU 

cores, however if the affinity pin attribute is set to “1”, the task processing threads 

will be pinned to CPU cores starting from a selected base CPU core (normally that 

specified by affinity base attribute). On some (generally Linux) systems with multiple 

CPUs, the cores are numbered alternating between CPUs, in order to place task 

processing threads on same physical CPU in these systems, a step attribute may be 

specified which will be added to base for each task processing thread, for example.  

<host base="1" count="4" step="2" pincores="1"/> 

For some system configurations, where further control of other elements of ProsodyS 
scheduling may be necessary (for example packet handling), additional attributes 
may be applicable – contact Aculab support for more details). 

On Windows systems in order to obtain greater accuracy for packet arrival times used 
when measuring round trip times by RTCP functions and packet to epoch times 
reported in augmented summary reports it is necessary to dedicate a separate thread 
for packet reception, this is done by specifying an rxqueue attribute, typically this is 

specified together with the count attribute specifying the number of cores for 

processing TiNG tasks, for example on a 24 core machine, 12 threads could be 
dedicated to ProsodyS TiNG tasks and one to ProsodyS packet reception. 

<host count="12" rxqcount="1"/> 

It is not currently possible to configure Linux ProsodyS for improved packet arrival 
time accuracy.  

4.6.6 <mem> settings 

For ProsodyS on Linux for some system use configurations it may be appropriate to 
preallocate some heap memory and lock the pages for this memory and PS code into 



   

MAN1170 PUBLIC 30 

memory. This can be achieved by configuring a <mem> element with attributes 
similar to the following where sbrkmb specifies number of additional megabytes to 
reserve before locking PS current code/data pages into memory. 

<host sbrkmb="32" mlockall="1"/> 

4.6.7 <clock> settings 

If ProsodyS RTCP functions are used to measure round trip times and augmented 
summary reports used to measure render delays, then on Windows systems in order 
to obtain more finely grained timing measurements ProsodyS can be configured to 

obtain timestamps using QueryPerformanceCounter, on some systems this may 

be at the cost of using more CPU time. If this extra accuracy is required, the following 
attribute may be specified.  

<clock source="QPCFORUS"/> 

If this attribute is used, for best results the host system should have a CPU with the 
TSC-INVARIANT property as reported by Microsoft/Sysinternals coreinfo utility. 

4.6.8 <assp> settings 

ProsodyS uses some UDP based protocols (ASSP/cardinfod) to interact with an 
application linked with the TiNG library. In some configurations it may be necessary to 
ensure the source IP address of ProsodyS transmitted ASSP/cardinfod UDPs are the 
same as the destination IP address of the ASSP UDPs ProsodyS receives. The 
following attribute can be set to enable this mode (on some systems this may be at 
the cost of using more CPU time).  

<assp settxsrcaddr="1"/> 

4.6.9 <options> settings 

4.6.9.1 use_epoll 

Linux only - by default ProsodyS uses multiple Linux epoll system calls on multiple 
task processing threads to detect incoming RTP packets on multiple ports at end of 
epoch when idle. By setting this value to zero this behaviour is replaced to have a 
single task processing thread do this work at the beginning of epoch which might be 
more appropriate for some workload/platform combinations. Setting this value to a 
value to greater than one increases the number of epolls done to look for multiple 
packets arriving on same port during current epoch. 

4.6.9.2 cpumonfmt 

Normally the values read from TiNG data channel configured for kSMDCProtocolCpu 

will be sum of base workload time for task processing and transitory API message 
processing time. Sometimes it is useful to separate out the two values, setting this 
option, setting this option changes the format of values read from data channel to 
give four 32 bit values of CPUMON info about each epoch of which 2nd word is base-
load+message-processing (as normal) and 3rd word is message-processing time on 
its own. 

4.6.9.3 tdm_stride 

For Aculab use only (embedded PS integration within chassis products) 

4.6.9.4 enable_f16c 

Enable use of AVX type instructions for faster companding of G.711 samples 



   

MAN1170 PUBLIC 31 

4.6.9.5 sched_wakeup_latency_us 

Linux only - Power management Quality of Service control – writes specified value to 

 /dev/cpu_dma_latency and holds file descriptor open to make it stick. By 

default, a value of 20 written, if -1 is specified, effect is just to report in Prosody S log 
the latency value that is currently set. 

 

 

 



   

MAN1170 PUBLIC 32 

5 Performance 

5.1 Linux file systems 
The Linux "ext4" file system is commonly used on modern Linux installations for 
partitions / mounts points where data integrity is paramount. However, when high 
data throughput is the main consideration, it may be advantageous to use an 
alternative non-journaling file system such as “xfs”. This is particularly of note for high 
load applications that record data to file. 

