

MANXXXX

Aculab IP telephony
API guide

Revision 6.7.3

MAN1782

MAN1782 PUBLIC 2

PROPRIETARY INFORMATION

The information contained in this document is the property of Aculab plc and may be the
subject of patents pending or granted, and must not be copied or disclosed without prior
written permission. It should not be used for commercial purposes without prior agreement in
writing.

All trademarks recognised and acknowledged.

Aculab plc endeavours to ensure that the information in this document is correct and fairly
stated but does not accept liability for any error or omission.

The development of Aculab’s products and services is continuous and published information
may not be up to date. It is important to check the current position with Aculab plc.

Copyright © Aculab plc. 2018 all rights reserved.

Document Revision

Rev Date By Detail

6.2.0 DJL First Draft Issue

6.2.2 07.09.04 DJL Beta release

6.2.2 15.09.04 DJL Full release

6.2.3 13.10.04 DJL Correction of struct information

6.3.0 24.12.04 DJL Various updates including support for new hardware

6.3.1 26.01.05 DJL Small changes, for example, new note in ipt_card_info

6.3.2 02.02.05 DJL SIP transport type values updated

6.3.4 18.04.05 DJL Addition of missing control definition and update of revision
to reflect current software release.

6.3.5 1.06.05 MAB Minor corrections to reflect the current status of the API.

6.4.0 02.11.05 DJL Updates for V6.4.0 release

6.4.1 18.01.06 DJL Correction of typos and some small changes

6.4.2 15.05.06 DJL Change of references to include Prosody X

6.4.3 05.10.06 DJL Updates to H.323 support

6.4.4 17.11.06 DJL Update to ipt_set_dtmf_handling API

6.4.5 15.10.09 AR Removed sections 2.4 (ipt_card_configure) and 2.5
(ipt_card_download)

Fixed typos and grammar throughout.

6.4.6 19.10.10 DF Removed references to EOL products

6.4.7 27.10.10 EBJ Updated to corporate fonts

6.5.0 31.07.13 NC Clarify ipt_delete_alias() for SIP

6.5.1 06.10.15 NMC AsyncRegister config option for ipt_add_alias()

6.7.0 10.03.17 NMC Rebranding for 6.7 release

6.7.1 21.12.20 ACP Updated for IPTel_Development 6.7.31

MAN1782 PUBLIC 3

6.7.2 22.03.22 ACP Clarify ipt_query_alias() for SIP

6.7.3 13.03.24 ACP Format only

MAN1782 PUBLIC 4

CONTENTS

Introduction .. 6

1 Card management .. 7
1.1 acu_open_ipt() .. 7
1.2 acu_close_ipt() .. 8
1.3 ipt_card_info() ... 9
1.4 Card events .. 12
1.5 ipt_get_card_notification() ... 12
1.6 ipt_card_notification_get_wait_object() .. 14
1.7 ipt_card_set_notification_queue() .. 15
1.8 ipt_card_get_app_context_token() .. 16
1.9 ipt_card_set_app_context_token() ... 17
1.10 ipt_card_get_if_stats() ... 18

2 Default configurations .. 20
2.1 Card default configuration ... 20
2.2 ipt_card_set_media_defaults() ... 20
2.3 ipt_card_get_media_defaults() .. 23
2.4 Protocol specific configurations ... 23
2.5 ipt_set_protocol_defaults() ... 24
2.6 ipt_get_protocol_defaults() ... 26

3 SIP socket selection .. 27
3.1 ipt_add_listen_address() .. 27
3.2 ipt_remove_listen_address() .. 28
3.3 ipt_get_listen_list() .. 29

4 H.323-specific functionality .. 30
4.1 ipt_translate_h225rcr() .. 30
4.2 ipt_set_dtmf_handling() .. 30
4.3 ipt_set_h323_listen_addresses() .. 32
4.4 ipt_get_h323_listen_addresses() .. 33
4.5 ipt_h323_stop_listening() ... 34
4.6 ipt_h323_send_non_standard() - Call independent signalling 35
4.7 ipt_h323_get_non_standard() - Call independent signalling 36
4.8 ipt_h323_enable_non_standard() - Call independent signalling 37

5 IP registration API .. 38
5.1 Proxy/Gatekeeper configuration ... 38
5.2 ipt_set_sip_proxy() ... 38
5.3 ipt_query_sip_proxy() .. 39
5.4 ipt_clear_sip_proxy().. 39
5.5 ipt_set_h323_gatekeeper() ... 40
5.6 ipt_query_h323_gatekeeper() ... 41
5.7 ipt_clear_h323_gatekeeper() ... 41
5.8 Registration functionality ... 42
5.9 ipt_add_alias() ... 42
5.10 ipt_remove_alias() ... 45
5.11 ipt_delete_alias() .. 46
5.12 ipt_query_alias() ... 46
5.13 Registration event notification ... 48
5.14 ipt_snapshot_registrations() .. 49

MAN1782 PUBLIC 5

Appendix A: H.323 registration ... 50
A.1 Adding aliases .. 50
A.2 Alias format .. 50
A.3 Removing aliases and clearing the gatekeeper ... 50
A.4 General points to note ... 51

MAN1782 PUBLIC 6

Introduction
This document details the API functions required for Prosody X cards. It includes
addressing, configuration and registration parameter information for both SIP and
H.323 protocols.

You only need to use the API calls in this guide when you want to change media or
protocol settings, add/remove SIP sockets or register with an H.323 gatekeeper or
SIP server etc.

When you do use API calls in this guide, you will need to include the following
header:

#include "iptel_lib.h"

On Windows the following library should be used:

iptel_lib.lib

On Linux and Solaris this library should be used:

libacu_ipt.so

NOTE

For further details of IP telephony call control functions, refer to the V6 call
control API guide.

MAN1782 PUBLIC 7

1 Card management
This section describes the API functions used to manage the ProsodyX cards.

1.1 acu_open_ipt()
Used to open an ProsodyX card when using the Aculab IP Telephony API. To use IP

Telephony call control protocols with the Aculab Call API, acu_open_call should be
used as normal.

Synopsis
ACU_ERR acu_open_ipt(ACU_OPEN_IPTEL_PARMS* openp);

typedef struct

{

 ACU_ULONG size;

 ACU_CARD_ID card_id; /* IN */

} ACU_OPEN_IPTEL_PARMS;

Input parameters

acu_open_ipt() takes a pointer, openp, to a structure, ACU_OPEN_IPTEL_PARMS. The
structure must be initialised before invoking the function.

card_id

This must be a card_id returned by acu_open_card(). Cards that may be opened for

IP Telephony will have the resource type ACU_RESOURCE_IP_TELEPHONY.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 8

1.2 acu_close_ipt()
Used by an application to close the IP Telephony API for a given ProsodyX card.

NOTE

Do not rely on this function to clean up resources that an application has
neglected to release.

Synopsis
ACU_ERR acu_close_ipt(ACU_CLOSE_IPTEL_PARMS* closep);

typedef struct

{

 ACU_ULONG size;

 ACU_CARD_ID card_id; /* IN */

} ACU_CLOSE_IPTEL_PARMS;

Input parameters

acu_close_ipt() takes a pointer, closep, to a structure, ACU_CLOSE_IPTEL_PARMS. The
structure must be initialised before invoking the function.

card_id

This must be a card_id returned by acu_open_card() that has previously been

opened for IP Telephony with acu_open_ipt().

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 9

1.3 ipt_card_info()
Provides information about the status of the ProsodyX card.

NOTE

When the card is not fully in service, some of the information may not be
available. The available information will depend on the release of the
software, the type of card in use and the reasons why the card is not in
service.