Using the "xfs" file system on the partition where files are to be recorded can in some 
systems substantially increase the number of supported recordings to be performed 
simultaneously by the same application. 

5.2 Windows power options 
Windows servers allow configuration of the system power plan. For ProsodyS, the 
system is best exploited by setting the plan to “High Performance”. 

5.3 Antivirus 
Some anti-virus tools implement packet scanning on incoming network packets. This 
can introduce overhead to handling network activity that can be difficult to diagnose 
as it is at such a low level.  In windows this can show up as kernel activity related to 
deferred procedure calls associated with network interrupts from incoming packets. 

5.4 Affinity 
On systems where ProsodyS cohabits with telephony application, it may be desirable 
to partition use of system CPUs between ProsodyS and other processes. See section 
4.6.5 for details of configuration of ProsodyS affinity. 

5.5 Linux network stack 
For high density applications, alternative configuration of Linux network handling may 
be appropriate, such as assigning additional threads to network stack to process 
incoming packets (threaded NAPI), or setting a bigger value for network device 

txqueuelen. An application note is available from Aculab support that discusses 

these alternate configurations that are system and NIC dependant. 

 

 



   

MAN1170 PUBLIC 33 

6 Technical specification 

IP call control 
SIP using extended API 
SIP using generic call control API 
Proprietary call control 

API availability  
Call control API via the Aculab call API 
Speech processing via the Aculab Prosody API 
Virtual switching via the Aculab Prosody API (datafeeds) 

Network interface 
Standard Ethernet connection 

Audio IP media streaming: 
RTP - frame sizes, multiples of 10ms 
Codecs:  

G.711 A-law 
G.711 μ-law 
G.729AB (plugin supplied) 
G.726 (16, 24, 32 and 40 Kbit/s) 
G.723.1 (5.3 and 6.3 Kbit/s) 

  G.728 
  G.722 
  G.722.1 
  Opus (excepting rx FEC) 
  iLBC 
  EVRC 
  AMR-NB 
  AMR-WB (G.722.2) 
  GSM-FR 
  Tetra 
  Speex 

SILK 
 Voice activity detection (VAD) 

Discontinuous transmission (DTx) 
Packet loss concealment 
RTCP 
RTP TOS settings 
RFC 2833 tones 
In-band tones 

T.38 
Over UDP as an Internet aware Fax (IAF) device 
Via the Aculab datacomms API 

 Data rate management method 2 (transferred TCF) 
Versions 0, 1 and 2 of the ASN.1 syntax 
ECM and non-ECM image transfer 
UDPTL redundancy 

T.30 
Modems:  V.17, V.21, V.27, V.29, V.34 (plugin supplied) 

  



   

MAN1170 PUBLIC 34 

Audio processing features 
Replay: Volume control 

Automatic gain control 
Record: Volume control 

Automatic gain control 
Termination on silence 
Tone elimination 

Tone generation: 
DTMF generation 
Universal tone generation 

Tone detection: 
DTMF detection 
ANSAM detection 
Universal tone detection 
Call progress tone detection 

File formats: 
G.711 A-law PCM 
G.711 µ-law PCM 
OKI ADPCM 
IMA ADPCM 
16 bit data 
8 bit data 
8 bit (signed) data 

Multiparty conferences  
  Noise gating 
  AGC 
  DTMF clamping 

Signal categorisation: 
  Identification of call as live speaker or answer machine 

Sample rate conversion: 
  Audio data can be re-sampled using the signal path processing API 

 

Licence management 
Per VMP licensing via a software licence key. 

Optional Plugins 
Secure RTP 

 



   

MAN1170 PUBLIC 35 

7 Support 

7.1 FAQ 

7.1.1 Why are there more than one Prosody S packages? 

The ProsodyS_Standalone_Server package contains only the Prosody S server, 
without any dependencies.  This package can be installed on its own for use as a 
remote standalone server. 

The ProsodyS package contains documentation and dependencies on a variety of 
other packages that are required in order to connect to a local or remote Prosody S 
server and build and run Prosody S applications. 

The ProsodyS_SRTP_Plugin package contains a plugin to the Prosody S server that 
provides SRTP support. 

The ProsodyS_G729_Plugin package contains a plugin to the Prosody S server that 
provides G729AB support. 

The ProsodyS_V34HD_Plugin package contains a plugin to the Prosody S server 
that provides a V.34 half duplex modem for fax support. 

 

7.1.2 Where is the log file? 

By default Prosody S writes error level log entries to a log file in the following 
locations: 

In Windows this is typically $(ACULAB_ROOT)\log\.  

If $(ACULAB_ROOT) is not set (for example, for a minimum remote installation of 
Prosody S) this is in the same folder as the Prosody S executable. 

In Linux this is always /var/aculab/log. 

7.1.3 How do I obtain a port Id to use with Prosody S? 

Either: use the call_open_iptel_port() function - when using the generic call 

API. 

Or: use the sip_open_port() function - when using the extended SIP API. 

7.1.4 Why is the switch API not available? 

Prosody S does not use the standard switching API as this is designed for use with 
TDM systems. 

All switching is performed using datafeed objects and associated functions in the 
Prosody API. 

7.1.5 When is a licence used? 

A single licence enables the creation of two media processing (VMP) objects.  

Typically this will be a vmprx and a vmptx that go to make up a single bidirectional 

call.  VMPs subsequently release their licences when they are destroyed. 
Alternatively a licence enables creation of FMP objects for T.38 fax calls. 

7.1.6 How do I know how many licences I have? 

The Aculab configuration tool (ACT) provides information on the number of licences 



   

MAN1170 PUBLIC 36 

currently available on any particular Prosody S server. 

7.1.7 How do I increase the number of IP calls I can make? 

Additional licences can be purchased directly from Aculab, contact your Aculab 
Account Manager for further assistance. 

7.1.8 What happens in Prosody S if the CPU activity reaches near 100%? 

As happens on dedicated telephony boards, if the CPU activity reaches near 100% 
there may be some degradation of audio quality due to missing packets or packets 
not being transmitted at the required rate. This is due to the CPU not being able to 
fully service each call sufficiently regularly to supply the call with the expected amount 
of data. 

The Prosody S server should continue to operate correctly during periods of high 
CPU activity but the audio quality may be affected. 

7.1.9 How are multi-homed machines handled? 

A machine with multiple network interface cards (NICs) requires some care in 
detailing which addresses to use for both IP signalling and RTP transmission and 
reception. 

The source address for an RTP packet transmitted by a vmptx is that of the interface 

card on which it is sent.  This is determined from the current main routing table 
configuration of the machine.. 

The address on which each vmprx is to listen for RTP packets is specified in the 

sm_vmprx_create() function.  Only packets received on the specified address will 

be processed.  If address 0.0.0.0 is specified (the default) in sm_vmprx_create() 

then packets received on any local addresses will be processed. 

For server control protocol used by TiNG library, see also note on settings in 4.6.8 

For Linux systems, Prosody S can be configured to use a network namespace for 
RTP packet transmission and reception. 

7.1.10 How do I set the security key? 

The security key needs to be known both by the Prosody S server and the application 
communicating with it. 

The security key can be configured for the application via the ACT – Prosody S 
settings page, either when adding a server or via the edit button. 

For a Prosody S server local to the application, setting this key in the ACT will 
configure the key in the server and restart it. 

For Prosody S servers remote to the application, the key can be configured on the 
server via the Prosody S command line.  The same key must then be entered in the 
ACT for use by the application. 

7.1.11 Why does acu_get_card_info() return server address  127.0.0.1? 

acu_get_card_info() returns the IP address of the specified server as stored in the 
Resource Manager.  This is typically configured via the ACT when adding a Prosody 
S card.  

When installed locally, Prosody S will default to reporting its IP address as 127.0.0.1, 
the loopback address.  

 



   

MAN1170 PUBLIC 37 

7.2 Troubleshooting 

7.2.1 Prosody S server fails to start 

Check the log file.  Startup errors will typically be reported here. 

Reasons for startup failure include: 

 The server may have been unable to open one of more of its ports. Some ports 
may be unavailable if they are in use by other applications.  Alternative port 
numbers may be configured in the config file (see the section on Configuration 
file). 

 Only one instance of Prosody S can run on a single host. 

 Prosody S requires a CPU that supports at least the SSE2 instruction set. 

 File permissions on Linux. 

 CPU CGROUP settings on Linux (for example through CPU accounting enabled 
by a systemd service) prevent Prosody S from setting required setting thread 
priority – see section 3.6 

 

7.2.2 Prosody S starts but API calls return ERR_SM_DISCONNECTED 

Check the security keys used by the server and the application match.  Ensure the 
security key is set correctly in the aculab.config file and that it is in the correct location 
for the server to read. 

On Linux ensure the server is running with super-user privileges. The server may not 
operate correctly with standard user rights. 

7.2.3 acu_get_system_snapshot() fails to return a Prosody S server 

A Prosody S server is not running or has not been added to the resource manager or 
is not in the connected state. 