Synopsis
ACU_ERR ipt_card_info(IPT_CARD_INFO_XPARMS *infop);

typedef struct tIPT_CODEC_INFO

{

 ACU_INT codec_type; /* OUT */

 ACU_INT channels_supported; /* OUT */

 ACU_INT channels_free; /* OUT */

} IPT_CODEC_INFO;

typedef struct tIPT_ETHERNET_INFO

{

 ACU_INT active; /* OUT */

 ACU_INT connected; /* OUT */

 ACU_INT speed; /* OUT */

 ACU_INT duplex; /* OUT */

} IPT_ETHERNET_INFO;

typedef struct tIPT_CARD_INFO_XPARMS

{

 ACU_ULONG size;

 ACU_CARD_ID card_id; /* IN */

 ACU_INT active; /* OUT */

 ACU_CHAR address[MAXHOSTADDRESS]; /* OUT */

 ACU_INT firmware_running; /* OUT */

 ACU_INT clock; /* OUT */

 ACU_INT codec_count; /* OUT */

 IPT_CODEC_INFO codecs[MAXCODECS];

 ACU_INT ethernet_ports; /* OUT */

 IPT_ETHERNET_INFO ethernet_status[MAXETHERNET];

 ACU_CHAR dsp_module_model[ACU_MAX_HWVER]; /* OUT */

 ACU_CHAR dsp_module_serial_no[MAX_RESOURCE_SERIAL];/* OUT

*/

 ACU_CHAR firmware_version[IPT_MAX_DESCR]; /* OUT */

 IPT_VALIDITY switch_clocking; /* OUT */

} IPT_CARD_INFO_XPARMS;

Input parameters

ipt_card_info() takes a pointer, infop, to a structure, IPT_CARD_INFO_XPARMS. The
structure must be initialised before invoking the function.

card_id

Must be set to a valid card id returned by the acu_open_card() function. The card

must have been opened using acu_open_ipt().

MAN1782 PUBLIC 10

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

active

Set to 1 when the card is capable of handling calls, otherwise it is set to zero.

address

This will be populated by the IPv4 address of the ProsodyX card.

firmware_running

Set to zero when firmware is not running on the card, and set to 1 when the card has
firmware running.

clock

Contains a value (heartbeat) that is regularly incremented while firmware is running
on the card, which may be useful for diagnostic purposes.

codec_count

This will be populated by the number of different codec types that the card being
queried supports.

codecs

This is an array of type CODEC_INFO, that will be populated according to the codec
types available on this particular card.

codec_type

Specifies the codec.

channels_supported

Specifies the number of channels of that codec, supported by the card.

channels_free

Specifies the number of channels currently free for use.

ethernet_ports

This contains the number of physical network ports on the card.

ethernet_status

This array provides information about the status of the physical Ethernet ports on the
card.

Active

Set to zero when the port is not being used to provide traffic, otherwise, it is set to
1.

Connected

Set to 1 when the port has detected a physical network connection, otherwise it is
set to zero.

Speed

Reports the speed of the network connection in units of Mbits.

Duplex

Set to zero for a half duplex connection and 1 for a full duplex connection.

dsp_module_model

The model number of the DSP module (if any) attached to the card.

dsp_module_serial_no

The serial number of the DSP module (if any) attached to the card.

firmware_version

The version of the firmware running on the card.

MAN1782 PUBLIC 11

switch_clocking

Indicates when the board has detected a valid or invalid clocking setup. The options
are:

IPT_VALID

IPT_INVALID

IPT_INDETERMINATE - indicating that there is insufficient information to say either way.

MAN1782 PUBLIC 12

1.4 Card events
Changes in the status of ProsodyX cards are notified to the user through the IP
Telephony API. This section details functions for accessing these events.

1.5 ipt_get_card_notification()
Used to retrieve notification events for IP card status changes.

Synopsis
ACU_ERR ipt_get_card_notification(IPT_CARD_NOTIFICATION_PARMS* parms);

typedef struct

{

 ACU_ULONG size;

 ACU_CARD_ID card_id; /* IN */

 ACU_UINT event; /* OUT */

} IPT_CARD_NOTIFICATION_PARMS;

Input Parameters

ipt_get_card_notification()takes a pointer, parms, to a structure,

IPT_CARD_NOTIFICATION_XPARMS. The structure must be initialised before invoking the
function.

card_id

Must be set to a valid card id returned by the acu_open_card() function. The card

must have been opened using acu_open_ipt().

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

event

The event field is set to one of the following values:

#define Description
IPT_CARD_NO_EVENT There are no events in the queue

IPT_CARD_EV_L1_CHANGE Layer 1 has changed on the specified port –

use ipt_card_info() to determine what the
change is

IPT_CARD_EV_IN_SERVICE The card is operational.

IPT_CARD_EV_OUT_OF_SERVICE The card is not operational. Use
ipt_card_info() to determine why.

IPT_CARD_EV_FIRMWARE_STOPPED The card firmware has stopped running (for
example, during a firmware restart).

IPT_CARD_EV_SWITCH_CLOCKING The switch clocking status of the card has
changed. Use ipt_card_info() to determine the
new state.

NOTE

These notifications are an indication that something has changed. Upon receipt
of one of these events, the application will need to make further API calls to
determine what has changed.

MAN1782 PUBLIC 13

NOTE

These notifications are queued. It may be possible that when an application
retrieves an event, the state change it is describing has been superseded by
another state change. Applications should be designed to cope with this. (i.e.
don’t assume that because a Layer 1 state change notification has been
received, Layer1 has gone down).

To avoid polling this function you can either:

• use ipt_card_get_notification_wait_object() to obtain a wait object that is
signaled when an event is queued for the card; or

• create an event queue (using acu_allocate_event_queue()) and then use

ipt_card_notification_queue() to associate a particular port with that queue
then wait for events to occur on the queue.

MAN1782 PUBLIC 14

1.6 ipt_card_notification_get_wait_object()
This function is used to get a wait event that is associated with a given card’s
notification event queue. The event returned by this function can be used with

operating system specific wait functions such as WaitForMultipleObjects() or

poll().

Synopsis
ACU_ERR ipt_card_notification_get_wait_object(IPT_WAIT_OBJECT_PARMS

 *woparms);

typedef struct

{

 ACU_ULONG size;

 ACU_CARD_ID card_id; /* IN */

 ACU_WAIT_OBJECT wait_object; /* OUT */

} IPT_WAIT_OBJECT_PARMS;

Input Parameters

ipt_card_notification_get_wait_object() takes a pointer, woparms, to a structure,

IPT_WAIT_OBJECT_PARMS. The structure must be initialised before invoking the function.

card_id

Must be set to a valid card id returned by the acu_open_card() function. The card

must have been opened using acu_open_ipt().

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

wait_object

wait_object will be set to a valid operating system specific event associated with the
specified card.

NOTE

The wait object associated with a card will remain signalled while there are
notification events queued for that card.

MAN1782 PUBLIC 15

1.7 ipt_card_set_notification_queue()
This function is used to associate a port with a queue. All port notification events for
this port will be notified via this event queue.

Synopsis
ACU_ERR ipt_card_set_notification_queue(ACU_QUEUE_PARMS* queue_parms);

typedef struct tACU_QUEUE_PARMS

{

 ACU_ULONG size;

 ACU_RESOURCE_ID resource_id; /* IN */

 ACU_EVENT_QUEUE queue_id; /* IN */

} ACU_QUEUE_PARMS;

NOTE

This function can be called at any time – any notification events pending for the
card will be transferred from the old queue to the new queue. This struct can be
found in the acu_type.h file.

Input Parameters

ipt_card_set_notification_queue()takes a pointer, queue_parms, to a structure,

ACU_QUEUE_PARMS. The structure must be initialised before invoking the function.

resource_id

The resource_id field must be set to a valid card id returned by the acu_open_card()
function.

queue_id

The queue_id field must be set to a valid queue.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 16

1.8 ipt_card_get_app_context_token()
This function is used to retrieve application-defined data that is associated with a
card. The data can be set using ipt_card_set_app_context_token().

Synopsis
ACU_ERR ipt_card_get_app_context_token(ACU_APP_CONTEXT_TOKEN_PARMS*

token_parms);

typedef struct tACU_APP_CONTEXT_TOKEN_PARMS

{

 ACU_ULONG size;

 ACU_RESOURCE_ID resource_id; /* IN */

 ACU_ACT app_context_token; /* OUT */

} ACU_APP_CONTEXT_TOKEN_PARMS;

NOTE

This struct can be found in the acu_type.h file.

Input Parameters

ipt_card_get_app_context_token() takes a pointer, token_parms, to a structure,

ACU_APP_CONTEXT_TOKEN_PARMS. The structure must be initialised before invoking the
function.

resource_id

The resource_id field must be set to a valid card id returned by the acu_open_card()
function.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

app_context_token

On successful completion the app_context_token field will be set to the associated
data.

MAN1782 PUBLIC 17

1.9 ipt_card_set_app_context_token()
This function is used to associate application-defined data with a card. This data is
returned as the context field by acu_get_event_from_queue().

The token assigned using this function can also be retrieved using
call_get_port_app_context_token().

Synopsis
ACU_ERR ipt_card_set_app_context_token(ACU_APP_CONTEXT_TOKEN_PARMS*

token_parms);

typedef struct tACU_APP_CONTEXT_TOKEN_PARMS

{

 ACU_ULONG size;

 ACU_RESOURCE_ID resource_id; /* IN */

 ACU_ACT app_context_token; /* IN */

} ACU_APP_CONTEXT_TOKEN_PARMS;

NOTE

This struct can be found in the acu_type.h file.

Input Parameters

ipt_card_set_app_context_token() takes a pointer, token_parms, to a structure,

ACU_APP_CONTEXT_TOKEN_PARMS. The structure must be initialised before invoking the
function.

resource_id

The resource_id field must be set to a valid card id returned by the acu_open_card()
function.

app_context_token

The app_context_token field should be set to the data you want to associate with the
card.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 18

1.10 ipt_card_get_if_stats()
This API call is used to obtain information about the Ethernet interface of the card. It
is not supported for Prosody S.

Synopsis
ACU_ERR ipt_card_get_if_stats(IPT_CARD_IF_STATS_XPARMS *statsp);

typedef struct tIPT_CARD_IF_STATS_XPARMS

{

 ACU_ULONG size;

 ACU_CARD_ID card_id; /* IN */

 ACU_INT mtu; /* OUT */

 ACU_INT speed; /* OUT */

 ACU_CHAR hw_addr[IPT_MAX_MAC]; /* OUT */

 ACU_INT oper_status; /* OUT */

 ACU_UINT in_octets; /* OUT */

 ACU_UINT in_ucast_pkts; /* OUT */

 ACU_UINT in_nucast_pkts; /* OUT */

 ACU_UINT in_discards; /* OUT */

 ACU_UINT in_errors; /* OUT */

 ACU_UINT in_unknown_protos; /* OUT */

 ACU_UINT out_octets; /* OUT */

 ACU_UINT out_ucast_pkts; /* OUT */

 ACU_UINT out_nucast_pkts; /* OUT */

 ACU_UINT out_discards; /* OUT */

 ACU_UINT out_errors; /* OUT */

} IPT_CARD_IF_STATS_XPARMS;

Input Parameters

ipt_card_get_if_stats()takes a pointer, statsp, to a structure,

IPT_CARD_IF_STATS_XPARMS. The structure must be initialised before invoking the
function.

card_id

Must be set to a valid card id returned by the acu_open_card() function.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

Mtu

The maximum packet size supported by the Ethernet interface of the card.

Speed

The data speed of the network connection in units of Mbits.

hw_addr

The MAC address of the card.

oper_status

The operational status of the card, for example:

1 Up

2 Down

Please refer to IETF RFC 2863 for further details.

in_octets

The number of bytes that the Ethernet interface has received.

in_ucast_pkts

The number of unicast packets that the Ethernet interface has received.

http://www.faqs.org/rfc/rfc2863.txt

MAN1782 PUBLIC 19

in_nucast_pkts

The number of non-unicast packets that the Ethernet interface has received.

in_discards

The number of incoming packets discarded by the Ethernet interface.

in_errors

The number of packets with Ethernet errors detected by the Ethernet interface.

in_unknown_protos

The number of packets with unknown Ethernet protocols received by the Ethernet
interface.

out_octets

The number of bytes transmitted by the Ethernet interface.

out_ucast_pkts

The number of unicast packets transmitted by the Ethernet interface.

out_nucast_pkts

The number of non-unicast packets transmitted by the Ethernet interface.

out_discards

The number of packets discarded at the Ethernet layer by the card.

out_errors

The number of Ethernet transmission errors detected by the card.

MAN1782 PUBLIC 20

2 Default configurations
This section details the API functions that enable a user to configure defaults for
ProsodyX cards and the signalling protocols.

2.1 Card default configuration
The routines below allow applications to configure defaults used by the IP cards in
the system.

2.2 ipt_card_set_media_defaults()
Used to set the media defaults to be used by a particular ProsodyX card on all
subsequent calls. These defaults persist while the card is closed and are shared
between all applications on the system.

Synopsis
ACU_ERR ipt_card_set_media_defaults(IPT_MEDIA_DEFAULTS_XPARMS* mdp);

typedef struct tMEDIA_DEFAULTS

{

 ACU_ULONG size;

 ACU_CARD_ID card_id; /* IN */

 ACU_INT tdm_encoding; /* IN */

 ACU_INT encode_gain; /* IN */

 ACU_INT decode_gain; /* IN */

 ACU_INT reserved; /* IN */

 ACU_INT echo_cancellation; /* IN */

 ACU_INT echo_suppression; /* IN */

 ACU_INT echo_span; /* IN */

 ACU_UINT rtp_tos; /* IN */

 ACU_UINT rtcp_tos; /* IN */

 ACU_UINT def_jitter; /* IN */

 ACU_UINT max_jitter; /* IN */

 ACU_UINT max_jitter_buffer; /* IN */

 ACU_UINT dtmf_detector; /* IN */

} IPT_MEDIA_DEFAULTS_XPARMS;

Input parameters

ipt_card_set_media_defaults() takes a pointer, mdp, to a structure,

IPT_MEDIA_DEFAULTS_XPARMS. The structure must be initialised before invoking the
function.

card_id

Must be set to a valid card id returned by the acu_open_card() function. The card

must have been opened using acu_open_ipt().

tdm_encoding

The tdm_encoding parameter allows -law or a-law encoding to be selected for the
telephony interface on a per card basis, and has no effect on the selected IP
Telephony codec. When no value is specified, the system will default to the encoding

configured for the firmware, which is currently set to -law. The permitted values are:

 TDM_ULAW 1

 TDM_ALAW 2

MAN1782 PUBLIC 21

encode_gain/decode_gain

The encode_gain parameter allows adjustment of the input signal from the telephony

interface to the IP Telephony encoder, while the decode_gain parameter allows
adjustment of the output signal from the IP Telephony decoder to the telephony
interface. Permitted values for these two parameters are:

0 to use the existing default gain level

0x0001 – 0xFFFF specify a gain level manually

NOTE

encode_gain and decode_gain are not supported on Prosody X cards, and
will be ignored.

echo_cancellation

The possible values are:

EC_OFF – disables echo canceller (invalidates echo_span option)

EC_ON – enables G.165 echo canceller for ProsodyX cards and G.168

echo canceller for Prosody X cards

EC_ON_NLP – enables G.168 echo canceller with non-linear processing for Prosody
X cards

The default value is EC_ON

echo_suppression

The possible values are:

ES_OFF - echo suppression option is disabled

ES_12DB - echo suppression option is enabled

The default value is ES_OFF

NOTE

The echo canceller and suppressor are independent subsystems of the
echo software and as such can be controlled independently.

echo_span

This is the length, in milliseconds, of the echo canceller tail. It may be 4, 6, 8, 10, 12,
14, 16 or 32ms tail length.

NOTE

A 32ms tail length cannot be used with G.723.1

The default value is 16.

NOTE

echo_suppression and echo_span are not supported on Prosody X cards,
and will be ignored.

MAN1782 PUBLIC 22

rtp_tos (see note *)

The field rtp_tos specifies the value of the 8 bit type of service field that will be used
in the IP headers of RTP packets sent by the board on a per call basis for

call_openout and xcall_accept functions. To set a value of zero, a value of 0x100
should be used.

rtcp_tos (see note *)

The field rtcp_tos specifies the value of the 8 bit type of service field that will be used
in the IP headers of RTCP packets sent by the board on a per call basis for
call_openout and xcall_accept functions. To set a value of zero, a value of 0x100
should be used.

def_jitter, max_jitter and max_jitter_buffer

The integer fields def_jitter, max_jitter and max_jitter_buffer contain

respectively the default jitter, maximal jitter and maximal transient jitter that will be
used by the board, expressed in milliseconds. The amount of the jitter buffering used
will vary adaptively between 10ms and max_jitter with def_jitter being the amount

at the start of a call. The value specified by max_jitter_buffer limits the maximum

depth of the jitter buffer at any one moment and should be greater than def_jitter.

NOTE

max_jitter_buffer is not supported on Prosody X cards, and will be ignored

dtmf_detector

The ProsodyX card can detect DTMF in the audio stream switched to it and treat it
differently to normal audio by blocking DTMF in the outgoing audio stream and
sending RFC 2833 frames instead.

When dtmf_detector is set to IPT_ENABLED then this processing will be performed.

when dtmf_detector is set to IPT_DISABLED then DTMF will not be detected, and will
be treated as normal audio.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

NOTE

* See the call API documentation for further details on call_openout and

xcall_accept.

MAN1782 PUBLIC 23

2.3 ipt_card_get_media_defaults()
Used to get the media defaults that are to be used, by a particular card, on all
subsequent calls. These defaults are shared by all programs running on the system.

Synopsis
ACU_ERR ipt_card_get_media_defaults(IPT_MEDIA_DEFAULTS_XPARMS* mdp);

typedef struct tMEDIA_DEFAULTS

{

 ACU_ULONG size;

 ACU_CARD_ID card_id; /* IN */

 ACU_INT tdm_encoding; /* OUT */

 ACU_INT encode_gain; /* OUT */

 ACU_INT decode_gain; /* OUT */

 ACU_INT reserved; /* OUT */

 ACU_INT echo_cancellation; /* OUT */

 ACU_INT echo_suppression; /* OUT */

 ACU_INT echo_span; /* OUT */

 ACU_UINT rtp_tos; /* OUT */

 ACU_UINT rtcp_tos; /* OUT */

 ACU_UINT def_jitter; /* OUT */

 ACU_UINT max_jitter; /* OUT */

 ACU_UINT max_jitter_buffer; /* OUT */

 ACU_UINT dtmf_detector; /* OUT */

} IPT_MEDIA_DEFAULTS_XPARMS;

Input parameters

ipt_card_get_media_defaults() takes a pointer, mdp, to a structure,

IPT_MEDIA_DEFAULTS_XPARMS. The structure must be initialised before invoking the
function.

card_id

Must be set to a valid card id returned by the acu_open_card() function. The card

must have been opened using acu_open_ipt().

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

The structure will be initialised as for ipt_set_media_defaults(). See section 2.2 for
parameter definitions.

2.4 Protocol specific configurations
The routines detailed here provide access to the defaults used by IP telephony
protocols in the Aculab Call API.

MAN1782 PUBLIC 24

2.5 ipt_set_protocol_defaults()
Used to set global protocol defaults that are used by the IP telephony protocols in the
Aculab Call API.

Synopsis
ACU_ERR ipt_set_protocol_defaults(PROTOCOL_DEFAULTS_XPARMS

*protocol_defaultsp);

typedef struct

{

 ACU_ULONG size;

 ACU_UINT protocol; /* IN */

 ACU_CODEC default_codecs[MAXCODECS]; /* IN */

 union

 {

 struct

 {

 ACU_INT h245_tunneling; /* IN */

 ACU_INT faststart; /* IN */

 ACU_INT early_h245; /* IN */

 } sig_h323;

 struct

 {

 ACU_INT zero_connection_address_hold; /* IN */

 ACU_INT disable_early_media; /* IN */

 } sig_sip;

 } unique_xparms;

} PROTOCOL_DEFAULTS_XPARMS;

Input parameters

ipt_set_protocol_defaults() takes a pointer, protocol_defaultsp, to a structure,

PROTOCOL_DEFAULTS_XPARMS. The structure must be initialised before invoking the
function.

protocol

Used to identify the protocol service to which you wish to send the request. Valid
values are:

 S_H323 send to the H.323 service

 S_SIP send to the SIP service

default_codecs

This must be populated with an array of codec types. The IP telephony service will

cache this array and use it by default in calls to call_openout and xcall_accept when
the user omits to set the codecs in these calls. When codecs are specified that are
not supported by a given board then they will be ignored for calls on that board.

H.323 specific parameters
h245_tunneling

Allows H.245 tunnelling to be enabled by default for H.323 calls. This is the process
of sending H.245 PDUs through the Q.931 channel (encapsulating the H.245
messages within H.225/Q.931 messages). The same TCP/IP socket that is already in
use for the call signalling channel is also used by the H.245 control channel. When
set to IPT_ENABLED, tunnelling is enabled. When set to IPT_DISABLED, tunnelling is
disabled.

faststart

Allows Fast Start, also known as Fast Connect, to be enabled by default for H.323
calls. This procedure reduces the time required to set up a call to one round-trip delay

MAN1782 PUBLIC 25

following the H.225 TCP connection and allows audio data to be transmitted prior to
the call being connected. When set to IPT_ENABLED, Fast Start is enabled. When set

to IPT_DISABLED, Fast Start is disabled.

early_h245

Allows early H.245 to be enabled by default for H.323 calls. This involves opening the
H.245 channel before the call has been accepted, allowing the call to be connected
more quickly, and the transmission of audio data. When set to IPT_ENABLED, early

H.245 is enabled. When set to IPT_DISABLED, early H.245 is disabled.

SIP specific parameters
zero_connection_address_hold

When set to IPT_ENABLED the service assumes that the remote party implements call
hold to the earlier Internet specification, that is c=0.0.0.0 in the SDP body.

When set to IPT_DISABLED the service assumes the latest specification

(a=sendonly/recvonly).

When set to 0, the service will use the default value. This may be set in call_openout

or xcall_accept.

The default value is IPT_DISABLED.

disable_early_media

For an outgoing call, when this is set to IPT_ENABLED the calling party refuses to
participate in an early media session, even when one is offered by the called party.

When set to IPT_DISABLED, the calling party will participate in such sessions when
offered by called party.

When set to 0, the service will use the default value.

The default value is IPT_DISABLED.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 26

2.6 ipt_get_protocol_defaults()
This routine allows clients to get defaults used by the IP Telephony protocols in the
Aculab Call API.

Synopsis
ACU_ERR ipt_get_protocol_defaults(PROTOCOL_DEFAULTS_XPARMS

*protocol_defaultsp);

typedef struct

{

 ACU_ULONG size;

 ACU_UINT protocol; /* IN */

 ACU_CODEC default_codecs[MAXCODECS]; /* OUT */

 union

 {

 struct

 {

 ACU_INT h245_tunneling; /* OUT */

 ACU_INT faststart; /* OUT */

 ACU_INT early_h245; /* OUT */

 } sig_h323;

 struct

 {

 ACU_INT zero_connection_address_hold; /* OUT */

 ACU_INT disable_early_media; /* OUT */

 } sig_sip;

 } unique_xparms;

} PROTOCOL_DEFAULTS_XPARMS;

Input parameters

ipt_get_protocol_defaults() takes a pointer, protocol_defaultsp, to a structure,

PROTOCOL_DEFAULTS_XPARMS. The structure must be initialised before invoking the
function.

protocol

Used to identify the protocol service to which you wish to send the request. Valid
values are:

 S_H323 send to the H.323 service

 S_SIP send to the SIP service

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

The structure will be initialised as documented for ipt_set_protocol_defaults(). See
section 2.5 for parameter definitions. The current values for each of the settings used
by the service will be returned in these fields.

MAN1782 PUBLIC 27

3 SIP socket selection
By default the SIP service opens listening sockets on all the local hosts NIC cards on
port=5060 and transport=UDP. Therefore, when a host possesses 2 NIC’s, one
configured as 1.2.3.4 and the other 5.6.7.8, then the SIP service will listen on 2
sockets as follows:

1.2.3.4:5060:UDP

5.6.7.8:5060:UDP

The SIP user agent stack, utilised by our SIP service, can be configured to listen for
SIP signalling on a multitude of sockets.

In V6 we are providing the user access to this facility and allowing them to fine tune
the sockets on which SIP traffic is listened for by using the following API functions.

3.1 ipt_add_listen_address()
Used to add a specific listen parameter to the current set that is being used by the
stack to listen for SIP traffic.

Synopsis
ACU_ERR ipt_add_listen_address(LISTEN_XPARMS *listen_detailsp);

typedef struct

{

 ACU_ULONG size;

 HOST_DETAILS listen_details; /* IN */

} LISTEN_XPARMS;

typedef struct host_details

{

 ACU_CHAR address[MAXHOSTADDRESS]; /* IN */

 ACU_UINT port; /* IN */

 ACU_INT transport_type; /* IN */

} HOST_DETAILS;

Input parameters

ipt_add_listen_address() takes a pointer, listen_detailsp, to a structure,

LISTEN_XPARMS. The structure must be initialised before invoking the function.

listen_details

Details of the listen parameter being added to the set being listened on by the SIP
UA.

address

IP address or FQDN (Fully Qualified Domain Name) specifying the NIC in the host.

port

IP port on which to listen for traffic. When zero is used we default to 5060.

transport_type

Protocol type to listen on, ACUTCP or ACUUDP. When set to zero ACUUDP is used.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 28

3.2 ipt_remove_listen_address()
Used to remove a specific listen parameter from the current set being used by the
stack to listen for SIP traffic.

Synopsis
ACU_ERR ipt_remove_listen_address(LISTEN_XPARMS *listen_detailsp);

typedef struct

{

 ACU_ULONG size;

 HOST_DETAILS listen_details;

} LISTEN_XPARMS;

typedef struct host_details

{

 ACU_CHAR address[MAXHOSTADDRESS]; /* IN */

 ACU_UINT port; /* IN */

 ACU_INT transport_type; /* IN */

} HOST_DETAILS;

Input parameters

ipt_remove_listen_address() takes a pointer, listen_detailsp, to a structure,

LISTEN_XPARMS. The structure must be initialised before invoking the function.

listen_details

Details of the listen parameter being removed from the set being listened on by the
SIP UA.

address

IP address or FQDN (Fully Qualified Domain Name) specifying the NIC in the host.

port

IP port. When zero is used we default to 5060.

transport_type

Protocol type, ACUTCP or ACUUDP. When set to zero ACUUDP is used.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 29

3.3 ipt_get_listen_list()
This function can be used to query the list of listen parameters currently being used
by the SIP stack. When successful, a structure that is populated with the set of listen
parameters being used by the SIP UA will be returned.

Synopsis
ACU_ERR ipt_get_listen_list(LISTEN_LIST_XPARMS *listen_listp);

typedef struct

{

 ACU_ULONG size;

 ACU_UINT num_of_listen_params; /* OUT */

 HOST_DETAILS listen_details[MAXLISTENPARAMS];

} LISTEN_LIST_XPARMS;

typedef struct host_details

{

 ACU_CHAR address[MAXHOSTADDRESS]; /* OUT */

 ACU_UINT port; /* OUT */

 ACU_INT transport_type; /* OUT */

} HOST_DETAILS;

Input parameters

ipt_get_listen_list() takes a pointer, listen_listp, to a structure,
LISTEN_LIST_XPARMS.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

num_of_listen_params

The number of listen parameter structures populated by this call.

listen_details

An array of listen parameter structures being used by the SIP stack. Each structure
will contain the following information.

address

IP address or FQDN (Fully Qualified Domain Name) specifiying a NIC.

port

IP port.

transport_type

Protocol type.

MAN1782 PUBLIC 30

4 H.323-specific functionality
The following functions are specific to the H.323 protocol and cannot be used by SIP.

4.1 ipt_translate_h225rcr()
This function can be used to translate an H.225 Release Complete Reason to a
Q.931 clearing cause.

Synopsis
ACU_INT ipt_translate_h225rcr(ACU_INT h225_rcr);

Input parameters
h225_rcr

The H.225 Release Complete Reason that you wish to translate.

Return values

On successful completion, a positive value representing the mapped Q.931 clearing
cause is returned; otherwise, a negative value will be returned indicating the type of
error.

4.2 ipt_set_dtmf_handling()

NOTE

Although this function call is valid, the preferred API call for controlling
DTMF UII is call_set_dtmf_handling

This function can be used to control DTMF User Input Indication event notification
and relay.

Synopsis
ACU_INT ipt_set_dtmf_handling(DTMF_HANDLING_XPARMS *dtmf_handlingp);

typedef struct

{

 ACU_ULONG size;

 ACU_CALL_HANDLE handle; /* IN */

 ACU_UINT enable_event_notification; /* IN */

 ACU_UINT relay_disabled; /* IN */

} DTMF_HANDLING_XPARMS;

Input parameters

ipt_set_dtmf_handling() takes a pointer, dtmf_handlingp, to a structure,

DTMF_HANDLING_XPARMS. The structure must be initialised before invoking the function.

handle

The handle field is used to identify the call to which the DTMF handling options are to
apply.

enable_event_notification

When set to 1, any User Input Indications that are received from the network will be
identified at the API level through event notification. Valid values are:

 0 – disable event notification

 1 – enable event notification

MAN1782 PUBLIC 31

relay_disabled (Not applicable to TiNG media configurations)

By default, any User Input Indications that are received from the network will be

relayed to the TDM side. This is disabled by setting relay_disabled to 1.

 0 – relay enabled

 1 – relay disabled

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

When the network indicates an EV_DETAILS, call_details() will allow an application
to see the DTMF information.

MAN1782 PUBLIC 32

4.3 ipt_set_h323_listen_addresses()
This function can be used to change the addresses to listen on for H.225 and RAS
messages. By default we listen on the first local interface, port 1720 for H.225 and
port 1719 for RAS

Synopsis
ACU_ERR ipt_set_h323_listen_addresses(H323_LISTEN_ADDRESSES_XPARMS* listenp);

typedef struct

{

 ACU_ULONG size;

 ACU_CHAR h225_address[MAXHOSTADDRESS]; /* IN */

 ACU_UINT h225_port; /* IN */

 ACU_CHAR ras_address[MAXHOSTADDRESS]; /* IN */

 ACU_UINT ras_port; /* IN */

} H323_LISTEN_ADDRESSES_XPARMS;

Input Parameters

ipt_set_h323_listen_addresses() takes a pointer, listenp, to a structure,

H323_LISTEN_ADDRESSES_XPARMS. The structure must be initialised before invoking the
function.

h225_address

The IP address or host name that will resolve to the IP address on which to listen.

h225_port

The port to listen on for H.225 messages.

ras_address

The IP address or host name that will resolve to the IP address on which to listen.

ras_port

The port to listen on for RAS messages.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 33

4.4 ipt_get_h323_listen_addresses()
This function can be used to query the addresses to listen on for H.225 and RAS
messages.

Synopsis
ACU_ERR ipt_get_h323_listen_addresses(H323_LISTEN_ADDRESSES_XPARMS* listenp);

typedef struct

{

 ACU_ULONG size;

 ACU_CHAR h225_address[MAXHOSTADDRESS]; /* OUT */

 ACU_UINT h225_port; /* OUT */

 ACU_CHAR ras_address[MAXHOSTADDRESS]; /* OUT */

 ACU_UINT ras_port; /* OUT */

} H323_LISTEN_ADDRESSES_XPARMS;

Input Parameters

ipt_get_h323_listen_addresses() takes a pointer, listenp, to a structure,

H323_LISTEN_ADDRESSES_XPARMS.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

h225_address

The IP address currently being used to listen for H.225 messages.

h225_port

The port currently being used to listen for H.225 messages.

ras_address

The IP address currently being used to listen for RAS messages.

ras_port

The port currently being used to listen for RAS messages.

MAN1782 PUBLIC 34

4.5 ipt_h323_stop_listening()
This function can be used to stop listening for H.225 or RAS messages.

Synopsis
ACU_ERR ipt_h323_stop_listening(H323_STOP_LISTEN_XPARMS* listenp);

typedef struct

{

 ACU_ULONG size;

 ACU_INT protocol; /* IN */

} H323_STOP_LISTEN_XPARMS;

Input Parameters

ipt_h323_stop_listening() takes a pointer, listenp, to a structure,

H323_STOP_LISTEN_XPARMS. The structure must be initialised before invoking the
function.

protocol

This should be set to indicate which messages should no longer be listened for:

 IPT_H225_PROTOCOL H.225 messages.

 IPT_RAS_PROTOCOL RAS messages.

 IPT_H225_RAS_PROTOCOL Both H.225 and RAS messages.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 35

4.6 ipt_h323_send_non_standard() - Call independent signalling
Some supplementary services require the use of a connectionless network service to
transmit some messages. ipt_h323_send_non_standard() allows these messages to
be transmitted.

This message is not associated with a call and no handle is associated with it.

Synopsis
ACU_ERR ipt_h323_send_non_standard(H323_NON_STANDARD_XPARMS* nsp);

typedef struct h323_non_standard_xparms

{

 ACU_ULONG size;

 ACU_INT message_type; /* IN */

 ADDRESSED_NON_STANDARD_DATA_XPARMS data; /* IN */

} H323_NON_STANDARD_XPARMS;

See the call control API guide for further details on ADDRESSED_NON_STANDARD_DATA_XPARMS

definitions

Input parameters

The ipt_h323_send_non_standard() function takes a pointer, nsp, to a structure,

H323_NON_STANDARD_XPARMS. The structure must be initialised before invoking the
function.

message_type

The message_type field should be used to indicate the type of feature.

To send a connectionless FACILITY message the message_type field should be

supplied with the value IPT_NSM_CONNECTIONLESS_FACILITY.

To send a H.225 RAS non-standard message the message_type field should be

supplied with the value IPT_NSM_RAS.

To send a H.225 RAS XRS message the message_type field should be supplied with

the value IPT_NSM_XRS.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

NOTE

A successful invocation of ipt_h323_send_non_standard() is no guarantee
that the network side will receive the message. When an error occurs, the
message may be discarded.

MAN1782 PUBLIC 36

4.7 ipt_h323_get_non_standard() - Call independent signalling
Some supplementary services require the use of a connectionless network service to
transmit some messages. ipt_h323_get_non_standard() allows these messages to
be read. In order to enable reception of these messages,
ipt_h323_enable_non_standard() must be called by the application.

Synopsis
ACU_ERR ipt_h323_get_non_standard(H323_NON_STANDARD_XPARMS* nsp);

typedef struct h323_non_standard_xparms

{

 ACU_ULONG size;

 ACU_INT message_type; /* OUT */

 ADDRESSED_NON_STANDARD_DATA_XPARMS data; /* OUT */

} H323_NON_STANDARD_XPARMS;

See the call control API guide for further details on the
ADDRESSED_NON_STANDARD_DATA_XPARMS definitions.

Input parameters

The ipt_h323_get_non_standard() function takes a pointer, nsp, to a structure,

H323_NON_STANDARD_XPARMS. The structure must be initialised before invoking the
function.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

message_type

The message_type field should be used to indicate the type of feature.

When a connectionless FACILITY message has been read the message_type field

should be supplied with the value IPT_NSM_CONNECTIONLESS_FACILITY.

When a H.225 RAS non-standard message has been read the message_type field

should be supplied with the value IPT_NSM_RAS.

When a H.225 RAS XRS message has been read the message_type field should be

supplied with the value IPT_NSM_XRS.

MAN1782 PUBLIC 37

4.8 ipt_h323_enable_non_standard() - Call independent signalling
Some supplementary services require the use of a connectionless network service to
transmit some messages.

Synopsis
ACU_ERR ipt_h323_enable_non_standard(H323_NON_STANDARD_ENABLE_XPARMS*

enablep);

typedef struct h323_non_standard_xparms

{

 ACU_ULONG size;

 ACU_INT message_type; /* IN */

 ACU_INT enable; /* IN */

} H323_NON_STANDARD_ENABLE_XPARMS;

Input parameters

The ipt_h323_enable_non_standard() function takes a pointer, enablep, to a

structure, H323_NON_STANDARD_ENABLE_XPARMS. The structure must be initialised before
invoking the function.

message_type

The message_type field should be used to indicate the type of feature.

To control connectionless FACILITY messages the message_type field should be set

to IPT_NSM_CONNECTIONLESS_FACILITY.

To control H.225 RAS non-standard messages the message_type field should be set

to IPT_NSM_RAS. While these messages are enabled, the application is responsible
for generating XRS messages for any non-standard messages that it does not
understand.

To control H.225 RAS XRS messages the message_type field should be set to
IPT_NSM_XRS.

enable

The enable field should be set to zero to disable notification of the specified message
type or 1 to enable notification of the specified message type.

Return values

On successful completion, a value of zero is returned; otherwise a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 38

5 IP registration API
This section details the API functions required for use with SIP proxy and H.323
gatekeeper registration work.

5.1 Proxy/Gatekeeper configuration
The routines below allow clients to configure the proxies/gatekeepers they want to
use in their system.

For further guidance on H.323 registration, please see Appendix A:

5.2 ipt_set_sip_proxy()

This function can be used to set the local outbound proxy details in the SIP service.
Once this is done all outgoing requests are routed via this proxy.

Synopsis
ACU_ERR ipt_set_sip_proxy(SIP_PROXY* proxy_detailsp);

typedef struct sip_proxy

{

 ACU_ULONG size;

 HOST_DETAILS proxy;

 ACU_INT disable_insertion_into_routeset; /* IN */

} SIP_PROXY;

typedef struct host_details

{

 ACU_CHAR address[MAXHOSTADDRESS]; /* IN */

 ACU_UINT port; /* IN */

 ACU_INT transport_type; /* IN */

} HOST_DETAILS;

Input parameters

ipt_set_sip_proxy() takes a pointer, proxy_detailsp, to a structure, SIP_PROXY. The
structure must be initialised before invoking the function.

proxy

Address details of the proxy to be set.

address

IP address or FQDN (Fully Qualified Domain Name) of the proxy.

port

Port number. When set to zero, port number 5060 is used.

transport_type

One of the following:

ACU_SIP_TRANSPORT_UDP, ACU_SIP_TRANSPORT_TCP, ACU_SIP_TRANSPORT_TLS,

ACU_SIP_TRANSPORT_ANY

ACU_SIP_TRANSPORT_ANY means use the preferred transport as specified by

the target service.

disable_insertion_into_route_set

Reserved for future use.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 39

5.3 ipt_query_sip_proxy()
This function can be used to query the SIP service for the details of the local
outbound proxy that is currently set.

Synopsis
ACU_ERR ipt_query_sip_proxy(SIP_PROXY* proxy_queryp);

typedef struct sip_proxy

{

 ACU_ULONG size;

 HOST_DETAILS proxy;

 ACU_INT disable_insertion_into_routeset;

} SIP_PROXY;

typedef struct host_details

{

 ACU_CHAR address[MAXHOSTADDRESS]; /* OUT */

 ACU_UINT port; /* OUT */

 ACU_INT transport_type; /* OUT */

} HOST_DETAILS;

Input Parameters

ipt_query_sip_proxy() takes a pointer, proxy_queryp, to a structure, SIP_PROXY.

disable_insertion_into_route_set

Reserved for future use.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

proxy

Address details of the local outbound proxy that is currently set.

address

IP addressor FQDN (Fully Qualified Domain Name) of the proxy.

port

Port number.

transport_type

Will be ACU_SIP_TRANSPORT_UDP, ACU_SIP_TRANSPORT_TCP, ACU_SIP_TRANSPORT_TLS

or ACU_SIP_TRANSPORT_ANY.

5.4 ipt_clear_sip_proxy()
This function can be used to stop using the currently set local outbound proxy.

Synopsis
ACU_ERR ipt_clear_sip_proxy();

Input Parameters

None.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 40

5.5 ipt_set_h323_gatekeeper()
This function can be used to register the system with a gatekeeper. Once this is
done, all outgoing requests are routed via this gatekeeper. Please note that this
applies to the whole system, so in a multiple application environment when one
application calls this function any additional applications will also be registered.

Synopsis
ACU_ERR ipt_set_h323_gatekeeper(REGISTER_XPARMS *regdetailsp);

typedef struct register_xparms

{

 ACU_ULONG size;

 ACU_INT ttl; /* IN */

 ACU_CHAR registration_address[MAXREGADDR]; /* IN */

 ACU_CHAR gatekeeper_id[MAXID]; /* IN */

 ACU_INT registration_mode; /* IN */

} REGISTER_XPARMS;

Input Parameters

ipt_set_h323_gatekeeper() takes a pointer, regdetailsp, to a structure,

REGISTER_XPARMS. The structure must be initialised before invoking the function.

ttl

This is the time (in seconds) that a registration remains valid. The H.323 service will
automatically renew the registrations at this interval (or at the interval specified by the
gatekeeper if it chose to override this value).

registration_address

This contains the IP address OR the hostname of the gatekeeper to be used for RAS
management.

gatekeeper_id

This contains a valid ID for the gatekeeper to which you wish to register. This is
optional but may be required by some gatekeepers to accept an endpoint into its
zone.

registration_mode

Within the H.323 standard, registered endpoints can be H.323 Terminals, Gateways
or MCUs. The Aculab ProsodyX card only supports being a terminal or a gateway.

The registration_mode contains the mode type to be used for the system. Valid
values are:

IPT_REG_MODE_GATEWAY Gateway

IPT_REG_MODE_TERMINAL Terminal

When set to zero, IPT_REG_MODE_GATEWAY will be used.

Return values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 41

5.6 ipt_query_h323_gatekeeper()
This function can be used to query the H.323 system and determine if we are
registered with a gatekeeper or not. When we are, the address of the gatekeeper will
also be returned.

Synopsis
ACU_ERR ipt_query_h323_gatekeeper(QUERY_REGISTRATION_XPARMS *queryp);

typedef struct query_registration_xparms

{

 ACU_ULONG size;

 ACU_INT registration_status; /* OUT */

 ACU_CHAR registration_address[MAXREGADDR]; /* OUT */

} QUERY_REGISTRATION_XPARMS;

Input Parameters

ipt_query_h323_gatekeeper() takes a pointer, queryp, to a structure,

QUERY_REGISTRATION_XPARMS.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

registration_status

A boolean value that indicates if the system is registered or not.

 0 – indicates that the system is not registered with a gatekeeper

 1 – indicates that the system is registered with a gatekeeper

registration_address

This contains the IP address OR hostname of the gatekeeper to which the system is
registered.

5.7 ipt_clear_h323_gatekeeper()
This function can be used to unregister the system from the gatekeeper. Please note
that this applies to the whole system, so in a multiple application environment when
one application calls this function any additional applications will also be unregistered.

Synopsis
ACU_ERR ipt_clear_h323_gatekeeper();

Input Parameters

None.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 42

5.8 Registration functionality
The functions detailed in this section are used to manage the database of well-known
addresses (aliases) to real addresses (contacts) on a proxy or gatekeeper. Note that
the response from the proxy/gateway to these functions is asynchronous. A global
Call API event will be generated to notify the application to notify it that something
has happened.

5.9 ipt_add_alias()

ipt_add_alias() can be used for both H.323 and SIP protocols.

For SIP this function can be used to add a mapping between a well-known address
(an "address of record" or alias) and a real contact address on a registrar's database.

For H.323 this function can be used to register an alias address with the gatekeeper.
Alias addresses provide an alternative method of addressing endpoints. For example,
a given endpoint may have an E.164 address, e-mail address, and a web page
address. Please note that only one alias address can be registered per function call.

Synopsis
ACU_ERR ipt_add_alias(ADD_ALIAS_XPARMS* add_aliasp);

typedef struct add_alias_xparms

{

 ACU_ULONG size;

 ACU_INT protocol; /* IN */

 ACU_UINT registration_handle; /* OUT */

 ACU_CHAR alias[MAXALIAS]; /* IN */

 union

 {

 struct

 {

 SIP_ADD_ALIAS sip_add_alias;

 }sig_sip;

 struct

 {

 ACU_INT prefix; /* IN */

 }sig_h323;

 } unique_xparms;

} ADD_ALIAS_XPARMS;

typedef struct sip_add_alias

{

 HOST_DETAILS registrar;

 ACU_CHAR admin_sip_url[MAXALIAS]; /* IN */

 ACU_CHAR contact[MAXALIAS]; /* IN */

} SIP_ADD_ALIAS;

typedef struct host_details

{

 ACU_CHAR address[MAXHOSTADDRESS]; /* IN */

 ACU_UINT port; /* IN */

 ACU_CHAR transport_type; /* IN */

} HOST_DETAILS;

MAN1782 PUBLIC 43

Input Parameters

ipt_add_alias() takes a pointer, add_aliasp, to a structure, ADD_ALIAS_XPARMS. The
structure must be initialised before invoking the function.

protocol

Used to identify the protocol to which we wish to send the request. Valid values are:

 S_H323 Register a H.323 alias.

 S_SIP Register a SIP alias.

alias

This is the alias address that we wish to register. It should be in the form of a URL.
URLs are written as follows:

 <scheme>:<scheme-specific-part>

A URL contains the name of the scheme being used (<scheme>) followed by a colon
and then a string (the <scheme-specific-part>) whose interpretation depends on the
scheme.

When the alias supplied does not conform exactly to the format detailed above, for

example the <scheme>: section missing, the service will try to determine what has
been entered.

With SIP when using the common Internet scheme syntax, when the host part of the
address is omitted then the local outbound proxy or multicast address will be used as
a default.

unique_xparms

The input parameter unique_xparms is a union that provides extensions required by
specific signalling systems.

Unique parameters for SIP
registrar

Address details of the registrar to which to send the alias request. When not set (i.e.
zeroed) the service will first try to use the "local outbound proxy". If unsuccessful it

will try to use the SIP registrar multicast address - sip.mcast.net.

address

IP address or FQDN (Fully Qualified Domain Name) of the proxy.

port

Port number. When set to zero, port number 5060 is used.

transport_type

ACUTCP or ACUUDP. When set to zero, ACUUDP is used.

admin_sip_url

This is the SIP URL of the agent responsible for the registration. When not set the
alias address will be used instead.

contact

A contact address (sip, tel: etc.) to which the alias is mapped (default scheme is sip),
by the registrar/proxy. e.g.

sip:matt@10.202.165.150. or matt@10.202.165.150.

If the AsyncRegister = 1 is written in the sipserv.cfg all ipt_add_alias() function calls
will return immediately with error code = 0. This enables the asynchronous mode. If it
is not possible to resolve the address of the registrar EV_ADD_ALIAS_FAILED is
raised.

If the AsyncRegister = 0 or is not included in the sipserv.cfg the ipt_add_alias()

MAN1782 PUBLIC 44

function would wait until the address was resolved before returning the error code,
which can block the calling thread for a significant period of time.

Unique parameters for H.323
prefix

Used to identify that the alias supplied is a prefix. When prefix is true, then the alias
must be in the form of a tel: URL.

 0 indicates that the alias is not a prefix

 1 indicates that the alias is a prefix

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

registration_handle

This is a unique registration identification value that is assigned when an alias is
registered. It will be associated throughout the lifetime of the registration and will be
returned with any event notification relating to that alias. This value must be used for
all subsequent operations relating to the registration.

MAN1782 PUBLIC 45

5.10 ipt_remove_alias()
This function can be used to remove an alias from the registration system, be it SIP
or H.323. For SIP it will remove the mapping that was added using ipt_add_alias().

For H.323 it will un-register the alias that was previously registered using
ipt_add_alias(). The registration handle for the alias will not be released as a result

of making this call. We need the handle for ipt_query_alias() to determine the
remote ends response to our local request to remove the alias. The

ipt_delete_alias() function must be used to release the handle.

Synopsis
ACU_ERR ipt_remove_alias(REMOVE_ALIAS_XPARMS* remove_aliasp);

typedef struct remove_alias_xparms

{

 ACU_ULONG size;

 ACU_UINT protocol; /* IN */

 ACU_UINT registration_handle; /* IN */

} REMOVE_ALIAS_XPARMS;

Input Parameters

ipt_remove_alias() takes a pointer, remove_aliasp, to a structure,

REMOVE_ALIAS_XPARMS. The structure must be initialised before invoking the function.

protocol

Used to identify the protocol. Valid values are:

 S_H323 Remove a H.323 alias.

 S_SIP Remove a SIP registration.

registration_handle

Must contain a valid registration handle as generated by ipt_add_alias(). It is used
to identify which registration you wish to remove.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

MAN1782 PUBLIC 46

5.11 ipt_delete_alias()
This function can be used to remove an alias from the registration system for H.323.
For SIP it will delete the handle created using ipt_add_alias(). For SIP to remove

the mapping call ipt_remove_alias() first. For H.323 it will un-register the alias that

was previously registered using ipt_add_alias(). The registration handle will be
deleted and may no longer be used by the application.

Synopsis
ACU_ERR ipt_delete_alias(REMOVE_ALIAS_XPARMS* delete_aliasp);

typedef struct remove_alias_xparms

{

 ACU_ULONG size;

 ACU_UINT protocol; /* IN */

 ACU_UINT registration_handle; /* IN */

} REMOVE_ALIAS_XPARMS;

Input Parameters

ipt_delete_alias() takes a pointer, delete_aliasp, to a structure,

REMOVE_ALIAS_XPARMS. The structure must be initialised before invoking the function.

protocol

Used to identify the protocol. Valid values are:

 S_H323 H.323

 S_SIP SIP

registration_handle

Must contain a valid registration handle as generated by ipt_add_alias(). It is used
to identify which registration you wish to delete.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

5.12 ipt_query_alias()
This function can be used to query the registration system about a particular alias. It
is normally called as a result of an event notification relating to a particular alias, but
can also be called as a general query.

For H.323 this function queries the system to determine the state of a previously
registered alias. As a result of an un-register request from the local or remote end,
error information will also be provided in the form of an error code.

For SIP, this function should be called after an attempt to register an alias has failed
only, as indicated by notification of the EV_ADD_ALIAS_FAILED event.

MAN1782 PUBLIC 47

Synopsis
ACU_ERR ipt_query_alias(QUERY_ALIAS_XPARMS* query_aliasp);

typedef struct query_alias_xparms

{

 ACU_ULONG size;

 ACU_UINT protocol; /* IN */

 ACU_UINT registration_handle; /* IN */

 ACU_CHAR alias[MAXALIAS]; /* OUT */

 ACU_INT prefix; /* OUT */

 ACU_UINT state; /* OUT */

 ACU_UINT error; /* OUT */

} QUERY_ALIAS_XPARMS;

Input Parameters

ipt_query_alias() takes a pointer, query_aliasp, to a structure, QUERY_ALIAS_XPARMS.
The structure must be initialised before invoking the function.

protocol

The protocol to query. Currently only H.323 is supported so this must be set to
S_H323.

registration_handle

Must contain a valid registration handle as generated by ipt_add_alias(). It is used
to identify which registration you wish to query.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error. For SIP, ERR_COMMAND will be returned if the

state of the registration is not EV_ADD_ALIAS_FAILED.

alias

H323 only.

Will contain the address of the alias we have just queried. It will be in the form of a
URL.

Prefix

H.323 only.

Will identify if the alias we have just queried is a prefix.

 0 – indicates that the alias is not a prefix

 1 – indicates that the alias is a prefix

state

H.323 only.

Indicates whether the alias is registered/mapped with the registration system.

 0 – indicates that the alias is not registered/mapped

 1 – indicates that the alias is registered/mapped

error

For H.323: When an alias has been unregistered/unmapped, whether it be locally or
remotely, an associated error code will be returned to provide a reason why.

For SIP: When a registration attempt has failed, an associated error code will be
returned to provide a reason why.

MAN1782 PUBLIC 48

5.13 Registration event notification
The registration functions merely send a request to an element on the network. This
request may succeed, fail or never arrive. In order to notify the client application what
has happened, an event is raised. Please note that these events are global and in a
multiple application system all applications will be notified.

The following global events may be raised through the Call API:

EV_ADD_ALIAS_SUCCEEDED

Raised when a success response has been received from the registration system for
an ipt_add_alias() request.

EV_ADD_ALIAS_FAILED

Raised when a failure response has been received from the registration system for an
ipt_add_alias() request.

EV_ALIAS_REMOVED

Raised when for whatever reason an alias has been unregistered/unmapped from the
registration system, be it locally or remotely.

On receipt of an event, you can inspect the context field of the global event structure
to determine to which alias this event relates. The context field contains the
registration handle that was assigned during ipt_add_alias(). A call can then be

made to ipt_query_alias() to determine the state of the alias. Note: when using SIP,

this should only be done when the reported event is EV_ADD_ALIAS_FAILED.

MAN1782 PUBLIC 49

5.14 ipt_snapshot_registrations()
This function can be used to query the registration system to determine what aliases
are currently registered.

NOTE

This function is not supported for SIP.

Synopsis
ACU_ERR ipt_snapshot_registrations(SNAPSHOT_REGISTRATIONS_XPARMS *snapshotp);

typedef struct snapshot_registrations_xparms

{

 ACU_ULONG size;

 ACU_UINT protocol; /* IN */

 ACU_UINT count; /* OUT */

 ACU_UINT handles[MAXREGISTRATIONS]; /* OUT */

} SNAPSHOT_REGISTRATIONS_XPARMS;

Input Parameters

ipt_snapshot_registrations() takes a pointer, snapshotp, to a structure,

SNAPSHOT_REGISTRATIONS_XPARMS. The structure must be initialised before invoking the
function.

protocol

The protocol to query. Currently only H.323 is supported so this must be set to
S_H323.

Return Values

On successful completion, a value of zero is returned; otherwise, a negative value will
be returned indicating the type of error.

count

The number of aliases registered.

handles

An array containing the handles of the aliases registered.

MAN1782 PUBLIC 50

Appendix A: H.323 registration
This section includes guidance on H.323 registration with Aculab’s H.323 products.

A.1 Adding aliases
For best results, it is advised to add aliases before calling set_h323_gatekeeper. This
means that after the first RCF is received all of your aliases will be registered, and
removes the requirement to send additional RCFs for each add_alias request.

Aliases are registered with the service and persist across all applications using the
system. For on board H.323 this means that the port registrations are valid for all
applications using that port.

A.2 Alias format
Aliases are defined in URI format: <scheme>:<alias name>

Valid schemes are:

Scheme Meaning
“h323” H.323 URI

“mailto” Email address

“http” URL

“h323id” H.323 ID

“tel” E.164 number

Alternatively, an IP address or a hostname may be provided. If no scheme is given,
the system will try to "guess". If it is entirely numeric it will be assumed to be an E.164
number, if it is a dotted quad it will be assumed to be an IP address, if we can resolve

it, it will be assumed to be a hostname. If all of these fail, an ERR_PARM will be returned.

A.3 Removing aliases and clearing the gatekeeper
When an application controlling registration exits, it should first remove its aliases,
then clear the gatekeeper (if it set it) and delete any aliases it registered.
Alternatively, an application should on start up deal with the currently active
registration state, and/or aliases already present.

Removing an alias does not delete it from the system. This allows the application to
check its status if any problems develop during un-registration. Aliases, which are no

longer used, should be deleted. This is somewhat analogous to call_disconnect and

call_release, there is a separation between un-registering and deleting associated
resources.

Clearing the gatekeeper does not delete aliases, although it will remove all registered
aliases. After clearing a gatekeeper, it is good practise to delete any aliases, which
are no longer necessary. If they are not deleted, they will be re-registered the next
time set_h323_gatekeeper is called. This is to facilitate manual gatekeeper failovers.

MAN1782 PUBLIC 51

A.4 General points to note
It is possible to get a list of all current aliases by using snapshot_registrations. If you
do not know for sure if another application has been storing aliases, or if you are
unsure if a previous run of your application cleaned up correctly, this can be used to
discover which aliases currently exist in the system.

We generally try to cope with applications trying to re-add aliases that are already
present, and return the same handle.

If you are rapidly clearing and then setting the H.323 gatekeeper then it is required to

wait for the un-registration to complete before calling set_h323_gatekeeper.

MAN1782 PUBLIC 52

• ACULAB.COM

Contact us

Phone

+44 (0) 1908 273800
(UK)

+1 (781) 352 3550
(USA)

Email

info@aculab.c

om

sales@aculab

.com

support@acul

ab.com

Socials

@
a
c
u
l
a
b

a
c
u
l
a
b

• ACULAB.COM

@
a
c
u
l
a
b

a
c
u
l
a
b

mailto:info@aculab.com
mailto:info@aculab.com
mailto:sales@aculab.com
mailto:sales@aculab.com
mailto:support@aculab.com
mailto:support@aculab.com
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://twitter.com/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab
https://www.linkedin.com/company/aculab

	Introduction
	1 Card management
	1.1 acu_open_ipt()
	1.2 acu_close_ipt()
	1.3 ipt_card_info()
	1.4 Card events
	1.5 ipt_get_card_notification()
	1.6 ipt_card_notification_get_wait_object()

	This function is used to get a wait event that is associated with a given card’s notification event queue. The event returned by this function can be used with operating system specific wait functions such as WaitForMultipleObjects() or poll().
	1.7 ipt_card_set_notification_queue()
	1.8 ipt_card_get_app_context_token()
	1.9 ipt_card_set_app_context_token()
	1.10 ipt_card_get_if_stats()

	2 Default configurations
	2.1 Card default configuration
	2.2 ipt_card_set_media_defaults()
	2.3 ipt_card_get_media_defaults()
	2.4 Protocol specific configurations
	2.5 ipt_set_protocol_defaults()
	2.6 ipt_get_protocol_defaults()

	3 SIP socket selection
	3.1 ipt_add_listen_address()
	3.2 ipt_remove_listen_address()
	3.3 ipt_get_listen_list()

	4 H.323-specific functionality
	4.1 ipt_translate_h225rcr()
	4.2 ipt_set_dtmf_handling()
	4.3 ipt_set_h323_listen_addresses()
	4.4 ipt_get_h323_listen_addresses()
	4.5 ipt_h323_stop_listening()
	4.6 ipt_h323_send_non_standard() - Call independent signalling
	4.7 ipt_h323_get_non_standard() - Call independent signalling
	4.8 ipt_h323_enable_non_standard() - Call independent signalling

	5 IP registration API
	5.1 Proxy/Gatekeeper configuration
	5.2 ipt_set_sip_proxy()
	5.3 ipt_query_sip_proxy()
	5.4 ipt_clear_sip_proxy()
	5.5 ipt_set_h323_gatekeeper()
	5.6 ipt_query_h323_gatekeeper()
	5.7 ipt_clear_h323_gatekeeper()
	5.8 Registration functionality
	5.9 ipt_add_alias()
	5.10 ipt_remove_alias()
	5.11 ipt_delete_alias()
	5.12 ipt_query_alias()
	5.13 Registration event notification
	5.14 ipt_snapshot_registrations()

	Appendix A: H.323 registration
	A.1 Adding aliases
	A.2 Alias format
	A.3 Removing aliases and clearing the gatekeeper
	A.4 General points to note