The act of installing the ProsodyS_Standalone_Server package via the Aculab Install 
Tool (AIT) installs the Prosody S server as a running service.  Reinstall this package 
to ensure the server is running. 

The Prosody S server can then be added to the resource manager’s known list of 
Prosody S servers via the Aculab configuration tool (ACT). 

The resource manager will try to connect to the running Prosody S server via the 
utility port and display ‘connected’ status when successful.  The utility port setting 
must match that set in the server’s configuration file. 

7.2.4 acu_open_prosody() fails with error -1 

If a Prosody S server has been added to the resource manager, is running and 
connected, then this error may be returned if the cardinfo port setting in the ACT does 
not match that configured on the Prosody S server itself via its configuration file. 

7.2.5 sm_vmptx_status()/sm_vmprx_status fail after calling 
sm_vmptx_create()/sm_vmprx_create() 

One possible cause of this is mismatched security key configuration.   

The security key used by the Prosody S server must match the security key used by 
the application.  If the Prosody S server security key is configured from the command 



   

MAN1170 PUBLIC 38 

line (e.g. on a remote server) it must match that specified for the server in the ACT. 

A second cause may be the lack of a valid licence. 

Use of either of the functions sm_vmptx_create() or sm_vmprx_create() will 

result in licence acquisition.  If the number of licences installed are already in use 

then sm_vmptx_status()or sm_vmprx_status() will subsequently report an 

error  ERR_SM_NO_LICENCE. 

Another possible cause is when the vmp is requested to use a feature that is not 
supported by Prosody S, such as the melpe codec, or if an attempt is made to use 
new codec with licence that predates introduction of this feature.  In this case 

sm_vmptx_status()or sm_vmprx_status() will report 

ERR_SM_NO_SUCH_FIRMWARE. 

Only on Linux, this may also be caused by passing in a local address to 

sm_vmprx_create() that cannot be found and that is not entered in the 

/etc/hosts file.  In this case sm_vmprx_status() will return 

ERR_SM_BAD_PARAMETER. 

7.2.6 There is nothing audible on the call 

No RTP packets will be transmitted on an IP call unless the input of the call’s vmptx is 

switched to a valid datafeed, using the sm_vmptx_datafeed_connect() function. 

Also check system firewall is permiting transmission/reception of RTP. In addition 
check RTP payload type is set correctly. 

7.2.7 The audio quality is severely degraded 

If the recorded or outgoing audio quality is very noisy and barely recognisable as 
speech, a common cause is incorrect configuration of the file companding settings.   

The file format of the replayed file must be specified correctly in the relevant speech 

processing functions, sm_replay_start() for example. 

7.2.8 There are discontinuities in the replayed data 

If VAD is disabled or there are no periods of low audio level in the replayed data then 
the discontinuities may be due to either a highly loaded network or an overloaded 
CPU. 

Ensure the CPU is not being loaded by excessive logging from either the Prosody S 
server or one of the VoIP servers. 

Except for the purposes of diagnosis the logging for all these servers should be 
minimised to logging only errors at most. 

Ensure that other applications or services are not putting undue load on the CPU. 

7.2.9 Why does recording not terminate? 

If max_silence or max_octets are used to trigger the termination of a recording, 

the Prosody channel must be switched to any valid datafeed using 
sm_channel_datafeed_connect(). 

Prosody S does not record anything if no data is supplied to its input and hence both 

max_silence and max_octets will not be applied. 

max_elapsed_time does not have this limitation and should stop the recording 

after the specified time whether data is switched to the channel or not. 



   

MAN1170 PUBLIC 39 

7.2.10 Getting ERR_SM_NO_RESOURCES on Linux at low channel counts 

If Prosody API calls return ERR_SM_NO_RESOURCES at low channel counts, it is 

possible that there are insufficient files descriptors available to the current process. It 
is often necessary to raise the per process limit for file descriptors (NOFILE) when 
running applications that use the Prosody API. 

 

 

 

 

 

 
  



   

MAN1170 PUBLIC 40 

• ACULAB.COM 

Contact us 

Phone 

+44 (0) 1908 273800 
(UK) 

+1 (781) 352 3550 
(USA) 

 

Email 

info@aculab.c

om 

sales@aculab

.com 

support@acul

ab.com 

Socials 

@
a
c
u
l
a
b 

a
c
u
l
a
b
 

• ACULAB.COM 

@
a
c
u
l
a
b 

a
c
u
l
a
b
 

 

 

 

 

 
 

mailto:info@aculab.com
mailto:info@aculab.com
mailto:sales@aculab.com
mailto:sales@aculab.com
mailto:support@aculab.com
mailto:support@aculab.com
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab

