
 

MAN1781 Revision 6.8.0 PUBLIC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Aculab digital 
telephony software 

Call control API guide 

MAN1781 Revision 6.8.7 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 2 

PROPRIETARY INFORMATION 

The information contained in this document is the property of Aculab plc and may be the 
subject of patents pending or granted, and must not be copied or disclosed without prior 
written permission. It should not be used for commercial purposes without prior agreement in 
writing. 

All trademarks recognised and acknowledged.  

Aculab plc endeavours to ensure that the information in this document is correct and fairly 
stated but does not accept liability for any error or omission. 

The development of Aculab’s products and services is continuous and published information 
may not be up to date. It is important to check the current position with Aculab plc. 

Copyright © Aculab plc. 2002-2023 all rights reserved. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 3 

Document Revision 

Rev Date By Detail 

6.6.0 09.06.15 mjw Add fw_extension to the PORT_INFO_PARMS struct. 

6.6.1 06.06.16 mjw Fix copy and paste error in call_maint_port_block() 

6.6.2 22.03.17 df/acp Bug-3036-Removed call_get_system_notification() and 
call_get_system_notification_wait_object(). Updated 
call_get_global_notification_wait_object() and updated info 
on call_event() and event queues.  

6.6.3 18/04/17 ebj Reformatted 

6.6.4 31/10/17 ml Fixed call_feature_details() 

6.6.5 11/10/18 df/ebj Fixed typos in 4.23 

6.8.0 25/04/22 dsl Align with 6.8.0 software release. 

6.8.7 13/02/23 dsl Change title page. 

  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 4 

CONTENTS 

1 Introduction ............................................................................................................................. 8 

1.1 Scope ............................................................................................................................................. 8 
1.2 Using the guide ............................................................................................................................... 8 

2 Compatibility ........................................................................................................................... 9 

2.1 Forward Compatibility ..................................................................................................................... 9 
2.2 Writing portable and forward compatible applications using the Aculab API ................................ 10 

3 Declaration types .................................................................................................................. 11 

3.1 ACU_RESOURCE_ID – Generic Resource ID ............................................................................. 11 
3.2 ACU_CALL_HANDLE - Call handle ............................................................................................. 11 
3.3 ACU_CARD_ID – Card id ............................................................................................................. 11 
3.4 ACU_PORT_ID – Port id .............................................................................................................. 11 
3.5 ACU_WAIT_OBJECT – Wait Object ............................................................................................ 11 
3.6 ACU_ACT – Application token ..................................................................................................... 11 
3.7 ACU_ERR – Error code ................................................................................................................ 11 
3.8 ACU_EVENT_QUEUE – Event queue ......................................................................................... 12 

4 Call control functions ........................................................................................................... 13 

4.1 System configuration .................................................................................................................... 13 
4.2 Line control ................................................................................................................................... 13 
4.3 Basic call control ........................................................................................................................... 14 
4.4 Advanced call control ................................................................................................................... 15 
4.5 call_card_dsp_config() ................................................................................................................. 19 
4.6 call_driver_version() ..................................................................................................................... 21 
4.7 call_type() - Get signalling system type ........................................................................................ 22 
4.8 call_line() - Get line type ............................................................................................................... 22 
4.9 call_watchdog() - Watchdog ......................................................................................................... 23 
4.10 call_send_alarm() - Sending alarms to the network ..................................................................... 24 
4.11 call_port_info() - get information about a port ............................................................................... 25 
4.12 call_set_port_name() - set the name of a port .............................................................................. 29 
4.13 call_get_card_info() - return information about a card .................................................................. 30 
4.14 call_get_fmw_dl_parms – return downloaded call firmware parameters ...................................... 32 
4.15 port_init() - port initialisation ......................................................................................................... 33 
4.16 call_open_port() - open a port ...................................................................................................... 34 
4.17 call_close_port() - close a port ..................................................................................................... 36 
4.18 call_openout() - Open for outgoing call......................................................................................... 37 
4.19 call_openin() - Open for incoming call .......................................................................................... 42 
4.20 call_send_overlap() - Sending overlap digits ................................................................................ 46 
4.21 call_event() - Get a call event ....................................................................................................... 47 
4.22 call_details() - Get call details ....................................................................................................... 53 
4.23 call_incoming_ringing() - send incoming ringing ........................................................................... 56 
4.24 call_accept() - Accept incoming call ............................................................................................. 59 
4.25 call_getcause() - Get idle cause ................................................................................................... 61 
4.26 call_disconnect() - Disconnect call ............................................................................................... 63 
4.27 call_release() - Release call ......................................................................................................... 65 
4.28 call_feature_openout() - Open for outgoing (with features) .......................................................... 67 
4.29 call_feature_enquiry() - make an outgoing enquiry call with feature information .......................... 71 
4.30 call_feature_details() - Get feature information ............................................................................ 72 
4.31 call_feature_send() - Sending feature information ........................................................................ 74 
4.32 call_setup_ack() - Send setup acknowledge ................................................................................ 77 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 5 

4.33 call_proceeding() - Send call proceeding message ...................................................................... 79 
4.34 call_progress() - Send progress information ................................................................................ 81 
4.35 call_get_originating_addr() - Receiving the originating address ................................................... 84 
4.36 call_answercode() - Setting the answer code............................................................................... 85 
4.37 call_get_charge()- Receiving call charge information ................................................................... 87 
4.38 call_put_charge()- Sending call charge information ..................................................................... 89 
4.39 call_notify() - Send notification information .................................................................................. 91 
4.40 call_send_keypad_info() - Send Keypad Information ................................................................... 92 
4.41 call_send_connectionless() - Call independent signalling ............................................................ 94 
4.42 call_get_connectionless() - Call independent signalling ............................................................... 96 
4.43 call_enable_connectionless() - Call independent signalling ......................................................... 98 
4.44 call_maint_port_block()/call_maint_port_unblock()  - block or unblock timeslots ......................... 99 
4.45 call_maint_port_reset() - reset and clear timeslots..................................................................... 101 
4.46 call_maint_ts_block()/call_maint_ts_unblock() -  block or unblock a timeslot ............................. 102 
4.47 call_maint_port_status() – obtaining timeslot blocking and reset states..................................... 104 
4.48 call_set_handle_event_queue() - associate a handle with an event queue ............................... 106 
4.49 call_get_handle_event_wait_object() - get a wait object for a handle ........................................ 107 
4.50 call_set_handle_app_context_token() - associate data with a handle ....................................... 108 
4.51 call_get_handle_app_context_token() - receive data for a handle ............................................. 109 
4.52 call_set_port_default_handle_event_queue() - set the default call event queue for a port ........ 110 
4.53 call_set_port_app_context_token() – associate data with a port ................................................ 111 
4.54 call_get_port_app_context_token() - retrieve data for a port ...................................................... 112 
4.55 call_set_port_notification_queue() - set a queue for a port ........................................................ 113 
4.56 call_get_port_notification() - retrieve events for a port ............................................................... 114 
4.57 call_get_port_notification_wait_object() – get the wait object for a port ..................................... 117 
4.58 call_get_global_event_wait_object() - get the global wait object for call events ......................... 118 
4.59 call_set_global_notification_queue() – set the queue for global notification events ................... 119 
4.60 call_get_global_notification() - retreive the next global notification event .................................. 120 
4.61 call_get_global_notification_wait_object() – get the wait object for global notification events .... 121 
4.62 call_open_iptel_port – Open a port for TiNG Media Configuration ............................................. 122 
4.63 call_set_dtmf_handling() ............................................................................................................ 123 
4.64 h323_call_details() - Get h323 call details ................................................................................. 124 
4.65 h323_gateway_mode() - Set H.323 transfer gateway mode ...................................................... 127 
4.66 call_hold() - Put a call on hold .................................................................................................... 130 
4.67 call_reconnect() - Reconnect a call on hold ............................................................................... 131 
4.68 call_enquiry() - Make an enquiry call .......................................................................................... 132 
4.69 call_transfer() - Call transfer ....................................................................................................... 133 
4.70 call_get_failover_id() - Get unique identifier for a call ................................................................ 135 
4.71 call_reopen() - Recover a handle to an earlier call ..................................................................... 136 
4.72 call_reattach_fmw() – Reattach the call driver to running signaling firmware............................. 137 
4.73 call_release_lost_failover_ids() – Release any unattached call handles. .................................. 138 
4.74 call_change_media() – Change the media for an existing call ................................................... 139 
4.75 call_change_media_accept() ..................................................................................................... 142 
4.76 call_change_media_reject() ....................................................................................................... 144 
4.77 call_media_details() – Get details of a change of media for an existing call .............................. 145 

5 Miscellaneous functions .................................................................................................... 148 

5.1 call_port_2_swdrvr() - Determine port’s switch .......................................................................... 149 
5.2 call_handle_2_io() - Convert handle to call direction .................................................................. 149 
5.3 call_handle_2_port() - Determine port_id of a given handle ....................................................... 150 
5.4 call_handle_2_chan() - Convert handle to logical channel number ............................................ 151 
5.5 call_get_port_dsp_stream() – Retrieve a trunk DSP stream allocated to a  network port. ......... 152 
5.6 idle_net_ts() - Write the IDLE pattern to the network timeslot .................................................... 153 
5.7 call_api_version() ....................................................................................................................... 154 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 6 

6 Downloading and Configuring Firmware .......................................................................... 155 

6.1 call_restart_fmw() - Restart signalling system firmware ............................................................. 156 
6.2 call_reconfig_fmw () – reconfigure the signalling system firmware ............................................. 158 
6.3 call_stop_fmw() .......................................................................................................................... 159 
6.4 call_is_download() - Check if network port requires firmware download .................................... 160 

7 Diagnostic Functions .......................................................................................................... 161 

7.1 call_dcba() - Reading the CAS ABCD bits .................................................................................. 162 
7.2 call_protocol_trace() - Obtaining protocol information ................................................................ 164 
7.3 call_l1_stats() - Layer 1, statistics .............................................................................................. 166 
7.4 call_l2_state() - Layer 2 State ..................................................................................................... 170 
7.5 call_start_trace() ......................................................................................................................... 172 
7.6 call_stop_trace() ......................................................................................................................... 173 
7.7 call_set_trace_mode() ................................................................................................................ 174 

8 unique_xparms.................................................................................................................... 175 

8.1 unique_xparms for Q931 ............................................................................................................ 175 
8.2 unique_xparms for DASS2 ......................................................................................................... 182 
8.3 unique_xparms for DPNSS ........................................................................................................ 183 
8.4 unique_xparms for CAS ............................................................................................................. 185 
8.5 unique_xparms for ISUP/SS7 ..................................................................................................... 186 
8.6 unique_xparms for IP telephony (iptel) ....................................................................................... 191 

9 disconnect_xparms ............................................................................................................ 197 

9.1 Q931 ........................................................................................................................................... 197 
9.2 ISUP/SS7 ................................................................................................................................... 197 
9.3 DPNSS ....................................................................................................................................... 198 
9.4 DASS .......................................................................................................................................... 198 
9.5 CAS ............................................................................................................................................ 198 
9.6 IP telephony (iptel) ...................................................................................................................... 198 

10 Feature xparms ................................................................................................................... 200 

10.1 uui_xparms - user to user information ........................................................................................ 201 
10.2 facility_xparms - facility information ............................................................................................ 208 
10.3 diversion_xparms - Diversion/redirect supplementary service.................................................... 212 
10.4 feature_hold_xparms - Structure for Hold\Retrieve(Reconnect) Information .............................. 220 
10.5 feature_transfer_xparms - Call Transfer Information .................................................................. 222 
10.6 raw_data_struct - Raw Data information .................................................................................... 225 
10.7 mlpp_xparms (ETS300 and QSIG only) ..................................................................................... 226 
10.8 Non_standard_data_xparms ...................................................................................................... 228 
10.9 raw_msg_xparms – Send / Receive of raw messages / parameters .......................................... 229 
10.10 call_waiting_xparms – Send and receive call waiting information .............................................. 232 
10.11 restart_channels_xparms ........................................................................................................... 233 
10.12 addressed_non_standard_data_xparms – Send/receive connectionless non-standard data..... 234 
10.13 feature_activation_xparms – Send/receive a Feature Activation IE ........................................... 235 
10.14 information_request_xparms - Send/receive an Information Request IE ................................... 236 
10.15 name_presentation_xparms - Send/receive SS-CNIP and SS-CONP ....................................... 237 

11 Function usage.................................................................................................................... 239 

11.1 Event driven applications ............................................................................................................ 239 
11.2 Call control using events ............................................................................................................ 239 
11.3 Exception handling ..................................................................................................................... 241 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 7 

11.4 Event queues ............................................................................................................................. 242 

12 Supplementary services library ......................................................................................... 243 

12.1 ets_mwi_activate() - make mwi activate message ..................................................................... 244 
12.2 ets_mwi_deactivate() - make mwi deactivate message ............................................................. 245 
12.3 ets_mwi_indicate() - make mwi indicate message ..................................................................... 246 
12.4 ETS_PartyNumber ..................................................................................................................... 247 
12.5 qsig_mwi_activate() - make MWI Activate message .................................................................. 249 
12.6 qsig_mwi_deactivate() - make MWI Deactivate message .......................................................... 250 

Appendix A: Error codes ......................................................................................................... 251 

Appendix B: Service Octets .................................................................................................... 255 

Appendix C: DASS service indicator codes (SIC) ................................................................. 256 

Appendix D: DPNSS service indicator codes (SIC)............................................................... 259 

Appendix E: Standard clearing causes .................................................................................. 262 

Appendix F: Q931 and ISUP .................................................................................................... 271 

Appendix G: Call independent signalling for euro ISDN & QSIG ......................................... 277 

Appendix H: Generic functional procedures (facility) .......................................................... 278 

Appendix I: Network side call transfer ................................................................................... 279 

I.1 Acknowledgement of a Call Hold request .................................................................................. 279 
I.2 Accepting an Enquiry Call .......................................................................................................... 280 
I.3 Handling a linkID request ........................................................................................................... 280 
I.4 Handling a Call Transfer request ................................................................................................ 282 
I.5 Handling a Call Transfer Setup request ..................................................................................... 285 
I.6 Handling a Call Transfer Setup response .................................................................................. 286 

Appendix J: Raw data format .................................................................................................. 287 

Appendix K: TiNG media configuration ................................................................................. 289 

K.1 Introduction ................................................................................................................................ 289 
K.2 Benefits ...................................................................................................................................... 289 
K.3 The traditional call API for IP telephony calls ............................................................................. 289 
K.4 TiNG media configuration ........................................................................................................... 290 
K.5 How to use TiNG media configuration with a system wide port ................................................. 290 
K.6 On-board H.323 ......................................................................................................................... 292 

Appendix L: H.323 registration ............................................................................................... 293 

L.1 Adding Aliases ........................................................................................................................... 293 
L.2 Alias Format ............................................................................................................................... 293 
L.3 Removing Aliases and Clearing the Gatekeeper........................................................................ 293 
L.4 General Points to Note ............................................................................................................... 294 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 8 

1 Introduction 
This call control guide is designed to help application developers and system 
integrators understand and use the API provided by Aculab for use with Aculab cards. 
The call control functions defined in this guide are independent of the operating 
system used on the host system, enabling applications developed for Aculab cards to 
be used with several different operating systems. 

Aculab support a wide range of international signalling systems and this is reflected in 
the generic data structures employed by the functions described in this guide. The 
generic data structures provide a superset of compatible data structures with 
signalling system specific data structures embedded within the generic data 
structures. The use of these generic data structures allows applications to be written 
for use with the range of public and private signalling systems supported by Aculab. 

This version of the document is for use with version 6 (V6) drivers.   

1.1 Scope 
This guide should be used with Aculab call control driver Version 6 or later, for the 
development of applications that initiate and control outgoing calls and receive and 
control incoming calls. The ‘Aculab switch control API guide’ describes the control 
and switching of timeslots. 

1.2 Using the guide 
This guide describes the interfaces for the API functions and the device driver. Each 
function is described in terms of its calling parameters and the values that the 
function will return. No particular operating system or signalling system is assumed 
and function definitions apply equally to all combinations of operating system and 
signalling protocols. It should be noted that some features and calls are not 
applicable to all signalling systems. 

See Also 

• The ‘Aculab call, switch and speech driver installation guide’, which 
describes how to install the software under different operating systems. 

• The ‘Aculab Switch Control API Guide’, which describes the switching and 
clock control interface. 

• The ‘Aculab example code’, which comprises a number of sample applications 
that illustrate various aspects of the Aculab call and switch API’s.  

The latest versions of these documents are available from the company web site at 
http://www.aculab.com 

The latest release notes for each signalling system, containing the latest information 
and describe the use of configuration switches, are also available from the company 
web site.  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 9 

2 Compatibility 

2.1 Forward Compatibility 
Enhancements to the Aculab API are generally made by extending the structures that 
are passed as parameters to Aculab API calls.  To eliminate the problems associated 
with this, the following steps must be performed: 

memset(&structure, 0, sizeof(structure)); 

structure.size = sizeof(structure); 

In C and C++ programs, these steps can be replaced with the following macro, 
defined in acu_type.h: 

INIT_ACU_STRUCT(&structure); 

Applications, that correctly set this field up, will work correctly against any Aculab 
library built subsequent to the version with which the application is compiled. 

NOTE 

Even following this scheme it is not possible for an application built with a 
particular version of the Aculab libraries to be used against an earlier 
release of the Aculab drivers. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 10 

2.2 Writing portable and forward compatible applications using the Aculab API 
Applications should always initialise Aculab data structures to 0 using 
INIT_ACU_STRUCT() or an equivalent.  This sets unpopulated fields to a safe default 

and makes forward compatibility much easier.  All Aculab functions assume that 
unused values will be initialised to 0. 

Applications must always initialize the size member of Aculab fields to the size of the 

structure.  Call control APIs can also use  INIT_ACU_CL_STRUCT(). 

Always release resources you allocate.  Each card_id, port_id, call handle, etc. 

represents a finite system resource.  Failure to de-allocate them may lead to 
unexpected behaviour or outright system failure. 

Always check the return code of Aculab API calls, even if you are convinced that they 
cannot fail. 

Do not rely on undocumented or platform specific behavior.  For example, do not rely 
on apparently predictable values for call handles, etc.  Do not rely on the format of 
Aculab internal structures.  Do not rely on driver filenames, driver directories, the 
number of drivers, registry entries or values, etc.  These are all things that can 
change arbitrarily between releases. 

Do not use undocumented functions.  Some Aculab API libraries export functions that 
are not documented.  These are for Aculab internal use and should not be used by 
customers.  There is no guarantee that these functions will continue to exist in future 
versions or that their semantics will remain the same. 

Where possible do not hard code items such as card serial numbers, firmware 
filenames, firmware configuration switches, etc.  It is much easier to edit a 
configuration file associated with an application in the field than it is to rebuild the 
application. 

Do not make assumptions about what constitutes a valid card serial number. 

Always use the appropriate Aculab type – e.g. ACU_CALL_HANDLE for a call handle, 

ACU_PORT_ID for a port id.  Where there is an Aculab-defined constant for something 

(e.g. variable lengths, error codes), use it. 

Never make IOCTL calls directly to the Aculab driver.  The internal API-driver 
interface is liable to change at any time.  If the Aculab API lacks some functionality 
that would be useful, please contact us at support@aculab.com to discuss your 
requirements. 

Similarly, do not attempt to use the Aculab API in an environment for which it was not 
designed,  for instance, Aculab’s API libraries are not designed for kernel mode 
operation. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 11 

3 Declaration types 
These types must be used in all applications written using the V6 API instead of 
native C types.  All API calls in the V6 API use these types in their declarations. 

Some examples of their use can be found in this document, and in some instances, in  
the V6 resource management API guide. 

3.1 ACU_RESOURCE_ID – Generic Resource ID 
This type is used when any of the Aculab resource ID types can be passed into an 
API call. 

3.2 ACU_CALL_HANDLE - Call handle 
This type is used to represent a single call.  Values used for this are returned by 
functions such as call_openout() and call_openin().  Many Aculab API calls take 

these values as parameters.  The call handle is not meaningful in itself – no attempt 
should be made to decompose it.  Call handles are allocated by the system – you 
cannot specify your own handle (see call_openout() for information on how to 

associate your own data with a call).  Additionally, any regularity or commonality in 
the values returned should not be relied upon. 

Call handles are associated with a particular process and cannot be passed between 
different processes. 

3.3 ACU_CARD_ID – Card id 
This type is used to represent an instance of an Aculab card.  Values used for this are 
returned by acu_open_card().  A number of Aculab API calls take these values as 

parameters.  The card id is not meaningful in itself. 

Card ids are associated with a particular process and cannot be passed between 
different processes. 

3.4 ACU_PORT_ID – Port id 
This type is used to represent an instance of a port on an Aculab card.  Values used 
for this are returned by call_open_port().  A number of Aculab API calls take these 

values as parameters.  The port id is not meaningful in itself. 

Port ids are associated with a particular process and cannot be passed between 
different processes. 

3.5 ACU_WAIT_OBJECT – Wait Object 
This type is used to allow platform specific wait functions to be used with the Aculab 
API.  It represents a platform-specific wait object (e.g. a HANDLE on Windows, and a 

file descriptor on Unix-like operating systems).  It can be used in functions such as 
poll() or WaitForMultipleObjects(). 

3.6 ACU_ACT – Application token 
This type is used to allow an application to associate data with a call.  This is passed 
in as an additional parameter to call_openin() and call_openout().  The value is 

returned by call_event() and call_details(). 

3.7 ACU_ERR – Error code 
This is the return type of Aculab API calls. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 12 

3.8 ACU_EVENT_QUEUE – Event queue 
This type is a reference to an event queue created with acu_alloc_event_queue().  

This type is used to allow an application to associate a particular resource with a 
queue. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 13 

4 Call control functions 

4.1 System configuration 
These functions configure the card or provide information about the system: 

API Description 
call_card_dsp_config() This API call returns information about the DSPs present on 

the specified card. 

call_driver_version() 

 

This function returns the version of the driver operating for a 
port.  As different ports on the same card can be controlled 
by different drivers, the driver version is returned on a per-
port basis. 

call_type() Used to return a system wide signalling system reference 
value for a given network port number. This function is useful 
for applications that support multiple signalling systems 

call_line() Used to return a reference value describing the type of trunk 
supported by the card. This function is useful if support of 
multiple interface types is being considered for the 
application 

4.2 Line control  
These functions control the ‘Physical’ or ‘Layer 1‘connection:  

API Description 
call_watchdog() Used to start, stop and refresh the layer 1 watchdog. The 

aim of this feature is to signal to the network that the Aculab 
card can no longer take calls. Reasons for this could be an 
application or operating system failure. 

call_send_alarm() Used to send a layer 1 alarm to the network. This may be 
useful in systems where receipt of an alarm on one trunk 
may require transmission of that alarm on another trunk. 
Care should be taken when using this function as 
transmission of some alarms may cause the network 
receiving the alarm to cease operation. 

call_port_info() Get information about a port 

call_set_port_name() This function is used to set the name of a port.  The name 
of a port can be used to provide a more descriptive identifier 
to each port in the system.   

call_get_card_info() Return information about a card.  

call_get_fmw_dl_parms() 

 

This diagnostic function returns the parameters that were 
specified when call control firmware was downloaded. 

port_init() This function is used to initialise a port before calls are 
made on it.  This function calls idle_net_ts() for each of 

the timeslots on a port. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 14 

4.3 Basic call control  
This section of the guide covers the library functions available for basic call control. 
These allow calls to be made or received, details of the call to be received and the 
clearing of calls: 

API Description 
call_open_port() This function is used to open a port for use.  The port_id 

returned by this function is used as a parameter in many 
API calls. 

call_close_port() This function is used to close a port that was previously 
opened with call_open_port(). 

call_openout() Allows an application to initiate an outgoing call. The 
function registers the outgoing call requirement with the 
device driver, which, if satisfied with the calling parameters, 
will return a unique call identifier, the handle. 

call_openin() Allows an application to initiate a wait for an incoming call. 
The function registers the incoming call requirement with 
the device driver. If the driver is satisfied with the calling 
parameters, it will return a unique call identifier, the call 
handle for that call. 

call_send_overlap() Used to send the destination address of an outgoing call 
one or more digits at a time. The function may also be used 
any time that a valid outgoing call handle is available and 
the state of the handle is EV_WAIT_FOR_OUTGOING. The 

outgoing call handle would have been obtained from the 
call_openout() function. 

call_event() Used to return an event that may have occurred on any 
incoming or outgoing call. The device driver issues an event 
when a change of state occurs. The function may be used 
any time.  

call_details() Used to gather the details of the current call, either 
incoming or outgoing, connected through the device driver. 

call_incoming_ringing() Used to send the ringing message to the network causing 
the caller to hear the ring tone. This function is used after an 
incoming call has been detected but before the call has 
been accepted. Use of the function will stop further call 
details, such as DDI digits, from being received.  

call_accept() Used to accept the call after an incoming call has been 
indicated. This function would typically be used once the 
application had determined that the DDI digits received by 
the call_details() function are correct and can be 

supported.  

call_getcause() Used to return the clearing cause when an incoming or 
outgoing call clears. The returned clearing cause will only 
be valid when the call state is either EV_IDLE or 

EV_REMOTE_DISCONNECT.  

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 15 

(Basic call control continued) 

API Description 
call_disconnect() Used to disconnect an incoming or outgoing call currently 

routed through the driver. If the call_disconnect() function 

is successful, the driver will start the disconnect procedure 
and will return immediately to the calling process. When the 
call has been disconnected, the state will be EV_IDLE. The 

call_release() function must be used to give back the 

handle to the driver.  

call_release() Used to relinquish ownership of a call handle in response to 
call termination (CS_IDLE or EV_IDLE) or any error condition 

that may cause the application to abandon the call. The 
handle may no longer be used by the application.  

4.4 Advanced call control  
These functions complement the ‘Basic Call’ functions and provide extra functionality 
for the user including the use of ‘Supplementary Services’: 

API Description 
call_feature_openout() It is possible to transmit feature information in a call 

setup message. An enhanced version of 
call_openout() is needed to include extra parameters. 

call_feature_enquiry() During the process of call transfer, this function allows 
an application to make an enquiry call, i.e. an outgoing 
call to a third party, with feature information 

call_feature_details() Supplementary service information may arrive at 
different stages during the lifetime of a call. An 
indication of the availability of this information is found 
in the feature_information field, after a call to 

call_details(). To retrieve the information a second 

function, call_feature_details() should be used.  

call_feature_send() call_feature_send() is used to transmit feature 

information at different stages during the lifetime of a 
call.  

call_setup_ack() Used on an incoming call to send a Q.931 
SETUP_ACKNOWLEDGE message to the calling 
party.  

call_proceeding() Used on an incoming call to send a message to the 
calling party to indicate that sufficient information has 
been obtained to proceed with the call.  

call_progress() Used to send call progress information to the network.  

call_get_originating_addr() Used to obtain the originating address of an incoming 
call. It is primarily intended for use in some Channel 
Associated Signalling (CAS) systems where the 
application must explicitly request the originating 
address from the network 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 16 

(Advanced call control continued) 

API Description 
call_answercode() Some protocols allow an incoming call to be answered 

with information about how the call is to be handled 
during the EV_CALL_CONNECTED state. This function is 

used to pass the answer code to the driver for use 
during call connection.  

call_get_charge Used to obtain information regarding the cost of a call. 
The function may be used any time that a valid call 
handle is available, however, the call charge 
information may not be valid until the call has cleared 
and the call has gone to the EV_IDLE state.  

call_put_charge Used to send call charging information on the network 
and may be used any time that a valid call handle is 
available and the call is in the EV_CALL_CONNECTED state.  

call_notify() Used on a call to send a message to the network to 
indicate an appropriate call related event during the 
active state of a call (such as user suspended).  

call_send_keypad_info() Used to send keypad information during a call. This 
function is only supported in Q.931  

call_send_connectionless() Some supplementary services require the use of a 
connectionless network service to transmit FACILITY 
messages. call_send_connectionless() allows these 

messages to be transmitted.  

call_get_connectionless() Some supplementary services require the use of a 
connectionless network service to transmit FACILITY 
messages. call_get_connectionless() will retrieve the 

latest message of this kind 

call_enable_connectionless() Some protocols require that actions be taken for 
messages that are not understood. 

call_maint_port_block()/ 

call_maint_port_unblock() 

 

The block function is used to block a group of timeslots 
within a port, preventing these timeslots from being 
used for subsequent calls. Conversely, unblock is used 
on a blocked port to unblock a group of timeslots for 
that port, bringing the timeslots back into service. 

call_maint_ts_block()/ 

call_maint_ts_unblock() 

 

The block function is used to block (take out of service) 
a specific timeslot, preventing it from being used to set 
up a call. Conversely, unblock is used on a blocked 
timeslot to unblock the timeslot and bring it back into 
service. 

call_maint_port_reset() 

 

Used to reset the status of a port. This will clear any 
calls in progress on the port. (Currently SS7/ISUP 
support only) 

call_maint_port_status Used to protocol specific status information. 

call_set_handle_event_queue(

) 
This function is used to associate a call handle with an 
event queue.  All call events that occur for the specified 
call handle will be notified via this event queue 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 17 

(Advanced call control continued) 

API Description 
call_get_handle_event_wait_object() This function is used to get a wait object 

that is associated with a specific call 
handle.  This wait object will be signalled 
while there are call events pending for that 
call handle.  The wait object returned by 
this function can be used with operating 
system specific wait functions such as 
WaitForMultipleObjects() or poll(). 

call_set_handle_app_context_token() This function is used to associate 
application-defined data with a call handle.  
This data is returned as the context field by 
acu_get_event_from_queue() 

call_get_handle_app_context_token() This function is used to retrieve application 
defined data that was associated with a call 
handle by an earlier call to call_openin(), 

call_openout(), or 
call_set_handle_app_context_token(). 

call_set_port_default_handle_event_queue

() 
This function is used to set the default 
event queue for calls made on a particular 
port.  This allows an application to easily 
group calls by port. 

call_set_port_app_context_token() This function is used to associated 
application defined data with a port.  This 
data is returned as the context field by 
acu_get_event_from_queue(). 

call_get_port_app_context_token() Retrieve application-defined data that is 
associated with a port.  The data can be set 
using call_set_port_app_context_token(). 

call_set_port_notification_queue() Associate a port with a queue.  All port 
notification events for this port will be 
notified via this queue. 

call_get_port_notification() Retrieve the next pending notification event 
for the port. 

call_get_port_notification_wait_object() Get the wait object that is signalled when 
there is a pending notification event for the 
port.  

call_get_global_event_wait_object() Get the wait object that is signalled when 
there is a pending call event on any call 
associated with the global call event queue 
(see call_event()). 

call_set_global_notification_queue() Associate global notifications with a queue. 
All global notification events will be notified 
via this queue. 

call_get_global_notification() Retrieve the next pending global 
notification event. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 18 

(Advanced call control continued) 

API Description 
call_get_global_notification_wait_object() Get the wait object that is signalled 

when there is a pending global 
notification event. 

call_open_iptel_port() There are times when an application 
may wish to have a greater level of 
control over the media resources on an 
IP Telephony call than the basic API 
offers 

 

These functions are used to implement call transfer: 

API Description 
call_hold() An incoming or outgoing call can be put on hold by use of the 

call_hold() function. To allow enhancements to the driver API, this 

call will in turn call xcall_hold(), which may be called directly.  

call_reconnect() A call that is in the held state can be reconnected by use of the 
call_reconnect() function. To allow enhancements to the driver 

API, this call will in turn call xcall_reconnect(), which may be 

called directly. This call will cause the call to return to the connected 
state. It is possible for a switch to reject a reconnect message sent 
by the application. If this happens the call will move to the state 
CS_RECONNECT_REJECT.  

call_enquiry() During the process of call transfer, this function allows an 
application to make an enquiry call, that is, an outgoing call to a 
third party. 

call_transfer() After a successful enquiry call, the calls may be transferred by use 
of the call_transfer() function call. The enquiry call is deemed 

successful if the state of the enquiry call has reached CS_CONNECTED 

or CS_OUTGOING_RINGING (for 'blind' transfer). 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 19 

4.5 call_card_dsp_config() 
This API call returns information about the DSPs present on the specified card. 

This API call returns information about DSPs associated with call control activities.  A 
card may carry additional DSPs for other purposes.  Applications must use different 
API calls to find out about those. 

This API call is primarily intended to allow applications to determine whether a PMX-
based card can support tone-based CAS signalling or SS7 signalling. 

Synopsis 
ACU_ERR call_card_dsp_config(CALL_CARD_DSP_CONFIG_PARMS* config_parms); 

 

#define MAX_CARD_DSP_COUNT 5 

 

typedef struct tCALL_DSP_INFO 

{ 

 ACU_UINT  dsp_type; 

 ACU_CHAR  status[MAX_HW_DESC]; 

 ACU_CHAR  dsp_desc[MAX_HW_DESC]; 

} CALL_DSP_INFO; 

 

typedef struct tCALL_CARD_DSP_CONFIG_PARMS 

{ 

 ACU_ULONG   size;      /* IN */ 

 ACU_CARD_ID  card_id;      /* IN */ 

 ACU_UINT   dsp_count;     /* OUT */ 

 CALL_DSP_INFO  dsp_info[MAX_CARD_DSP_COUNT]; /* OUT */ 

 ACU_UCHAR   port_dsp_map[MAXPPC];   /* OUT */ 

 ACU_UCHAR   port_res_map[MAXPPC];   /* OUT */ 

} CALL_CARD_DSP_CONFIG_PARMS; 

 

Input parameters 

call_card_dsp_config()takes a pointer, config_parms, to a structure, CALL_CARD_DSP_ 

CONFIG_PARMS. The structure must be initialised before invoking the function, (see 

section 2.2). 

Size 

This is the size of the structure (use INIT_ACU_CL_STRUCT to initialise). 

card_id 

This is the card id of the card to query for DSP information. 

Return values 
dsp_count 

This is the number of DSP positions available on the card. 

dsp_info 

This array contains information about each of the DSP positions. 

dsp_type 

This is the type of DSP fitted.  This is one of the following values: 

Constant Description 
ACU_DSP_TYPE_PMX_HIGH_CAP DSP suitable for SS7 signalling or 8 ports of CAS 

tone generation/detection 

ACU_DSP_TYPE_PMX_LOW_CAP DSP suitable for 8 ports of CAS tone 
generation/detection 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 20 

Status 

This is a free-format text field describing the status of the DSP.  For PMX-based 
cards this field will contain information about which firmware is downloaded (if any). 

dsp_desc 

This is a textual description of the DSP. 

port_dsp_map 

This is for diagnostic purposes only 

port_res_map 

This is for diagnostic purposes only 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 21 

4.6 call_driver_version() 
This function returns the version of the driver operating for a port. As different ports 
on the same card can be controlled by different drivers, the driver version is returned 
on a per-port basis. 

Synopsis 
call_driver_version(CALL_DRIVER_VERSION_PARMS* version_parms); 

  

typedef struct tCALL_DRIVER_VERSION_PARMS 

{ 

  ACU_ULONG    size;                         /* IN */ 

  ACU_PORT_ID  port_id;                      /* IN */ 

  ACU_UINT     ver_maj;                      /* OUT */ 

  ACU_UINT     ver_min;                      /* OUT */ 

  ACU_UINT     ver_rev;                      /* OUT */ 

  ACU_CHAR     ver_desc[MAX_VER_DESC +1];     /* OUT */ 

} CALL_DRIVER_VERSION_PARMS; 

 

This function returns the version of the driver operating for a port.  The driver version 
is returned on a per-port basis as different ports on the same card can be controlled 
by different drivers. 

Input Parameters 
size: 

The size of the CALL_DRIVER_VERSION_PARMS struct. 

port_id: 

The port id of the port to be queried 

Return values 
ver_maj: 

The major component of the driver version 

ver_min: 

The minor component of the driver version 

ver_rev: 

The revision component of the driver version 

ver_desc: 

An ASCII string containing the driver version plus any additional version information 
(such as beta status).  e.g. "v6.3.2B21". 

On successful completion a value of zero is returned. Otherwise,   ERR_NET will be 

returned if an invalid port is specified instead. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 22 

4.7 call_type() - Get signalling system type 
This function may be used to return a system wide signalling system reference value 
for a given network port number. This function will be useful for applications that 
support multiple signalling systems. 

Synopsis 
ACU_ERR call_type(ACU_PORT_ID portnum); 

Input parameters 

The input parameter portnum identifies the network port number for which the 

reference value is required and will have a valid port id as returned from 
call_open_port(). 

Return values 

On successful completion the function will return a signalling system reference value. 
The value zero will be returned if the signalling system name is not known; otherwise 
a negative value will be returned indicating the type of error. 

The reference value returned will be one of the set defined in the header file under 
Signalling Protocol Identifiers. 

4.8 call_line() - Get line type 
This function may be used to return a reference value describing the type of trunk 
supported by the card. This function will be useful if support of multiple interface types 
is being considered for the application. 

Synopsis 
ACU_ERR call_line (ACU_PORT_ID portnum);     /* IN */ 

Input parameters 

The input parameter portnum identifies the network port number for which the line 

type is required and will have a valid port id as returned from call_open_port(). 

Return values 

On successful completion, the function will return a line reference value. The value 
zero will be returned if the line reference is not known; otherwise a negative value will 
be returned indicating the type of error. 

The reference value returned will be one of the set defined in the header file under 
Line Interface Types: 

L_E1   for an E1 (PRI) ISDN line 

L_T1_CAS  for a T1 CAS line 

L_T1_ISDN  for a T1 (PRI)  ISDN line 

L_BASIC_RATE for a basic rate (BRI) ISDN line 

L_PSN   for packet switched network (IP Telephony H.323 or SIP) 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 23 

4.9 call_watchdog() - Watchdog 
The API call call_watchdog() is used to start, stop and refresh the layer 1 watchdog. 

Once set, the watchdog must be refreshed before the time specified by the user has 
elapsed. If the timer in the firmware expires before a refresh signal has been received 
then the firmware will set the user specified Layer 1 alarm on the link. The aim of this 
feature is to signal to the network that the Aculab card can no longer take calls. 
Reasons for this could be an application or operating system failure. 

NOTE 

Not supported for IP Telephony or ISUP 

 

Library function 

Synopsis 
ACU_ERR call_watchdog(WATCHDOG_XPARMS *watchp); 
 

typedef struct watchdog_xparms 

{ 

  ACU_ULONG   size;  /* IN */ 

  ACU_PORT_ID  net;  /* IN */ 

  ACU_INT   alarm; /* IN */ 

  ACU_LONG   timeout; /* IN */ 

} WATCHDOG_XPARMS; 

Input parameters 

call_watchdog()takes a pointer, watchp, to a structure, WATCHDOG_XPARMS. The 

structure must be initialised before invoking the function, (see section 2.2). 

net  

must contain the port_id on the Aculab card on which call watchdog is to be run, as 

returned from call_open_port(). 

alarm  

must contain the alarm code to be sent to the network upon the timeout expiring and 
will be one of the standard set of alarms codes described below. 

ALARM_NONE  will clear an existing alarm 

ALARM_AIS  will cause AIS to be sent 

ALARM_RRA  will cause Remote Alarm 

ALARM_CML  will cause CAS Multi Frame Alarm 

timeout  

must contain the time, in milliseconds, for the watchdog to wait before setting the 
layer 1 alarm. A zero value for the timeout will disable the watchdog feature. If 
call_watchdog() is not called again before the time out period then the firmware will 

set the alarm with the alarm value stated in the previous call_watchdog(). 

Return values 

On successful completion a value of zero is returned. Otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 24 

4.10 call_send_alarm() - Sending alarms to the network 
This function may be used to send a layer 1 alarm to the network. This may be useful 
in systems where receipt of an alarm on one trunk may require transmission of that 
alarm on another trunk. Care should be taken when using this function as 
transmission of some alarms may cause the network receiving the alarm to cease 
operation. 

The alarm condition will persist as until changed by subsequent use of the 
call_send_alarm() function. 

NOTE 

Not supported for IP Telephony. 

Synopsis 
ACU_ERR call_send_alarm(ALARM_XPARMS *alarmp); 

 

typedef struct alarm_xparms 

{ 

  ACU_ULONG   size;  /* IN */ 

  ACU_PORT_ID  net;  /* IN */ 

  ACU_INT   alarm; /* IN */ 

} ALARM_XPARMS; 

Input parameters 

call_send_alarm()takes a pointer, alarmp, to a structure, ALARM_XPARMS. The structure 

must be initialised before invoking the function, (see section 2.2). 

net  

must contain the port_id on the Aculab card on which the alarm is to be sent. As 

returned from call_open_port(). 

alarm  

must contain the alarm code to be sent to the network and will be one of the standard 
set of alarms codes described below. 

ALARM_NONE  will clear an existing alarm 

ALARM_AIS  will cause AIS to be sent 

ALARM_RRA  will cause Remote Alarm 

ALARM_CML  will cause CAS Multi Frame Alarm 

 

The ALARM_xxx definitions have the same value as the LSTAT_xxx definitions allowing 

the layer 1 status of one port to be sent unchanged as an alarm on another port. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 25 

4.11 call_port_info() - get information about a port 
This function returns information about a port. 

Synopsis 
ACU_ERR call_port_info(PORT_INFO_PARMS* port_info_xparms); 

 

typedef struct _PORT_INFO_PARMS 

{ 

  ACU_ULONG   size;      /* IN */ 

  ACU_PORT_ID  port_id;     /* IN */ 

  ACU_ULONG   valid_vector;    /* OUT */ 

  ACU_UINT   connection_type;   /* OUT */ 

  ACU_UINT   channel_allocation;  /* OUT */ 

  ACU_UINT   channel_count;    /* OUT */ 

  ACU_UINT   port_type;    /* OUT */ 

  ACU_UINT   lim_type;     /* OUT */ 

  ACU_UINT   physical_index;   /* OUT */ 

  ACU_CHAR   name[MAXNAME];    /* OUT */ 

  ACU_CHAR   sig_sys[MAXSIGSYS];  /* OUT */ 

  ACU_CHAR   hw_ver[MAXHWVERSION];  /* OUT */ 

  ACU_CHAR   hw_desc[MAX_HW_DESC];   /* OUT */ 

  ACU_CHAR   fw_desc[MAX_FW_DESC];   /* OUT */ 

  ACU_CHAR   fw_extension[MAX_FW_EXTN]; /* OUT */ 

} PORT_INFO_PARMS; 

Input parameters 

The call_port_info() function takes a pointer, port_info_xparms, to a structure, 

PORT_INFO_PARMS. The structure must be initialised before invoking the function, (see 

section 2.2). 

port_id 

The input parameter port_id identifies the network port for which information is to be 

obtained. 

Return values 

NOTE 

Before firmware is downloaded to a port, this function will return default 
information for the port. 

 

valid_vector (Not applicable for IP Telephony) 

The 32-bit vector returned in valid_vector describes the available timeslots on the 

network stream. Bit 0 refers to timeslot 0 and bit 31 refers to timeslot 31. A bit set will 
indicate that the timeslot is valid. Thus a vector: 

31                                    0 

1111 1111 1111 1110 1111 1111 1111 1110 

 

Indicates that timeslots 0 and 16 are barred and may not be used and is typical of E1. 
Other vectors will be returned for other line types.  

For example ISDN on T1 will return: 

31                                    0 

0000 0000 0111 1111 1111 1111 1111 1111 

 

If a barred timeslot is specified during call control an error will be returned by that 
function (see error codes). 

NOTE 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 26 

Before firmware is downloaded, the valid_vector will show that no 
timeslots are valid.  For SS7, valid_vector is not valid until both the 
firmware is downloaded and the SS7 stack has been started. 

 

connection_type 

The connection_type field will contain a mask consisting of a combination of the 

following values, depending on the type of port: 

 #define Description 
ACU_CIRCUIT_SWITCHED This port is circuit switched 

ACU_PACKET_SWITCHED This port is packet switched 
 

channel_allocation 

The channel_allocation field describes how channels are allocated on this port.   

This information can be useful for deciding how many calls to make on it.  The value 
in this field will be made up of a combination of the following values, depending on 
the type of the port: 

#define Description 
ACU_CHANNEL_FIXED Timeslots on this port are fixed (e.g. ISDN 

protocols) 

ACU_CHANNEL_DYNAMIC Timeslots on this port are dynamically allocated  

ACU_CHANNEL_DYNAMIC_UNLIMITED This port can provide an unlimited quantity of 
channels 

 

On a port that has channels dynamically allocated, it is generally not possible to 
determine which timeslot a call will use until the call has been made.  For ports where 
the timeslots are fixed, it is possible to specify the timeslot that a call should take. A 
port of type ACU_CHANNEL_DYNAMIC_UNLIMITED can provide an unlimited number of 

channels to an application. 

channel_count 

The channel_count field contains the maximum number of channels available on the 

port.  For protocols that have a channel_allocation of ACU_CHANNEL_FIXED this count 

is absolute.  Protocols where the channel_allocation is ACU_CHANNEL_DYNAMIC may 

support a varying number of channels depending on other factors such as load, 
options specified for the port, and options specified for each call. The value in this 
field may be ignored for ports where channel_allocation is 

ACU_CHANNEL_DYNAMIC_UNLIMITED, as they are capable of providing of an unlimited 

number of channels. 

 

NOTE 

The reported channel count for SIP ports opened using sip_open-port() 
may indicate lower than expected numbers if the VoIP board is still 
booting when call_port_info() is called. Once the VoIP firmware us fully 
initialised, the count will be fixed at a value equal to the total capacity of 
the installed hardware. 

 

port_type 

The port_type field is a combination of the following values, describing the 

capabilities of the port.  Making use of a particular capability may require a particular 
type of firmware to be downloaded. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 27 

#define Meaning 
ACU_PORT_CAP_E1_ISDN Port is capable of E1 ISDN protocols (e.g. ETS 300, 

DASS2) 

ACU_PORT_CAP_T1_ISDN Port is capable of T1 ISDN protocols (e.g. NI2, 
AT&T) 

ACU_PORT_CAP_E1_CAS Port is capable of E1 CAS protocols (e.g. E1 
Lineside) 

ACU_PORT_CAP_T1_CAS Port is capable of T1 CAS protocols (e.g. T1 
Robbed Bit) 

ACU_PORT_CAP_E1_ISDN_MONITOR Port is capable of monitoring E1 ISDN calls 

ACU_PORT_CAP_T1_ISDN_MONITOR Port is capable of monitoring T1 ISDN calls 

ACU_PORT_CAP_IP Port is capable of running IP Telephony  

ACU_PORT_CAP_IP_OFFLOAD Port is capable of running H.323 IP Telephony, with 
call control, on the board. 

ACU_PORT_CAP_E1_ISUP Port is capable of running E1 ISUP. 

ACU_PORT_CAP_T1_ISUP Port is capable of running T1 ISUP 

ACU_PORT_CAP_SS7 Port is capable of running SS7 

 

lim_type (not applicable for IP telephony) 

The lim_type field describes the actual type of LIM module that the port is on.  Values 

for this field are defined in the header file under PM module types. 

 

NOTE 

Aculab advise against coding checks for specific LIM types as it may limit 
forward compatibility.  This field should be used for information only. 

 

physical_index (not applicable for IP telephony) 

The physical_index field is the physical index of the port on its parent card. 

name 

The name field holds the name of the port.  The name can be set using 
call_set_port_ name(). 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 28 

sig_sys  

The driver will return a null terminated ASCII string containing the signalling system 
type that is supported by the device driver in the character array sig_sys. This string 

will contain one of the following: 

• E1 - ISDN signaling systems 
ETS300 ETSNET FETX150 FETXNET   

DASS2 DASSNE DPNSS QSIG 

• E1 - CAS signaling systems 
R2B2P CAS  BTCU  BTCN  PTVU  PTVN  PD1D  

PD1U PD1N  R2L  P8  EM  BEZEQ 

• E1 - CAS tone signaling systems - requires DSP 
R2T  R2T1  ALSU  ALSN  BELGU BELGN EFRAT 

EEMA PD1  PD1DD PD1UD PD1ND BTMC  OTE2 

FMFS  SMFS  I701  SS5 

• T1 - ISDN signaling systems 
NI2  NI2NET  INS_T1 INT1NET  ATT1  ATT1NET ETST1U ETST1N 

DMS1 DMS1NET 

• T1 - CAS tone signaling systems - requires DSP 
F12   T1RB 

• SS7 
ISUP 

• Passive Monitor 
E1 - MONE 

T1 – MONT 

• IP Telephony 
H323  SIP 

NOTE 

When firmware has not been downloaded to a port, the string returned in 
sig_sys is “NO F/W”.   

 

hw_ver (not applicable for IP telephony) 

The hw_ver field is a null terminated string containing the hardware version of the LIM 

that the port is on. 

hw_desc (not applicable for IP telephony) 

A string that describes the hardware of a port.  It is provided for informational 
purposes only and as such provides a textual description of the port_type field. 

fw_desc (not applicable for IP telephony) 

The name of the firmware file currently running on the port, provided for informational 
purposes only.  As firmware filenames vary between different types of hardware and 
new firmware variants and hardware types might be introduced in the future, it is not 
recommended that applications be written to depend on specific values appearing in 
this field. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

fw_extension (not applicable for IP telephony) 

Introduced in v6.6.4. 

The extension of the call control firmware file that is expected by the driver.  This can 
be either “pmx” or “pxi”. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 29 

4.12 call_set_port_name() - set the name of a port 
This function is used to set the name of a port.  The name of a port can be used to 
provide a more descriptive identifier to each port in the system.  Some Aculab 
configuration tools also display this name.  It can be retrieved using 
call_port_info(). 

Synopsis 
ACU_ERR call_set_port_name(CALL_SET_PORT_NAME_PARMS* name_parms); 

 

typedef struct _CALL_SET_PORT_NAME_PARMS 

{ 

  ACU_ULONG   size;     /* IN */ 

  ACU_PORT_ID  port_id;    /* IN */ 

  ACU_CHAR   name[MAXNAME];   /* IN */ 

} CALL_SET_PORT_NAME_PARMS; 

Input Parameters 

The call_set_port_name() function takes a pointer, name_parms, to a structure, 

CALL_SET_PORT_NAME_PARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

port_id  

port_id is the id of the port.  This id is obtained from a call to call_open_port(). 

name  

name is the new name for the port.  It’s a null terminated string and must be no longer 

than MAXNAME characters including the NULL character. 

Return Values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

Example Usage 

Setting the name: 

ACU_CHAR* port_name = “TELCO A”; 

SET_PORT_NAME_PARMS set_name_parms; 

ACU_PORT_ID; /* port previously opened with call_open_port() */ 

ACU_INT error = 0; 

 

INIT_ACU_STRUCT(&set_name_parms); 

set_name_parms.port_id = port_id; 

strncpy(set_name_parms.name, port_name, MAXNAME); 

 

error = call_set_port_name(port_id, port_name); 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 30 

4.13 call_get_card_info() - return information about a card 
This function returns information about a card.   

Synopsis 

ACU_ERR call_get_card_info(CARD_INFO_PARMS* info_parms); 

 

typedef struct _CARD_INFO_PARMS 

{ 

  ACU_ULONG  size;     /* IN */ 

  ACU_CARD_ID card_id;     /* IN */ 

  ACU_UINT  ports;     /* OUT */ 

  ACU_UINT  card_type;    /* OUT */ 

  ACU_ULONG  irq_ticks;    /* OUT */ 

  ACU_ULONG  clock_ticks;    /* OUT */ 

  ACU_CHAR  serial_no[MAXSERIALNO];  /* OUT */ 

  ACU_CHAR  hw_version[MAXHWVERSION]; /* OUT */ 

  ACU_ULONG  interrupts_seen;   /* OUT */ 

  ACU_ULONG  interrupts_claimed;  /* OUT */ 

} CARD_INFO_PARMS; 

Input parameters 

The call_get_card_info() function takes a pointer, info_parms, to a structure, 

CARD_INFO_ PARMS. The structure must be initialised before invoking the function, (see 

section 2.2). 

card_id 

The card_id field must contain the appropriate id for the call driver you want to query.  

This id must be opened for call control with an earlier call to acu_open_call(). 

Return values 
ports  

The ports field will contain the number of network ports on the card. 

card_type  

The card_type field returns a value denoting the exact type of Aculab board: 
 

#define Description 
ACU_PROSODY_X_CARD A Prosody X PCI, cPCI and 

PCIe cards 

ACU_PROSODY_S_V3_CARD A ProsodyS virtual card 

ACU_VIRTUAL_BEARER_CARD A  Virtual bearer card 

 

irq_ticks (not applicable for IP telephony) 

This field contains the number of times the call driver for this card has processed its 
interrupt queue in response to one or more interrupts. 

clock_ticks  

This field is not used in the V6 call driver. 

serial_no  

The serial_no field returns an alphanumeric character string that contains the serial 

number of the Aculab Prosody PCI/E1T1 or Compact PCI Prosody/E1T1 cards 
installed. 

hw_version  

The hw_version field contains the revision of the card 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 31 

interrupts_seen (not applicable for IP telephony) 

This field contains the number of times the call driver for this card has received an 
interrupt from the operating system. 

interrupts_claimed (not applicable for IP telephony) 

This field contains the number of times that the call driver for this card has received 
an interrupt for this card. 

NOTE 

Aculab does not recommend constantly polling this function. 

 

NOTE 

It is normal for the number of interrupts seen to differ from the number of 
interrupts claimed. 

 

NOTE 

call_port_info() can be used to obtain the LIM version. 

 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 32 

4.14 call_get_fmw_dl_parms – return downloaded call firmware parameters 
This function returns the parameters that were specified when call control firmware 
was downloaded. 

NOTE 

This function only returns firmware parameters that were specified using 
call_restart_fmw(). 

 

NOTE 

This function is provided for diagnostic purposes only. 

Synopsis 
ACU_ERR call_get_fmw_dl_parms(CALL_GET_FMW_DL_PARMS* fmw_dl_parms); 

 

typedef struct tCALL_GET_FMW_DL_PARMS 

{ 

  ACU_UINT  size;     /* IN */ 

  ACU_PORT_ID port_id;     /* IN */ 

  ACU_CHAR  parms[CL_MAX_FMW_PARMS]; /* OUT */ 

} CALL_GET_FMW_DL_PARMS; 

Input parameters 

The call_get_fmw_dl_parms() function takes a pointer, fmw_dl_parms, to a structure, 

CALL_GET_FMW_DL_PARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

Size 

This is the size of the structure (initialise using INIT_ACU_CL_STRUCT) 

port_id 

This is the port id of the port to query. 

Parms 

On return, this will hold the parameters that were specified. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 33 

4.15 port_init() - port initialisation 
This function is used to initialise a port before calls are made on it.  This function calls 
idle_net_ts() for each of the timeslots on a port. 

Synopsis 
ACU_ERR port_init(ACU_PORT_ID portnum);   /* IN */ 
 

NOTE 

Not applicable for IP telephony 

 

NOTE 

This function makes use of the switch API and, as such, will only function 
correctly if the application has already opened the card for switch API use 
using the acu_open_switch() function. 

Input Parameters 
portnum  

portnum must be a valid port_id returned from an earlier call to call_open_port(). 

Return Values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 34 

Basic call control 

4.16 call_open_port() - open a port 
This function is used to open a port for use.  The port_id returned by this function is 

used as a parameter in many API calls. 

NOTE 

An application must keep track of the ports it has opened. 

 

Synopsis 
ACU_ERR call_open_port(OPEN_PORT_PARMS* port_parms); 

typedef struct tOPEN_PORT_PARMS 

{ 

  ACU_ULONG   size;   /* IN */ 

  ACU_CARD_ID  card_id;   /* IN */ 

  ACU_INT   port_ix;   /* IN */ 

  ACU_PORT_ID  port_id;   /* OUT */ 

  ACU_EVENT_QUEUE queue_id;   /* IN */ 

} OPEN_PORT_PARMS; 

Input Parameters 

This call_open_port() function takes a pointer port_parms, to a 

structure,OPEN_PORT_PARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

card_id 

The card_id field must be set to the id of the card that owns the port to open. 

port_ix 

The port_ix field must be set to the number of the physical port to open.  This is the 

0 based index of the port.  You can determine how many ports a card has using the 
call_get_card_info() API call. 

Return Values 
port_id 

The port_id field will contain the port id to be used when making calls with this port. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

Error Codes 

#define Description 
ERR_NET Invalid port index specified 

ERR_INVALID_CARD Invalid card_id specified 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 35 

Example Usage 
OUT_XPARMS call_parms; 

OPEN_PORT_PARMS open_port; 

CLOSE_PORT_PARMS close_port; 

ACU_CARD_ID card_id; 

ACU_INT error = 0; 

ACU_CHAR* serial_no = “123456”; 

 

INIT_ACU_STRUCT(&open_card); 

strcpy(open_card.serial_no, serial_no); 

 

card_id = open_card.card_id; 

 

/* open the first port on this card */ 

INIT_ACU_STRUCT(&open_port); 

open_port.card_id = card_id; 

open_port.port_index = 0; 

 

error = call_open_port(&open_port); 

if (error == 0) 

{ 

 /* Use the port */ 

 INIT_ACU_STRUCT(&call_parms); 

 call_parms.net = open_port.port_id; 

 call_parms.ts = -1; 

 

 /* 

  * other call set up here 

  */ 

 

 error = call_openout(&call_parms); 

 if (error != 0) 

 { 

  /* handle call here */ 

 } 

 

 INIT_ACU_STRUCT(&close_port); 

 close_port.port_id = open_port.port_id; 

 

 error = call_close_port(&close_port); 

} 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 36 

4.17 call_close_port() - close a port 
This function is used to close a port that was previously opened with 
call_open_port(). 

Synopsis 
ACU_ERR call_close_port(CLOSE_PORT_PARMS* port_parms); 

typedef struct tCLOSE_PORT_PARMS 

{ 

  ACU_ULONG   size;  /* IN */ 

  ACU_PORT_ID   port_id;  /* IN */ 

} CLOSE_PORT_PARMS; 

 

NOTE 

The order that you release the resources in is important.  You cannot 
close a port before closing all of the call handles on that port. 

Input Parameters 

This call_close_port() function takes a pointer port_parms, to a 

structure,CLOSE_PORT_PARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

port_id  

This function takes the port_id of an open port as its only parameter. 

Return Values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

Example Usage 

See the example code for call_open_port() shown above. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 37 

4.18 call_openout() - Open for outgoing call 
This function allows an application to initiate an outgoing call. The function registers 
the outgoing call requirement with the device driver, which if satisfied with the calling 
parameters, will return a unique call identifier, the handle. 

Synopsis 
ACU_ERR call_openout(OUT_XPARMS *outdetailsp); 

 

typedef struct out_xparms 

{ 

  ACU_ULONG   size;     /* IN */ 

  ACU_CALL_HANDLE handle;     /* OUT */ 

  ACU_PORT_ID  net;      /* IN */ 

  ACU_INT   ts;       /* IN */ 

  ACU_INT   cnf;      /* IN */ 

  ACU_INT   sending_complete;    /* IN */ 

  char    destination_addr[MAXADDR];  /* IN */ 

  char    originating_addr[MAXADDR];  /* IN */ 

  ACU_ACT   app_context_token;   /* IN */ 

  ACU_EVENT_QUEUE queue_id;     /* IN */ 

  union uniqueu  unique_xparms;    /* IN */ 

} OUT_XPARMS; 

 

  union uniqueu 

  { 

    /* see protocol specific structures in section 8 */ 

  } unique_xparms; 

Input parameters 

The call_openout() function takes a pointer, outdetailsp, to a structure, OUT_XPARMS. 

The structure must be initialised before invoking the function, (see section 2.2). 

net  

Specifies the port_id on the Aculab card on which the call is to be made, as returned 

from call_open_port(). 

ts  

NOTE 

For IP Telephony the ts field must be set to –1 for any timeslot.  The actual 
timeslot on which the call is proceeding can be identified by calling the 
call_details() function.  The timeslot will be valid as soon as the 

EV_WAIT_FOR_OUTGOING event is generated. 

 

ts is used to specify the timeslot on which the call will be made. There are three 

possible modes for this input parameter: 

1. Exclusive Timeslot 

The ts field must contain the number of a valid timeslot on which the outgoing call will 

be made. Valid and barred timeslots can be obtained from validvector, returned by 
the call_signal_info() function. 

struct out_xparms outxp; 

outxp.ts = timeslot; 

The device driver will attempt to make the outgoing call on the ‘exclusive’ timeslot 
provided. If, during establishment of the call, the network negotiates an alternate 
timeslot, the call will be discontinued. The call will only continue if the network can 
provide use of the specified timeslot. 

For an exclusive slot map in Q.931 signalling systems that support slotmap, the ts 
field must be set to USE_SLOTMAP (-3). The slot map will be specified in the slotmap 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 38 

field of the sig_q931 structure. Slot map calls are currently supported on ETS300 

(EuroISDN). 

struct out_xparms outxp; 

outxp.ts = USE_SLOTMAP; 

outxp.unique_xparms.sig_q931.slotmap=slotmap;  

2. Preferred Timeslot (using CNF_TSPREFER) 

ts must contain the number of a valid timeslot on which the outgoing call will be 

made. Valid and barred timeslots can be obtained from validvector returned by the 
call_signal_info() function. The CNF_TSPREFER configuration switch must be set in 

the cnf input parameter. 

struct out_xparms outxp; 

outxp.cnf = CNF_TSPREFER; 

outxp.ts = timeslot; 

The device driver will attempt to make the call out on the ‘preferred’ timeslot provided. 
If, during establishment of the call, the network negotiates an alternate timeslot, the 
call will be allowed to continue. 

The actual timeslot on which the call is proceeding may differ from that supplied by 
the application, but can be ascertained by calling the call_details() function. 

For a preferred slot map in Q.931 signalling systems that support slot map calls, ts 
must contain USE_SLOTMAP (-3). The preferred slot map will be specified in in the 

slotmap field of the sig_q931 structure. The CNF_TSPREFER configuration switch must 

be set in the cnf input parameter. 

struct out_xparms outxp; 

outxp.cnf = CNF_TSPREFER; 

outxp.ts =USE_SLOTMAP; 

outxp.unique_xparms.sig_q931.slotmap=slotmap; 

The actual timeslots on which the slot map call is proceeding may differ from that 
supplied by the application, but can be ascertained by calling the call_details() 

function. The call will only proceed if a call with the same number of timeslots as 
requested in the slotmap field can be negotiated. 

3. Any Timeslot 

The input parameter ts must contain a value of -1. 

struct out_xparms outxp; 

outxp.ts = -1; 

The device driver will use the first available timeslot on the specified network. The 
actual timeslot on which the call is proceeding can be identified by calling the 
call_details() function. 

cnf 

NOTE 

For H.323, only CNF_REM_DISC and CNF_TSVIRTUAL are supported. 

 

NOTE 

For SIP, only CNF_TSVIRTUAL is supported 

 

Is used to request additional functionality from the device driver. By ‘OR’ing in 
configuration switches prior to invoking the function the device driver will modify its 
behaviour (depending upon the switches set) on a per call basis. The configuration 
switches currently supported are: 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 39 

• CNF_REM_DISC (remote disconnect) 

This switch controls the drivers response to a ‘far end’ disconnect. Without the 

configuration switch, the driver will automatically respond to a ‘far end’ disconnect 
by releasing the call, the call state going to EV_IDLE.  
 

This method of working is compatible with all previous releases of the device 
driver. 
 

With the configuration switch set, when a ‘far end’ disconnect occurs, the event 

EV_REMOTE_DISCONNECT will be returned by the device driver. The application may 

now ‘tidy up’ any resources before finally disconnecting the call using the 
call_disconnect()function. 

This has two effects that may be useful: 

• Hold the channel until the system is ready to release the channel for further 
calls. 

• Retain any incoming call progress tones on the channel until released. 

NOTE 

Dependant on protocol, the disconnecting end may then send a release, 
because the far end has not received a response to the disconnect that 
was sent. e.g. For Q931 after T305/T306 has expired. This will result in the 
call going to the idle state. 

 

• CNF_CALL_CHARGE (call charge event) 

This switch controls advice of charging. Without the configuration switch, the 
driver will neither return call-charging information nor return the EV_CALL_CHARGE 

event to the application.  
 

If the application wishes to obtain charging information, the application should set 
this switch and then either call the call_get_charge() function regularly, or 

expect the driver to return the EV_CALL_CHARGE event to the application indicating 

that new information has arrived. 

• CNF_TSPREFER (preferred timeslot) 

This switch controls the way in which the timeslot parameter ts is interpreted. 

See the below on preferred timeslot for further information. 

• CNF_COMPLETE (digits complete) 

The functionality of CNF_COMPLETE has been superseded by the sending_complete 

parameter as detailed in the next section. 

• CNF_TSVIRTUAL (virtual call) 

below is the method used to open a virtual out call. 
int outgoing_vcall( ACU_PORT_ID port, int *handle ) 

{ 

 int err; 

 

 struct feature_out_xparms outgoing_param; 

  

 INIT_ACU_CL_STRUCT( &outgoing_param ); 

 

 outgoing_param.net = port; 

 outgoing_param.ts = -1; 

 outgoing_param.cnf = CNF_TSVIRTUAL; 

 

 outgoing_param.sending_complete = 1; 

  

 strcpy( outgoing_param.destination_addr, DEST_ADDR ); 

 strcpy( outgoing_param.originating_addr, ORIG_ADDR ); 

 outgoing_param.feature_information = FEATURE_VIRTUAL; 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 40 

 

 err = call_feature_openout( &outgoing_param ); 

 *handle = outgoing_param.handle; 

  

 return err; 

} 

The timeslot is equal to -1 and the cnf flag is set for virtual (CNF_TSVIRTUAL), apart 

from these field, the rest is standard.  We have also set the feature_information 

field to FEATURE_VIRTUAL, now if call details is done on a handle of a virtual call, 

the feature_information field of the details structure will return FEATURE_VIRTUAL, 

this way you can tell if the call is virtual or not. 

The CNF_TSVIRTUAL option for the cnf flag is supported for SIP. When this option 

is set, a virtual SIP outgoing call is returned by the function. The URI supplied as 
the destination_addr should refer to the target of a transfer operation. The call 

can be subsequently used as handlec in call_transfer. A call created with this 

option emits no signalling and raises only the EV_IDLE event, after which the call 

may be released. 

• CNF_RAW_MSG (ISUP only: enable reception of raw messages) 

When this switch is set, incoming call control messages become available via 
FEATURE_RAW_MSG.   The extended event EV_EXT_RAW_MSG will be generated if call 

control messages were not previously queued.  

sending_complete (not supported by IP telephony) 

Is a Boolean value, that indicates if the number provided in the destination_addr field 

is the complete number.  

• Overlap sending 
sending_complete = 0; 

Indicates that there may be more destination digits to follow, for example by calling 
the call_send_overlap() function. 

• En-bloc sending 
sending_complete = 1; 

Indicates that there will be no more destination digits, all digits have been provided. 
The state of sending_complete will have different effects depending upon the protocol 

in use. If the protocol does not support sending_complete then the Boolean will be 

ignored. 

destination_addr  

Input character buffer contains a null terminated string of IA5 digits. This field can be: 

• The whole of the number to be dialled (en bloc). 

• Part of the number to be dialled (overlap sending, not supported for IP 
telephony). 

• Empty, indicating no digits provided (overlap sending, not supported for IP 
telephony). 

For IP Telephony, URI addressing may also be used.  A URI contains the name of 
the scheme being used (<scheme>) followed by a colon and then a string (the 

<scheme-specific-part>) whose interpretation depends on the scheme. 

It must be noted that if the address supplied does not conform exactly to the URI 
format, for example the <scheme>: section missing, the IP protocol will try to 

determine what has been entered. 

For H.323 the supported schemes are h323: (H.323 URI), h323id: (H.323 ID), tel: 
(E.164 number), mailto: (email address) and http: (web URL). 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 41 

For SIP the destination addr can be either:  

• a valid SIP uri e.g. sip:user@1.2.3.4, sip:gateway.company. 

• a numeric string e.g. 1234 that will be converted to sip:1234@proxy by the 
service. This string will form of the basis of the SIP To: header. 

• a SIP call over TCP of the form <sip:user@host;transport=tcp>. Note that the <>s 
are required to correctly embed the transport=tcp as a URI, and NOT as a header 
parameter. 

originating_addr 

The input character buffer originating_addr can be supplied with a null terminated 

string of IA5 digits. This string represents the originating subscriber number. This 
string will be passed to the signalling system when the outgoing call is made. This 
provides for originating_addr to be specified on a per call basis. 

For IP Telephony, URI addressing may also be used.  A URI contains the name of 
the scheme being used (<scheme>) followed by a colon and then a string (the 

<scheme-specific-part>) whose interpretation depends on the scheme. 

If the address supplied does not conform exactly to the URI format, for example the 
<scheme>: section missing, the IP service will try to determine what has been 

entered. 

For SIP this is optional, however if supplied by the user must be of similar to the 
destination_addr. This string will form the basis of the SIP From: header. 

NOTE 

In the DASS signaling system, originating_addr may contain an ASCII 

string of extension number digits. 

 

app_context_token  

The app_context_token field is a user-defined token value to be associated with the 

handle. 

queue_id 

The event queue to which events for this call should be sent. This must be either a 
unique event queue identity as returned by acu_allocate_event_queue() or zero to 

denote the default call event queue for the port that this call is made on. 

unique_xparms 

The input parameter unique_xparms is a union that provides extensions required by 

specific signalling systems. The union will vary depending upon the signalling system 
supported by the device driver and Aculab card. Each of the unions is described in 
chapter 8 which include: 

Unique_xparms for Q931 

Unique_xparms for DASS2 

Unique_xparms for DPNSS 

Unique_xparms for CAS 

Unique_xparms for ISUP/SS7 

Unique_xparms for IPtel 

Return values 
handle  

When requesting to make a call, for example, by using call_openout(), the driver 

returns a unique call identifier value (non zero) in the handle field. This unique call 
identifier value must be used for all subsequent operations relating to the call. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 42 

4.19 call_openin() - Open for incoming call 
This function allows an application to initiate a wait for an incoming call. The function 
registers the incoming call requirement with the device driver. If the driver is satisfied 
with the calling parameters, it will return a unique call identifier, the call handle for that 
call. 

Synopsis 
ACU_ERR call_openin(IN_XPARMS *indetailsp); 

 

typedef struct in_xparms 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_CALL_HANDLE  handle;   /* OUT */ 

  ACU_PORT_ID   net;    /* IN */ 

  ACU_INT    ts;     /* IN */ 

  ACU_INT    cnf;    /* IN */ 

  ACU_EVENT_QUEUE  queue_id;   /* IN */ 

  ACU_ACT    app_context_token; /* IN */ 

  union uniquex   unique_xparms;  /* IN */ 

} IN_XPARMS; 

See section 8 for further details on using uniquex. 

Input parameters 

The call_openin() function takes a pointer indetailsp, to a structure,IN_PARMS. The 

structure must be initialised before invoking the function, (see section 2.2). 

net  

Specifies the port_id on the Aculab card on which the call is to be made, as returned 

from call_open_port(). 

Ts 

NOTE 

For IP Telephony the ts field must be set to –1 for any timeslot.  The actual 
timeslot on which the call is proceeding can be identified by calling the 
call_details() function.  The timeslot will be valid as soon as the 
EV_INCOMING_CALL_DET event is generated. 

 

The ts field is used to specify the timeslot on which the incoming call will be received. 

There are three possible modes for this input parameter: 

1. Exclusive timeslot 

The ts field must contain the number of a valid timeslot on which the call will be 

received. Valid and barred timeslots can be obtained from validvector, returned 

by the call_port_info() function. 

struct in_xparms inxp; 

inxp.ts = timeslot; 

The device driver will wait for any incoming call on the ‘exclusive’ timeslot 
provided. If, during establishment of an incoming call, the network provides a 
timeslot that does not match the ‘exclusive’ timeslot provided then the call will be 
discontinued. 

2. Preferred timeslot 

The ts field must contain the number of a valid timeslot on which the call will be 

received. Valid and barred timeslots can be obtained from validvector, returned 

by the call_port_info() function. The CNF_TSPREFER configuration switch must 

be set in the cnf input parameter. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 43 

struct in_xparms inxp; 

inxp.cnf = CNF_TSPREFER; 

inxp.ts = timeslot; 

The device driver will wait for any incoming call on the ‘preferred’ timeslot 

provided. If during establishment of an incoming call the network provides a 
timeslot that does not match the ‘preferred’ timeslot provided then the call will be 
allowed to continue. 

The actual timeslot on which the call is proceeding may differ from that provided 
but can be ascertained by calling the call_details() function. 

3. Any timeslot 

The ts field must contain a value of -1. 

struct in_xparms inxp; 

inxp.ts = -1; 

The device driver will wait for an incoming call on any timeslot. The actual 
timeslot on which the call is proceeding can be ascertained by calling the 
call_details() function. 

4. Any slot map or timeslot 

To open an incoming call to receive slot map calls on Q.931 signalling systems 
that support slot maps the timeslot (ts) field should be set to USE_SLOTMAP –3. The 

actual timeslot or slot map on which the call is proceeding can be ascertained by 
calling the call_details() function. Timeslots calls will also be detected in this 

mode. Slot map calls are currently supported on ETS300 (EuroISDN). 

 

cnf  

NOTE 

For H.323 only CNF_REM_DISC is supported. 

 

NOTE 

For SIP the cnf flag is ignored 

 

Is used to request additional functionality from the device driver. By ‘OR’ing in 
configuration switches prior to invoking the function the device driver will modify its 
behaviour depending upon the switches set, on a per call basis. The configuration 
switches currently supported are: 

• CNF_REM_DISC (remote disconnect) 

This switch controls the driver’s response to a ‘far end’ disconnect. Without the 
configuration switch, the driver will automatically respond to a ‘far end’ disconnect 
by releasing the call, the call state going to CS_IDLE. 
 

This method of working is compatible with all previous releases of the device 
driver. 

When the configuration switch is set and a ‘far end’ disconnect occurs, the 

event EV_REMOTE_DISCONNECT will be returned by the device driver.  

The application may now ‘tidy-up’ any resources before finally disconnecting the 
call using the call_disconnect()function. 

This has two effects that may be useful: 

a) Holds the channel until the system is ready to release the channel for further 
calls. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 44 

b) Retains any incoming call progress tones on the channel until released. 

• CNF_CALL_CHARGE (call charging) 

This switch controls advice of charging. Without the configuration switch the 
driver will neither return any call charging information nor return the 
EV_CALL_CHARGE event to the application.  
 

If the application wishes to obtain charging information, it should set this switch 
and either call the call_get_charge() function regularly or expect the driver will 

return the EV_CALL_CHARGE event to the application indicating that new information 

has arrived. 

• CNF_TSPREFER (preferred timeslot) 

This switch controls how the timeslot parameter ts should be interpreted. See 

above on preferred timeslot for further information. 

• CNF_TSVIRTUAL (virtual call) 

This switch opens the incoming side for a virtual call should be be used like this: 

int incoming_vcall( ACU_PORT_ID port, int *handle ) 

{ 

 int err; 

 

 struct in_xparms incoming_param; 

  

 INIT_ACU_CL_STRUCT( &incoming_param ); 

 

 incoming_param.net = port; 

 incoming_param.ts = -1; 

 incoming_param.cnf = CNF_TSVIRTUAL; 

 

 err = call_openin(&incoming_param); 

 *handle = incoing_param.handle; 

 

 return err; 

} 

The timeslot is equal to -1 and the cnf flag is set for virtual (CNF_TSVIRTUAL), apart 

from these field, the rest is standard. 

• CNF_RAW_MSG (ISUP 6.5.0 or later only: enable reception of raw messages) 

When this switch is set, incoming call control messages become available via 
FEATURE_RAW_MSG.   The extended event EV_EXT_RAW_MSG will be generated if call 

control messages were not previously queued. 

• CNF_CALL_COLLECT  (Currently only ISUP 6.6.0 or later) 

This switch controls the behaviour of the driver when a call arrives with a "collect 
call request" parameter coded to indicate, "collect call requested". If the switch is 
set, an incoming call that has invoked an operator service to request that a call 
be charged to a called party will be handled normally.   If the switch is not set, an 
incoming reverse-charge call will be rejected. This switch defaults to not set.   
Refer to the description of the collect_call_request_ind member of 

unique_xparms to discriminate between normal and reverse-charge calls. 

queue_id 

The event queue to which events for this call should be sent. This must be either a 
unique event queue identity as returned by acu_allocate_event_queue() or zero to 

denote the default call event queue for the port that this call is made on.. 

app_context_token  

The app_context_token field is for a user-defined token value to be associated with the handle. 

unique_xparms 

The input parameter unique_xparms is a union that provides extensions required by 

specific signalling systems. The union will vary depending upon the signalling system 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 45 

supported by the device driver and Aculab card. See the unique_xparms section for 
further details. 

Return values 
handle  

If successful, the value in the handle field will contain a unique call identifier. This 

value must be used for all subsequent operations relating to this call. The call handle 
supplied by the driver will always be non-zero.  

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 46 

4.20 call_send_overlap() - Sending overlap digits 
This function may be used to send the destination address of an outgoing call one or 
more digits at a time. The function may also be used any time that a valid outgoing 
call handle is available and the state of the handle is EV_WAIT_FOR_OUTGOING. The 

outgoing call handle would have been obtained from the call_openout() function. 

NOTE 

Not supported for IP telephony or ANSI ISUP. 

Synopsis 
ACU_ERR call_send_overlap(OVERLAP_XPARMS *overlapp); 
 

typedef struct overlap_xparms 

{ 

  ACU_ULONG   size;      /* IN */ 

  ACU_CALL_HANDLE handle;     /* IN */ 

  ACU_INT   sending_complete;    /* IN */ 

  char    destination_addr[MAXNUM];  /* IN */ 

} OVERLAP_XPARMS; 

Input parameters 

The call_send_overlap() function takes a pointer overlapp, to a structure, 

OVERAP_XPARMS. The structure must be initialised before invoking the function, (see 

section 2.2). 

handle  

This unique call identifier value is used to identify the outgoing call to which the 
destination digits are to be sent. 

sending_complete  

Is a Boolean value, that indicates if the number provided in the destination_addr is 

the complete number. Set to 0 if more destination digits will follow, set to 1 if all the 
digits have been provided. 

The sending_complete field will have different effects depending upon the protocol in 

use. If the protocol does not support sending_complete then this field will be ignored. 

destination_addr 

The input character buffer destination_addr should contain a null terminated string of 

IA5 digits representing all or part of an ISDN destination subscriber number. 

This field can be: 

• The whole of the number to be dialed, (en bloc). 

• Part of the number to be dialed, (overlap sending). 

• Empty, indicating no digits provided, (overlap sending). 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

NOTE 

Depending upon the signaling system in use, this function may be subject 
to an inter-digit timeout. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 47 

4.21 call_event() - Get a call event 
This function is used to wait for call events to be returned that may have occurred on 
any incoming or outgoing call. The device driver issues an event when a change of 
state occurs.  

In the V6 driver, events are always queued.  Some events, especially EV_IDLE and 

EV_REMOTE_DISCONNECT can occur at any time, however, so it is advisable to ensure 

that applications can handle any event at any time.  It is very important that an 
application always clear up any resources associated with a call when it goes to the 
idle state. 

NOTE 

An application can only receive call events for calls it opened. 

Call handles are not interchangeable between applications. 

The global event model can be used in multiple applications 
simultaneously without them poaching events from each other. 

By default all calls are associated with a global call event queue.  This is 
the queue that is checked when call_event() is used in global mode.  
Associating a call with any other event queue will prevent events for that 
call from being reported using the global call event mode. 

 

Synopsis 
ACU_ERR call_event(STATE_XPARMS *eventp); 

 

typedef struct state_xparms  

{ 

  ACU_ULONG   size;   /* IN */ 

  ACU_CALL_HANDLE handle;   /* IN-OUT */ 

  ACU_LONG   state;   /* OUT */ 

  ACU_LONG   timeout;   /* IN */ 

  ACU_LONG   extended_state;  /* OUT */ 

  ACU_ACT   app_context_token; /* OUT */ 

  ACU_TOKEN   raw_msg_seq;  /* OUT */ 

} STATE_XPARMS; 

Input parameters 

The call_event() function takes a pointer, eventp, to a structure, STATE_XPARMS. The 

structure must be initialised before invoking the function, (see section 2.2). 

handle  

Must contain either zero or a valid call handle depending upon the mode of operation 
required of the call_event() function. 

This function has two modes of operation: 

• Global mode  
This mode must be used to receive call events from calls that are associated with 
the global call event queue (via the default call event queue for their respective 
port). To use this mode set handle to zero.  

• Handle mode 
This mode must be used for calls that are associated with an event queue 
previously created by calling acu_allocate_event_queue(). Prior to calling this 

function the application should wait on the event queue and then set handle to 

the call handle retrieved by calling acu_get_event_from_event_queue(). 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 48 

timeout  

Specifies the mode of operation of the function and has the following values: 

• 0 - The driver will return event information immediately to the application (polling). 

• +ve - A positive value specifies a time in milliseconds that the application will wait 
for an event before returning. 

• -1 - The function will block until an event occurs in the driver or will return 
immediately if an event has occurred since the function was last invoked 
(blocking). If no event occurs then the process will block forever. To wake up a 
process blocked in the API a multi-tasking system may use the 
call_disconnect() function with the appropriate handle. 

Return values 
handle  

The handle field will contain zero if there are no events. Otherwise handle will contain 

the call handle of the call on which the event occurred. The handle value may be 

directly used in functions that require a handle as an input parameter. 

state  

The state field will only be valid when handle contains a valid handle (non-zero) and 

will contain the current state of the call. 

NOTE 

It is possible for a number of similar events to be consolidated into a 
single event notification should an application be slow to process its 
event queue. This is done where a state indicates additional information is 
available such as EV_DETAILS, EV_NOTIFY, and EV_CALL_CHARGE. 

 

• EV_WAIT_FOR_INCOMING 

Waiting for incoming call. The driver is waiting for an incoming call on this handle. 

• EV_INCOMING_CALL_DET 

An incoming call has arrived. An incoming call has been detected on this call 
handle. 

• EV_CALL_CONNECTED 

A call is connected. The driver has connected a call through to the application. 

• EV_WAIT_FOR_OUTGOING 

An outgoing call is being made. The application has requested that an outgoing 
call be made and the driver is proceeding with the request. 

• EV_DETAILS (EV_INCOMING_DETAILS) 

Incoming/outgoing call details. Additional incoming or outgoing call details are 
available in the driver. The application may use the call_details() function to 

retrieve the information. 

For incoming calls, an EV_DETAILS event occurs whenever new information has 

arrived. This may be additional DDI or CLI digits available in the 
destination_addr or originating_addr fields returned by the call_details() 

function. 

For outgoing calls, an EV_DETAILS event occurs as soon as the device driver 

knows the outgoing timeslot. This allows for the earliest connection of the speech 
channels. The timeslot value can be recovered by use of the call_details() 

function. 

• EV_OUTGOING_RINGING 

Far end ringing. The outgoing call requested by the application has terminated on 
a subscriber. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 49 

• EV_REMOTE_DISCONNECT 

The EV_REMOTE_DISCONNECT event will be returned, (if the CNF_REM_DISC option was 

set), whenever the far end disconnects the call. This event may occur at any time 
during a call. The normal response to this event would be to disconnect the call 
using the call_disconnect()function. 

• EV_WAIT_FOR_ACCEPT 

The EV_WAIT_FOR_ACCEPT event will be returned in response to the 

call_incoming_ringing() function to indicate that ringing is in progress. The time 

between function and event is undefined as some tone based signaling systems 
may take a few seconds to send the ring tone. The application should respond 
with the call_accept() function after receiving this event. 

• EV_CALL_CHARGE 

The EV_CALL_CHARGE event will be returned (if the CNF_CALL_CHARGE option was 

set), whenever the device driver receives new call charge information. The 
information type, that is meter pulse or charge string, may be ascertained by use 
of the call_get_charge() function. 

• EV_IDLE 

The channel is idle, The call has been terminated. The application must return 
the handle to the driver using the call_release() function. 

• EV_HOLD 

The EV_HOLD event will be received in when a call enters the call hold state in 

response to a call_hold() request. 

• EV_HOLD_REJECT 

The EV_HOLD_REJECT event will be received in response to a call_hold() if the 

request was rejected by the network. 

• EV_TRANSFER_REJECT 

The EV_TRANSFER_REJECT event will be received if a call_transfer() request has 

been rejected. 

• EV_RECONNECT_REJECT  

The EV_RECONNECT_REJECT event will be received if a call_reconnect() request 

has been rejected. 

• EV_NOTIFY 

The EV_NOTIFY event is received when information is received pertaining to a call 

(such as user suspended). This information can be obtained by examining the 
notify_indicator field from the sig_q931 structure returned by the 

call_details() function.  

NOTE 

The EV_NOTIFY event is supported on Q.931 protocols only. 

 

• EV_EXTENDED 

Indicates that an extended event has been received.  See the description of the 
extended_state field for further information on extended events 

• EV_OUTGOING_PROCEEDING 

The called party has all the digits necessary to proceed with the call. 
 

NOTE 

The EV_OUTGOING_PROCEEDING event is supported on Q.931 and ISUP 
protocols only. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 50 

• EV_PROGRESS 

A call has received a PROGRESS (protocol) message. A call on ISUP that receives a 

PROGRESS message may alternatively receive EV_OUTGOING_RINGING depending on 

the context of the call and contents of the PROGRESS message.  

NOTE 

The EV_PROGRESS event is supported on Q.931, ISUP, H.323 and SIP 
protocols. 

EV_EMERGENCY_CONNECT 

Indicates an incoming call, made in an emergency, has been automatically 
connected. The application should respond as it would for the 
EV_CALL_CONNECTED state. 

NOTE 

The EV_EMERGENCY_CONNECT is supported by certain CAS protocols 
only. Please see the CAS firmware release notes to find out which 
protocols it is applicable to. 

EV_TEST_CONNECT 

Indicates an incoming call, made to establish if the line is operational, has been 
automatically connected. The application should do nothing in response except wait 
for the calling party to initiate clearing. 

NOTE 

The EV_TEST_CONNECT is supported by certain CAS protocols only. 
Please see the CAS firmware release notes to find out which protocols it is 
applicable to. 

 

extended_state  

A value in the state field, EV_EXTENDED, allows an indication of the availability of 

feature information. This indicates the availability of information in the extended_state 

field.  

Possible values for extended_state are defined in the header file under Extended 

Events. For example: 

• EV_EXT_FACILITY  

Indicates that a FACILITY message has arrived. A call to call_feature_details() 

will retrieve the information. 

• EV_EXT_UUI_PENDING  

Indicates that User-to-User data is waiting to be collected. Data will be in a 
queue, that must be emptied upon receiving this event. Empty the queue by 
calling call_feature_details() with details.feature.uui.command set to 

UU_GET_PENDING_DATA_CMD. Repeat the call to this function until the 

details.feature.uui.length field returned is 0 (i.e. no more data). 

• EV_EXT_UUI_CONGESTED  

Indicates that User-to-User data has been lost due to throughput violation or 
other error. No further User to User messages should be sent until an 
EV_EXT_UNCONGESTED event has been received 

• EV_EXT_UUI_UNCONGESTED  

Indicates that it is once more possible to transmit User to User. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 51 

• EV_EXT_UUS_SERVICE_REQUEST  

Occurs during active call phase if a FACILITY message is received indicating a 

User to User service 3 request. The reply to this request also generates this 
event. 

• EV_EXT_HOLD_REQUEST  

Indicates that a request to put a call on hold has arrived.  

• EV_EXT_RECONNECT_REQUEST  

Indicates that a request to ‘reconnect’ (or retrieve) call on hold has arrived.  

• EV_EXT_TRANSFER_INFORMATION  

Indicates that information has arrived pertaining to call transfer.  

• EV_EXT_DIVERSION 

Indicates that a call diversion message has arrived. A call to 
call_feature_details() can be used to retrieve the information.  

 

NOTE 

EV_EXT_DIVERSION will be seen after a call_openout() and before any 
EV_CALL_CONNECTED event. 

 

• EV_EXT_RAW_DATA  

Indicates that a RAW_DATA message has arrived. A call to call_feature_details() 

will retrieve the information.  

NOTE 

An application must be prepared for any event to be returned by the driver 
and not expect the events to occur in a particular order. Particularly, the 
EV_REMOTE_DISCONNECT and EV_IDLE events may be received at any 
time and the application must be prepared for this. Applications should be 
designed with this in mind 

 

• EV_EXT_NON_STANDARD_DATA  

Indicates that H.323 non-standard data has arrived.  A call to 
call_feature_details() can be used to retrieve the information.  This event is 

only applicable to the H.323 protocol. 

• EV_EXT_RAW_MSG (ISUP only) 

Indicates that received call control messages are available for retrieval via 
FEATURE_RAW_MSG.   call_feature_details() can be used to retrieve the 

information. 

NOTE 

EV_EXT_RAW_MSG is only returned by the driver when a call’s queue of 
raw messages was previously empty.   The event will not  be returned for a 
call if a message is received when earlier messages still await collection. 

 

• EV_EXT_FEATURE_ACTIVATION 

Indicates a call control message containing a ‘Feature Activation Information 
Identifier’ has been received. The contents of the identifier is retrieved using 
call_feature_details() and specifying the FEATURE_FEATURE_ACTIVATION feature 

type. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 52 

• EV_EXT_INFORMATION_REQUEST 

Indicates a call control message containing a ‘Information Request’ Information 
Identifier has been received. The contents of the identifier is retrieved using 
call_feature_details() and specifying the FEATURE_INFORMATION_REQUEST feature 

type. 

• EV_EXT_MEDIA_CHANGE_REQUEST (H323 only) 

Indicates that a request to change the type of media on the call has been 
received. call_media_details() can be used to retrieve the information about 

this request and call_change_media_accept() or call_change_media_reject() 

should be used to accept or reject this proposed change. 

• EV_EXT_MEDIA_CHANGE_ACCEPT (H323 only) 

Indicates that a request to change the type of media on the call has been 
accepted by the remote end. 

• EV_EXT_MEDIA_CHANGE_REJECT (H323 only) 

Indicates that a request to change the type of media on the call has been rejected 
by the remote end. 

• EV_EXT_MEDIA_CHANGE_TIMEOUT (H323 only) 

Indicates that a request to change the type of media on the call has timed out due 
to not having had a response from the remote end. 

• EV_EXT_MEDIA_CHANGE_COMPLETED (H323 only) 

Indicates that a request to change the type of media on the call has completed 
and the original media connection has ended. 

app_context_token 

The app_context_token field contains the value that was associated with the handle 

when the call was opened using call_openin() or call_openout(). 

raw_msg_seq (ISUP only) 

This field contains a sequence number that can be paired with the value provided by 
the field of the same name in struct raw_msg_xparms.   If a call control event occurs 

as a result of a received network message, an application can use this field to match 
the call control event with the raw message retrieved with call_feature_details().   

If the call control event did not occur as a result of a network message (e.g. a 
timeout), then the raw_msg_seq field will contain the value zero. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 53 

4.22 call_details() - Get call details 
This function is used to gather the details of a current call, either incoming or 
outgoing, connected through the device driver. 

Synopsis 
ACU_ERR call_details(DETAIL_XPARMS *detailsp); 
 

typedef struct detail_xparms 

{ 

  ACU_ULONG   size;     /* IN */ 

  ACU_CALL_HANDLE handle;     /* IN */ 

  ACU_LONG   timeout;     /* OUT */ 

  ACU_INT   valid;     /* OUT */ 

  ACU_INT   stream;     /* OUT */ 

  ACU_INT   ts;      /* OUT */ 

  ACU_INT   calltype;     /* OUT */ 

  ACU_INT   sending_complete;    /* OUT */ 

  char    destination_addr[MAXADDR];  /* OUT */ 

  char    originating_addr[MAXADDR];  /* OUT */ 

  char    connected_addr[MAXADDR];  /* OUT */ 

  ACU_COMPAT_ACT  old_app_context_token;   /* OUT */ 

  ACU_ULONG       feature_information;   /* OUT */ 

  ACU_ACT         app_context_token;   /* OUT */ 

 ... padding for backwards compatibility ... 

  union uniquex   unique_xparms;    /* OUT */ 

} DETAIL_XPARMS; 

 

See section 8 for further details on using uniquex. 

Input parameters 

The call_details() function takes a pointer, detailsp, to a structure, DETAIL_XPARMS. 

The structure must be initialised before invoking the function, (see section 2.2). 

handle  

The handle field is used to identify the call that is to be examined. 

Return values 
timeout  

Not used in V6, but retained in structure for historic reasons 

valid  

Is a Boolean value, that indicates whether the details returned are valid or not. 

0 details invalid – indicates that there is no valid information in the 
structure  

1 details valid – indicates that there is some valid information in the 
structure 

 

NOTE 

When the valid field indicates that there is some information in the 
structure, this does not mean that all information has been received for 
this call.  
stream. 

 

Will contain the network stream number on which the call was received. For a full 
description of the stream numbering on Aculab cards consult the Switch Driver API 
Guide. 

ts  

Will contain the timeslot associated with the call. If a slot map is being used then ts 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 54 

will contain USE_SLOTMAP (–3). The slot map will then be in the slotmap field of the 

sig_q931 structure. 

 

NOTE 

For IP telephony, As there is no physical timeslot for IP telephony calls, ts 
has no meaning. 

 

calltype  

Will indicate the direction of the call in progress and will have the values: 

OUTGOING:  for outgoing call 

INCOMING:  for incoming call 

sending_complete (not supported for IP telephony) 

Is a Boolean, that indicates if the number provided in the destination_addr field is the 

complete number. 

The sending_complete field may not be supported by all protocols. 

sending_complete == 0 

Indicates that there may be more destination digits to follow 

sending_complete == 1 

Indicates that there will be no more destination digits, all digits have been received. 

(In Q931, this is an appropriate point in which to use the call_proceeding() API call) 

originating_addr and destination_addr  

Will contain the calling line identity (CLI) and direct dial in (DDI) digits respectively if 
received by the signalling system. 

Additional digits may be returned in the destination_addr field if the calling party 

uses overlaps sending. If this is the case then the sending_complete field (if 

supported) should be used to determine when all digits have arrived. If the application 
requires more digits, the call_details() function may be reused until all the 

application is satisfied that all extension number digits are available. 

connected_addr  

Will contain the actual number of the party connected to a call. This may differ from 
the destination_addr field due to services such as call redirection. 

feature_information  

Contains an indication of whether any supplementary service information has been 
received and if so what type of information has been received. A separate API call, 
call_feature_ details(), must be used to retrieve this information.  

This field can have any combination of the following values defined in the header file 
under Feature Indications. 

app_context_token 

The app_context_token field contains the value that was associated with the handle 

when the call was opened using call_openin() or call_openout(). 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

unique_xparms 

The input parameter unique_xparms is a union that provides extensions required by 

specific signalling systems. The union will vary depending upon the signalling system 
supported by the device driver and Aculab card. Each of the unions is described in 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 55 

section 8. 

 

NOTE 

Be aware that the details returned by this function are not historical.  In an 
application that is slow to process its event queue a number of 
EV_DETAILS events may be queued.  The first call to call_details() will 
return all of the updated details signaled by the remaining EV_DETAILS 
events in the event queue. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 56 

4.23 call_incoming_ringing() - send incoming ringing 
This function may be used to send the ringing message to the network causing the 
caller to hear the ring tone. This function may be used after an incoming call has 
been detected but before the call has been accepted. Use of the function will stop 
further call details, such as DDI digits, from being received. To allow enhancements 
to the driver API this call will in turn call xcall_incoming_ringing() which may be 

called directly. 

Synopsis 
ACU_ERR call_incoming_ringing(int handle); 

ACU_ERR xcall_incoming_ringing(INCOMING_RINGING_XPARMS *ringingp); 

typedef struct incoming_ringing_xparms 

{ 

  ACU_ULONG   size;   /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

  union uniqueu   unique_xparms;  /* IN */ 

} INCOMING_RINGING_XPARMS; 

 

union uniqueu 

{ 

  /* see protocol specific structures in section 8 */ 

} unique_xparms; 

 

Definitions for the unique_xparms parameters are detailed in section 8. 

Q931 specific information 
  struct 

  { 

    struct 

    { 

      char   ie[MAXPROGRESS]; 

      char   last_msg; 

    } progress_indicator; 

    struct 

    { 

      char   ie[MAXDISPLAY]; 

      char   last_msg; 

    } display; 

  } sig_931; 

ISUP/SS7 Specific Information 
  struct 

  { 

    struct 

    { 

      char   ie[MAXPROGRESS]; 

      char   last_msg; 

    } progress_indicator; 

    ACU_CHAR   charge_ind; 

    ACU_CHAR   in_band; 

    ACU_UCHAR  dest_category; 

    struct  

    { 

      ACU_UCHAR  valid; 

      ACU_UCHAR  value; 

    } isdn_access_ind; 

    struct  

    { 

      ACU_UCHAR  valid; 

      ACU_UCHAR  value; 

    } isdn_userpart_ind; 

    struct  

    { 

      ACU_UCHAR  valid; 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 57 

      ACU_UCHAR  value; 

    } interworking_ind; 

  } sig_isup; 

IP telephony (iptel) Specific Information 
  struct 

  { 

    ACU_CHAR   destination_display_name; 

    ACU_CODEC  codecs[MAXCODECS]; 

    MEDIA_SETTINGS  media_settings; 

    union 

    { 

      struct 

      { 

        ACU_INT   send_early_media; 

        ACU_INT   use_183_response_for_early_media; 

        ACU_INT   send_reliable_provisional_response; 

        ACU_CHAR  contact_address[MAXADDR]; 

      } sig_sip; 

      struct 

      { 

        ACU_INT   h245_tunneling; 

        ACU_INT   faststart; 

        ACU_INT   early_h245; 

        ACU_INT   progress_location 

        ACU_INT   progress_description; 

      } sig_h323; 

    } protocol_specific; 

  } sig_iptel; 

Input parameters 
call_incoming_ringing() 

The input parameter handle identifies the call that will send the incoming ringing 

message. 

xcall_incoming_ringing() 

The xcall_incoming_ringing() function takes a pointer, ringingp, to a structure, 

INCOMING_RINGING_XPARMS. The structure must be initialised before invoking the 

function. 

handle  

The handle field identifies the call that will send the incoming ringing message. 

unique_xparms  

See unique_xparms Q931 for sig_q931 definitions 

See unique_xparms ISUP for sig_isup definitions 

See unique_xparms IP telephony for sig_iptel definitions 

The following unique parameters are not detailed in unique_xparms and are specific to 

incoming_ringing_xparms: 

Unique parameters for SIP 

For SIP, the trivial use of call_incoming_ringing() or xcall_incoming_ringing() with 

no parameters set will result in a 180 message with no media offer being sent to the 
caller. However, this function may be used to initiate early media in the call if the 
send_early_media is set. In this case the codecs and media_settings elements may 

be used to configure the audio characteristics of the call. 

send_early_media 

To send early media in the xcall_incoming_ringing() then set this flag to 1.  By 

default, set to 0, early media is OFF for call_incoming_ringing(), as a SIP ringing 

message is a 180 and 180s typically do not have SDP bodies (the protocol that 
negotiates early media). Note additional flags for xcall_incoming_ringing() are not 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 58 

valid, unless this flag is set. 

send_reliable_provisional_response 

By default, set to 0, 18* messages are sent unreliably.  Setting this flag to 1 forces 
them to be sent reliably. ERR_PARM is returned if the caller does not support the 

protocol extension required for reliable provisional responses. 

use_183_response_for_early_media 

Setting this will make call_incoming_ringing() send a 183 message instead of a 

180.  This to all intents and purposes will make the call look like call_progress().  It 

is provided to support possible interoperability issues. 

contact_address 

Used to build a non-default contact header.  For chassis containing only one NIC card 
this field should be left blank.  It will be in URI address format. 

URIs are a well defined international standard for supporting multiple 
addressing types.  They take the form: 

 <scheme>:<scheme-specific-part> 

Examples of URIs could be: 

 sip:joe.bloggs@aculab.com 

 h323:joe.bloggs@aculab.com 

 mailto:joe.bloggs@aculab.com 

 http://www.aculab.com 

 tel:+441315610104 

 

NOTE 

The SIP service currently only supports the sip: uri. 

 

IANA’s (Internet Assigned Numbers Authority) current register of registered 
schemes can be found at http://www.iana.org/assignments/uri-schemes. 

If the address supplied does not conform exactly to the URI format, for 
example, <scheme>: section missing, the IP protocol will try to determine 

what has been entered. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

NOTE 

use of the function will result in the EV_WAIT_FOR_ACCEPT state, 
whereupon call_accept() will connect the call.  The application can 
therefore control the number of ring cadences by delaying the 
call_accept() function. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 59 

4.24 call_accept() - Accept incoming call 
This function may be used to accept the call after an incoming call has been 
indicated. This function would typically be used once the application had determined 
that the DDI digits received by the call_details() function are correct and can be 

supported. To allow enhancements to the driver API this call will in turn call 
xcall_accept(), which may be called directly. 

Synopsis 
ACU_ERR call_accept(int handle); 

 

ACU_ERR xcall_accept(ACCEPT_XPARMS *acceptp); 

 

typedef struct accept_xparms 

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

  union uniqueu  unique_xparms;  /* IN */ 

} ACCEPT_XPARMS; 

 

      union uniqueu 

      { 

        /* see protocol specific structures */ 

      } unique_xparms; 
 

Definitions for the unique xparms parameters are detailed in section 8. 

Q931 Specific Information 
    struct 

    { 

      struct 

      { 

        ACU_UCHAR  ie[MAXPROGRESS]; 

        ACU_UCHAR  last_msg; 

      } progress_indicator; 

      struct 

      { 

        ACU_UCHAR  ie[MAXLOLAYER]; 

        ACU_UCHAR  last_msg; 

      } lolayer; 

      struct 

      { 

        ACU_UCHAR  ie[MAXDISPLAY]; 

        ACU_UCHAR  last_msg; 

      } display; 

      char    connected_addr[MAXNUM] 

      ACU_UCHAR   conn_numbering_type; 

      ACU_UCHAR   conn_numbering_plan; 

      ACU_UCHAR   conn_numbering_presentation; 

      ACU_UCHAR   conn_numbering_screening; 

    } sig_q931; 

ISUP/SS7 specific Information 
    struct 

    { 

      struct 

      { 

        ACU_UCHAR  ie[MAXPROGRESS]; 

        ACU_UCHAR  last_msg; 

      } progress_indicator; 

      struct 

      { 

        ACU_UCHAR  ie[MAXLOLAYER]; 

        ACU_UCHAR  last_msg; 

      } lolayer; 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 60 

      char    connected_addr[MAXNUM] 

      ACU_UCHAR   conn_nature_of_address; 

      ACU_UCHAR   conn_numbering_plan; 

      ACU_UCHAR   conn_numbering_presentation; 

      ACU_UCHAR   conn_numbering_screening; 

      ACU_CHAR   charge_ind; 

      ACU_UCHAR   dest_category; 

      struct  

      { 

        ACU_UCHAR  valid; 

        ACU_UCHAR  value; 

      } isdn_access_ind; 

      struct  

      { 

        ACU_UCHAR  valid; 

        ACU_UCHAR  value; 

      } isdn_userpart_ind; 

      struct  

      { 

        ACU_UCHAR  valid; 

        ACU_UCHAR  value; 

      } interworking_ind; 

    } sig_isup; 

IP telephony specific Information 
    struct  

    { 

      ACU_CHAR    destination_display_name[MAXDISPLAY]; 

      ACU_CHAR    originating_display_name[MAXDISPLAY]; 

      ACU_CODEC    codecs[MAXCODECS]; 

      MEDIA_SETTINGS   media_settings; 

      union protocol_union  protocol_specific; 

    } sig_iptel; 

 

Input parameters 
call_accept() 

The input parameter handle identifies the call that is to be accepted. 

xcall_accept() 

The xcall_accept() function takes a pointer, acceptp, to a structure,ACCEPT_XPARMS. 

The structure must be initialised before invoking the function. 

handle  

Identifies the call that is to be accepted. 

unique_xparms  

The input parameter unique_xparms is a union that provides extensions required by 

specific signalling systems. The union will vary depending upon the signalling system 
supported by the device driver and Aculab card. Each of the unions is described in 
chapter 8 which include: 

  Unique_xparms for Q931 

  Unique_xparms for ISUP/SS7 

  Unique_xparms for IP telephony 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 61 

4.25 call_getcause() - Get idle cause 
This function can be used to return the clearing cause when an incoming or outgoing 
call clears. The returned clearing cause will only be valid when the call state is either 
EV_IDLE or EV_REMOTE_DISCONNECT. To allow enhancements to the driver API this call 

will in turn call xcall_getcause() call, which may be called directly. 

Synopsis 
ACU_ERR call_getcause(CAUSE_XPARMS *causep); 

 

typedef struct cause_xparms 

{ 

  ACU_ULONG   size;  /* IN */ 

  ACU_CALL_HANDLE handle;   /* IN */ 

  ACU_INT   cause;   /* OUT */ 

  ACU_INT   raw;   /* OUT */ 

  ACU_INT   location;  /* OUT */ 

} CAUSE_XPARMS; 
 

ACU_ERR xcall_getcause(DISCONNECT_XPARMS *causep); 
 

struct disconnect_xparms 

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

  ACU_INT   cause;    /* OUT */ 

  union uniqueu   unique_xparms;  /* OUT */ 

} DISCONNECT_XPARMS; 

 

The structure of the disconnect_xparms is detailed in section 9. 

Input parameters 

call_getcause() 

The call_getcause() function takes a pointer, causep, to a structure,CAUSE_XPARMS.  

handle  

Is used to identify the call that is to be examined. 

Return values 
cause_xparms 

cause  

Will contain the ‘generic’ reason for the incoming or outgoing call going to the EV_IDLE 

or EV_REMOTE_DISCONNECT state and will be one of the standard set of LC_xxxx clearing 

causes.  

raw  

Will contain the network-supplied cause for the incoming or outgoing call going to the 
EV_IDLE or EV_REMOTE_DISCONNECT state and will be dependent upon the protocol in 

use 

location 

Allows the retrieval of the cause location for EuroISDN, QSIG and H.323. The 
possible values are: 

 L_USER     

 L_PRIV_NET_LOCAL_USER 

 L_PUB_NET_LOCAL_USER 

 L_TRANSIT_NET  

 L_PUB_NET_REMOTE_USER  

 L_PRIV_NET_REMOTE_USER 

 L_BEYOND_IW_POINT 

xcall_getcause() 

The xcall_getcause() function takes a pointer, causep, to a 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 62 

structure,DISCONNECT_XPARMS as detailed in section 9.  

On successful completion of call_getcause() or xcall_getcause(), a value of zero is 

returned; otherwise, a negative value will be returned indicating the type of error. 

Each signalling system will return a raw value containing the network supplied cause 

for the incoming or outgoing call going to the EV_IDLE or EV_REMOTE_DISCONNECT state 

and will be dependent upon the protocol in use. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 63 

4.26 call_disconnect() - Disconnect call 
This function can be used to disconnect an incoming or outgoing call currently routed 
through the driver. If the call_disconnect() function is successful, the driver will start 

the disconnect procedure and will return immediately to the calling process. When the 
call has been disconnected, the state will be EV_IDLE. The call_release() function 

must be used to give back the handle to the driver. To allow enhancements to the 
driver API this call will in turn call the xcall_disconnect() call, which may be called 

directly. 

Synopsis 
ACU_ERR call_disconnect(CAUSE_XPARMS *causep); 
 

typedef struct cause_xparms 

{ 

  ACU_ULONG    size;  /* IN*/ 

  ACU_CALL_HANDLE  handle;   /* IN*/ 

  ACU_INT    cause;   /* IN*/ 

  ACU_INT    raw;   /* IN*/ 

  ACU_INT    location;  /* IN*/ 

} CAUSE_XPARMS; 

 

ACU_ERR xcall_disconnect(DISCONNECT_XPARMS *causep); 

 

struct disconnect_xparms 

{ 

  ACU_ULONG   size;    /* IN*/ 

  ACU_CALL_HANDLE handle;    /* IN*/ 

  ACU_INT   cause;    /* IN*/ 

  union uniqueu   unique_xparms;  /* IN*/ 

} DISCONNECT_XPARMS; 

 

The structure of the disconnect_xparms is detailed in section 9. 

Input parameters 

call_disconnect() 

The call_disconnect() function takes a pointer, causep, to a structure,CAUSE_XPARMS. 

The structure must be initialised in the following way before invoking the function. 

handle  

Is used to identify the call that is to be disconnected. 

cause  

May be used to provide the device driver with the generic clearing cause for the call. 
The cause must one from the standard set of generic clearing causes. (See Appendix 
E for standard clearing causes). 

raw 

The raw field may be used to provide the protocol specific clearing cause.  raw must 

contain a value that is appropriate for the protocol in use. 

location 

Allows the setting of the cause location for EuroISDN, QSIG and H.323. The possible 
values are: 

 L_USER     

 L_PRIV_NET_LOCAL_USER 

 L_PUB_NET_LOCAL_USER 

 L_TRANSIT_NET  

 L_PUB_NET_REMOTE_USER  

 L_PRIV_NET_REMOTE_USER 

 L_BEYOND_IW_POINT 

With ISUP/SS7  the location value specified in the ss7 config file will be used. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 64 

If a user specified location value is required use the xcall_disconnect() function and 
specify the location value in the DISCONNECT_XPARMS unique_xparms structure. 

xcall_disconnect() 

This call allows the application to transmit extra information when disconnecting an 
incoming or outgoing call. The xcall_disconnect() function takes a pointer, causep, 

to a structure,DISCONNECT_XPARMS as detailed in section 9. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

NOTE 

If there is a call in progress when call_disconnect() is invoked, the driver 
will initiate the disconnect procedure and will immediately return control 
to the calling process. 

Determining use of cause and raw 

The device driver will determine which clearing cause to use, ie. Either cause or raw 

by the following: 

cause raw 

0 0 driver uses default clearing 

0 x driver uses raw cause 

x 0 driver uses generic cause 

x x driver uses raw cause 

Effects of CNF_REM_DISC on call clearing 

The CNF_REM_DISC ‘call time’ configuration switch may be used for incoming or 

outgoing calls to change the driver’s automatic response to a ‘far end’ clearing. 

default  

The driver will automatically respond to the remote disconnect and clear the call. The 
Application interface will go to the EV_IDLE state. 

This procedure maintains compatibility with previous versions of the device driver and 
ensures backward compatibility with existing applications. 

CNF_REM_DISC selected 

In this mode the driver does not automatically respond to the remote disconnect but 
issues the EV_REMOTE_DISCONNECT state to the application. 

This has two effects: 

1. The channel is held until the application is ready to release it. 

2. It retains any incoming call progress tones on the channel until released. 

On receipt of this state, the application should tidy up and use the call_disconnect() 

function when ready. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 65 

4.27 call_release() - Release call 
This function must be used to relinquish ownership of a call handle in response to call 
termination (EV_IDLE). If the call_release() function is successful, the driver will 

disconnect the call and the call handle will be closed. The handle may no longer be 
used by the application. To allow enhancements to the driver API this call will in turn 
call xcall_release(), which may be called directly. 

Synopsis 
ACU_ERR call_release(CAUSE_XPARMS *causep); 

typedef struct cause_xparms 

{ 

  ACU_ULONG    size;  /* IN */ 

  ACU_CALL_HANDLE  handle;   /* IN */ 

  ACU_INT    cause;   /* IN */ 

  ACU_INT    raw;   /* IN */ 

  ACU_INT    location;  /* IN */ 

} CAUSE_XPARMS; 

ACU_ERR xcall_release(DISCONNECT_XPARMS *causep); 

 

struct disconnect_xparms 

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

  ACU_INT   cause;    /* IN */ 

  union uniqueu  unique_xparms;  /* IN */ 

}  DISCONNECT_XPARMS; 

The structure of the DISCONNECT_XPARMS is detailed in section 9. 

Input parameters 

call_release() 

The call_release() function takes a pointer, causep, to a structure,CAUSE_XPARMS. The 

structure must be initialised in the following way before invoking the function. 

handle  

This is used to identify the call that is to be released. This call must have reached the 
EV_IDLE state prior to this API function being used.  

cause  

May be used to provide the device driver with the generic clearing cause for the call. 
The cause must contain one of the standard set of generic clearing causes (See 
appendix E for standard clearing causes).  

raw 

May be used to provide the protocol specific clearing cause. The input parameter raw 

must contain a value that is appropriate for the protocol in use.  

location 

Allows the retrieval of the cause location for EuroISDN, QSIG and H.323. The 
possible values are: 

 L_USER     

 L_PRIV_NET_LOCAL_USER 

 L_PUB_NET_LOCAL_USER 

 L_TRANSIT_NET  

 L_PUB_NET_REMOTE_USER  

 L_PRIV_NET_REMOTE_USER 

 L_BEYOND_IW_POINT 

xcall_release() 

This call allows the application to transmit extra information when relinquishing 
ownership of a call handle in response to call termination. The xcall_release() 

function takes a pointer, causep, to a structure,DISCONNECT_XPARMS as detailed in 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 66 

section 9. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

If there is a call in progress when call_release() is invoked, the calling process will 

block in the driver until the call has been disconnected by the driver. Control will then 
be returned to the application. This period is entirely dependent upon the network. 

For single threaded applications, this may be a problem. If there is a call in progress, 
a better procedure would be to use the following method: 

call_disconnect() 

 

 

wait for idle 

 

 

call_release() 

This method will disconnect the call but will not result in the application blocking in the 
device driver. This ensures that all resources associated with the call, i.e. the handle, 
are cleared. 

NOTE 

Calling call_release() while a call is in progress results in the application 
blocking the driver for a protocol determined time, which can be in excess 
of two minutes. 

Determining use of cause and raw 

The device driver will determine which clearing cause to use, i.e. either cause or raw 
by the following: 

cause raw 

0 0 driver uses default clearing 

0 x driver uses raw cause 

x 0 driver uses generic cause 

x x driver uses raw cause 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 67 

Advanced Call Control 

4.28 call_feature_openout() - Open for outgoing (with features) 
It is possible to transmit feature information in a call setup message. An enhanced 
version of call_openout() is needed to include extra parameters. 

Synopsis 
ACU_ERR call_feature_openout (FEATURE_OUT_XPARMS* feature_out); 

 

typedef struct feature_out_xparms  

{ 

  ACU_ULONG   size;      /* IN */ 

  ACU_CALL_HANDLE handle;      /* OUT */ 

  ACU_PORT_ID  net;      /* IN */ 

  ACU_INT   ts;       /* IN */ 

  ACU_INT   cnf;      /* IN */ 

  ACU_INT   sending_complete;   /* IN */ 

  char    destination_addr[MAXADDR]; /* IN */ 

  char    originating_addr[MAXADDR];  /* IN */ 

  ACU_ULONG   feature_information;   /* IN */ 

  ACU_INT   message_control;    /* IN */ 

  ACU_ACT   app_context_token;   /* IN */ 

  ACU_EVENT_QUEUE queue_id;     /* IN */ 

  union uniquex  unique_xparms;    /* IN */ 

  union feature_union feature;      /* IN */ 

} FEATURE_OUT_XPARMS; 
 

See section 8 for further details on using uniquex. 

See section 10 for details on using feature_union. 

Input parameters 

The call_feature_openout() structure takes a pointer, feature_out, to a 

structure,FEATURE_ OUT_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

net 

Specifies the port_id on the Aculab card on which the call is to be made, as returned 

from call_open_port(). 

ts 

Is used to specify the timeslot on which the call will be made. 

cnf 

NOTE 

For H.323 only CNF_REM_DISC is supported. 

 

Is used to request additional functionality from the device driver. By 'OR'ing in 
configuration switches prior to invoking the function the device driver will modify its 
behaviour (depending upon the switches set) on a per call basis. The configuration 
switches currently supported are: 

• CNF_REM_DISC (remote disconnect) 

This switch controls the drivers response to a 'far end' disconnect. Without the 

configuration switch, the driver will automatically respond to a 'far end' disconnect 
by releasing the call, the call state going to CS_IDLE.  

 
This method of working is compatible with all previous releases of the device 
driver. 
 

With the configuration switch set, when a 'far end' disconnect occurs, the state 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 68 

CS_REMOTE_DISCONNECT or event EV_REMOTE_DISCONNECT will be returned by the 

device driver. The application may now 'tidy up' any resources before finally 
disconnecting the call by using call_disconnect(). 
 

This has two effects that may be useful: 

• hold the channel until the system is ready to release the channel for further 
calls.  

• retain any incoming call progress tones on the channel until released.  

• CNF_CALL_CHARGE (call charge event) 

This switch controls advice of charging. Without the configuration switch, the 
driver will neither return call-charging information nor return the EV_CALL_CHARGE 

event to the application.  
 

If the application wishes to obtain charging information, the application should set 
this switch and then either call the call_get_charge () function regularly, or 

expect the driver to return the EV_CALL_CHARGE event to the application indicating 

that new information has arrived. 

• CNF_TSPREFER (preferred timeslot) 

This switch controls the way in which the timeslot parameter ts is interpreted. See 
the below on preferred timeslot for further information. 

• CNF_COMPLETE (digits complete) 

The functionality of CNF_COMPLETE has been superseded by the sending_complete 

parameter as detailed in the next section. 

• CNF_RAW_MSG (ISUP 6.5.0 or later only: enable reception of raw messages) 

When this switch is set, incoming call control messages become available via 
FEATURE_RAW_MSG.   The extended event EV_EXT_RAW_MSG will be generated if call 

control messages were not previously queued. 

sending_complete (not supported by H.323) 

Is a Boolean value that indicates if the number provided in the destination_addr field 

is the complete number. 

• Overlap sending 
sending_complete = 0; 

 

Indicates that there may be more destination digits to follow, for example by 
calling the call_send_overlap() function. 

• En-bloc sending 
sending_complete = 1; 

Indicates that there will be no more destination digits, all digits have been 
provided. The state of sending_complete will have different effects depending 

upon the protocol in use. If the protocol does not support sending_complete then 

the Boolean will be ignored. 

destination_addr  

The input character buffer contains a null terminated string of IA5 digits (0-9). This 
field can be: 

• The whole of the number to be dialed (en bloc). 

• Part of the number to be dialed (overlap sending, not supported for IP 
Telephony). 

• Empty, indicating no digits provided (overlap sending, not supported for IP 
Telephony). 

The digits supplied are copied, (not concatenated) to destination_addr. If, when 

initiating the outgoing call, the sending_complate parameter was set to 1, then the 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 69 

destination_addr field may contain a ‘!’ to indicate that the number is complete.  

For IP Telephony, URI addressing may also be used.  A URI contains the name of 
the scheme being used (<scheme>) followed by a colon and then a string (the 

<scheme-specific-part>) whose interpretation depends on the scheme. 

It must be noted that if the address supplied does not conform exactly to the URI 
format, for example the <scheme>: section missing, the IP service will try to 

determine what has been entered. 

originating_addr 

The input character buffer originating_addr can be supplied with a null terminated 

string of IA5 digits. This string represents the originating subscriber number. This 
string will be passed to the signalling system when the outgoing call is made. This 
provides for originating_addr to be specified on a per call basis. If the 

originating_addr field is empty then ournum will be used instead.  

For IP Telephony, URI addressing may also be used.  A URI contains the name of 
the scheme being used (<scheme>) followed by a colon and then a string (the 
<scheme-specific-part>) whose interpretation depends on the scheme. 

It must be noted that if the address supplied does not conform exactly to the URI 
format, for example the <scheme>: section missing, the IP service will try to 
determine what has been entered. 

NOTE 

In the DASS signaling system, originating_addr may contain a null 
terminated ASCII string of extension number digits. 

 

feature_information  

NOTE 

For H.323 only FEATURE_NON_STANDARD, FEATURE_DIVERSION and 
FEATURE_TRANSFER are supported 

 

Is used to indicate the type of feature that is contained in feature_union. Only one 

feature type can be specified at a time. The following values are valid when making 
an outgoing call: 

FEATURE_FACILITY 

FEATURE_USER_USER 

FEATURE_DIVERSION 

FEATURE_TRANSFER 

FEATURE_RAW_DATA 

FEATURE_NON_STANDARD 

FEATURE_RAW_MSG 

In addition, the following flags control the type of call that is made and can be ORed 
with another feature type: 

FEATURE_REGISTER (for ETS300) 

FEATURE_VIRTUAL (for QSIG) 

For example if the call is to include facility information then the feature_information 

field should have the value FEATURE_FACILITY. If the call is to be a virtual call with 

Facility information then this field should be set to be FEATURE_FACILITY | 

FEATURE_VIRTUAL. 

NOTE 

To make a virtual call the feature_information field must have the 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 70 

FEATURE_VIRTUAL or FEATURE_REGISTER bit set and the timeslot field 
ts set to -1. 

 

message_control 

Should be set to one of the following values: 

CONTROL_DEFAULT (call setup message will be sent immediately) 

CONTROL_DEFERRED_SETUP (wait for further information to send in the call setup 

message) 

If CONTROL_DEFERRED_SETUP is used, more feature information to be sent in the call 

setup message will be provided by subsequent calls to call_feature_send(). 

NOTE 

The functionality provided by the CONTROL_DEFERRED_SETUP value is 
only supported with ETS300 (EuroISDN), QSIG and H.323. 

 

app_context_token 

The app_context_token field is set by acu_set_card_app_context_token(), which is 

used to associate application-defined data with a specific card.   

queue_id 

The event queue to which events for this call should be sent. This must be either a 
unique event queue identity as returned by acu_allocate_event_queue() or zero to 

denote the default call event queue for the port that this call is made on. 

feature  

The feature union will be used to transmit features based on the value of the field 

feature_information. For example if the feature_information field has the value 

FEATURE_DIVERSION, then the diversion part of the union will be used.  

Return Values 
Handle 

When this API call is successful, this field contains the handle for this call. This 
unique call identifier value must be used for all subsequent operations relating to the 
call. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error.  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 71 

4.29 call_feature_enquiry() - make an outgoing enquiry call with feature 
information 
During the process of call transfer, this function allows an application to make an 
enquiry call, i.e. an outgoing call to a third party, with feature information. 

Synopsis 
ACU_ERR call_feature_enquiry (FEATURE_OUT_XPARMS* feature_out); 

 

typedef struct feature_out_xparms  

{ 

  ACU_ULONG    size;      /* IN */ 

  ACU_CALL_HANDLE  handle;      /* OUT */ 

  ACU_PORT_ID   net;      /* IN */ 

  ACU_INT    ts;       /* IN */ 

  ACU_INT    cnf;      /* IN */ 

  ACU_INT    sending_complete;    /* IN */ 

  char     destination_addr[MAXADDR]; /* IN */ 

  char     originating_addr[MAXADDR];  /* IN */ 

  ACU_ULONG    feature_information;   /* IN */ 

  ACU_INT          message_control;    /* IN */ 

  ACU_ACT          app_context_token;   /* IN */ 

  ACU_EVENT_QUEUE    queue_id;     /* IN */ 

  union uniquex   unique_xparms;    /* IN */ 

  union feature_union  feature;      /* IN */ 

} FEATURE_OUT_XPARMS; 

 

See section 8 for further details on using uniquex. 

See section 10 for details on using feature_union. 

Input parameters 

The call_feature_enquiry() structure takes a pointer, feature_out, to a structure, 

FEATURE_ OUT_XPARMS. The structure must be initialised before invoking the function, 

(see section 2.2). 

The function is essentially the same as call_feature_openout(), having all of the 

same call states and events. The function registers the enquiry call requirement with 
the device driver. If the driver is satisfied with the calling parameters, it will return a 
unique call handle. The call handle must then be used in all successive call control 
related operations for this call. 

 

NOTE 

When choosing the time slot it is important to be aware of the type of 
transfer available for the protocol. For ETS300 and VN3 it is possible to use 
the timeslot of the held call and thus use fewer timeslots. To initiate such 
an enquiry the timeslot of the held party must be specified in the timeslot 
field of feature_out_xparms. 

Return values 

On successful completion a value of zero is returned. Otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 72 

4.30 call_feature_details() - Get feature information 
Supplementary service information may arrive at different stages during the lifetime of 
a call. An indication of the availability of this information is found in the 
feature_information field after a call to call_details(). To retrieve the information 

call_feature_details() should be used.  

Synopsis 
ACU_ERR call_feature_details (FEATURE_DETAIL_XPARMS* feature_detailsp); 

 

typedef struct feature_detail_xparms  

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_CALL_HANDLE  handle;    /* IN */ 

  ACU_PORT_ID   net;    /* IN */ 

  ACU_ULONG    feature_type;   /* IN-OUT */ 

  ACU_INT    message_control; /* IN */ 

  union feature_union  feature;   /* OUT */ 

} FEATURE_DETAIL_XPARMS; 

 

See section 10 for details on using feature_union. 

Input parameters 

The call_feature_details() function takes a pointer, feature_detailsp, to a 

structure,FEATURE_DETAIL_XPARMS. The structure must be initialised before invoking the 

function. 

handle 

The handle field is used to identify the call that is to be examined. 

net 

Specifies the number of the network outlet on the Aculab card on which the call is to 
be made as returned from call_open_port(). 

feature_type 

The feature_type field must contain one of the following values to indicate to the 

driver which feature is requested (as there may be more than one present). 

FEATURE_FACILITY 

FEATURE_USER_USER 

FEATURE_DIVERSION 

FEATURE_HOLD_RECONNECT 

FEATURE_TRANSFER 

FEATURE_RAW_DATA 

FEATURE_NON_STANDARD 

FEATURE_RAW_MSG 

FEATURE_FEATURE_ACTIVATION 

FEATURE_INFORMATION_REQUEST 

NOTE 

Only the following feature types are supported for H.323 : 

 

FEATURE_NON_STANDARD 

FEATURE_DIVERSION 

FEATURE_TRANSFER 

FEATURE_CALL_WAITING 

FEATURE_HOLD_RECONNECT 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 73 

NOTE 

Only the information for one supplementary service can be retrieved at 
one time. If more than one type of supplementary service information is 
available then this API call should be used again for each type. 

 

On return, this field contains the feature type returned, or 0 if none (e.g. no more) of 
the specified type is available. 

message_control 

Used when raw_data is required in a message other than the facility message. When 

raw data is required the message_control field should contain 

CONTROL_NEXT_CC_MESSAGE. The raw data will be included in the next call control 

message. For example, if call_accept() is called next, the raw data will be included 

in the CONNECT message.  

Return values 
feature_type 

Contains the feature type returned, or 0 if none is available. 

feature 

For further details, see feature_xparms - section 10.  

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 74 

4.31 call_feature_send() - Sending feature information 
call_feature_send() can be used to transmit feature information at different stages 

during the lifetime of a call, or for a feature related to a specific port.  

Synopsis 
ACU_ERR call_feature_send(FEATURE_DETAIL_XPARMS* feature_detailsp); 
 

typedef struct feature_detail_xparms  

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

  ACU_PORT_ID  net;    /* IN */ 

  ACU_ULONG   feature_type;   /* IN */ 

  union feature_union feature;    /* IN */ 

  ACU_INT     message_control;  /* IN */ 

} FEATURE_DETAIL_XPARMS; 

 

See section 10 for details on using feature_union. 

Input parameters 

The call_feature_send() function takes a pointer, feature_detailsp, to a 

structure,feature_detail_xparms. The structure must be initialised in the following 

way before invoking the function. 

handle  

The handle field is used to identify the call that will send feature information. When 

restart_channels_xparms is used to restart channels on a port this should be set to 

zero. 

net 

When restart_channels_xparms is used this field should be set to the network port. 

Otherwise it should be set to zero. 

feature_type  

The feature_type field should be used to indicate the type of feature. The values this 

field can take are: 

FEATURE_FACILITY 

FEATURE_USER_USER 

FEATURE_DIVERSION 

FEATURE_HOLD_RECONNECT 

FEATURE_TRANSFER 

FEATURE_RAW_DATA 

FEATURE_NON_STANDARD 

FEATURE_RAW_MSG 

FEATURE_CALL_WAITING 

FEATURE_ADDRESSED_NON_STANDARD_DATA 

FEATURE_RESTART_CHANNELS 

FEATURE_FEATURE_ACTIVATION 

FEATURE_INFORMATION_REQUEST 

FEATURE_NAME_PRESENTATION 

NOTE 

Only the following feature types are supported for H.323 : 
 

FEATURE_NON_STANDARD 

FEATURE_DIVERSION 

FEATURE_HOLD_RECONNECT 

FEATURE_TRANSFER 

FEATURE_CALL_WAITING 

FEATURE_ADDRESSED_NON_STANDARD_DATA 

message_control 

The message_control  field is used to govern which call control message the 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 75 

feature should be sent in. The values this field can take are: 

CONTROL_DEFAULT 

Facility information element is sent immediately by the current call control function 

CONTROL_NEXT_CC_MESSAGE 

Feature information element is sent in the next call control message that is called 
(e.g. if call_disconnect() is called, it will be attached to the disconnect message)  

CONTROL_DEFERRED 

Used with the call_feature_send() function, used to delay sending of the facility 

message until further feature information elements have been added via subsequent 
call_feature_send() function calls. 

CONTROL_DEFERRED_SETUP 

Used with the call_feature_openout() function, used to delay sending of the setup 

message until further feature information elements have been added via subsequent 
call_feature_send() function calls. 

CONTROL_EXTRA_INFO 

Used with the call_feature_send() function. Can be used multiple times after 

CONTROL_DEFERRED to add further feature information elements to the facility message. 

CONTROL_EXTRA_INFO_SETUP 

Used in call_feature_send() after a call to the call_feature_openout() function. 

Can be used multiple times after CONTROL_DEFERRED_SETUP to add further feature 

information elements to the setup message. 

CONTROL_LAST_INFO 

Used in call_feature_send() after a previous call to the call_feature_send() 

function. Used to indicate this is the last feature information element to be added to 
the facility message 

CONTROL_LAST_INFO_SETUP  

Used in call_feature_send() after a call to the call_feature_openout() function. 

Used to indicate this is the last feature information element to be added to the setup 
message. 

Example: This is used when raw_data is required in a message other than the facility 

message. When raw data is required the message_control field should contain 

CONTROL_NEXT_CC_MESSAGE. The raw data will be included in the next call control 

message. For example, if call_accept() is called next, the raw data will be include in 

the CONNECT message. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

SPECIAL NOTE 

For QSIG only there is now the possibility of responding to call reroute 
requests from the network. 

 

To accept a request it is necessary to send a 'return result' message before 

clearing the call with call_disconnect(). If this is not done the network will not know 

if the call reroute has been successful call_feature_send() should be sent with the 

following parameters: 

• feature_type set to FEATURE_DIVERSION 

• operation set to OP_CALL_REROUTE_REQ 

• operation_type set to RETURN_RESULT 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 76 

To reject a call reroute request you need to send a 'return result' message. The 
network may still be able to complete the original call but this could result in a non-
optimal route. If the network cannot complete the original call without a reroute then it 
will disconnect the call. If rejected the request for reroute call_feature_send() should 

be set with the following parameters: 

• feature_type set to FEATURE_DIVERSION 

• operation set to OP_CALL_REROUTE_REQ 

To decline the request for reroute, operation_type should be set to RETURN_ERROR and 

error should be set to one of : 

0  userNotSubscribed 

3  notAvailable 

10  supplementaryServiceInteractionNotAllowed 

11  resourceUnavailable 

12  invalidDivertedToNr 

14  specialServiceNr 

15  diversionToServedUserNr 

24  numberOfDiversionsExceeded 

1008 unspecified 
 

After a return error the network can choose to allow the call to continue, otherwise it 
will disconnect the call. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 77 

4.32 call_setup_ack() - Send setup acknowledge 
This function may be used on an incoming call to send a Q.931 SETUP_ACKNOWLEDGE 

message to the calling party. The use of this function is supported in conjunction with 
the –cSU switch (see Call, Switch and Speech driver Installation Guide and release 

notes). This disables the automatic response of the driver to a Q.931 SETUP message 

and allows the application to provide additional information to the network. This 
function is dependent on the signalling system and reference should be made to the 
appropriate specification for the protocol. 

NOTE 

Not supported for IP Telephony. 

 

Synopsis 
ACU_ERR call_setup_ack(SETUP_ACK_XPARMS *setup_ackp); 

 

typedef struct setup_ack_xparms 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_CALL_HANDLE  handle;    /* IN */ 

  union 

  { 

    struct 

    { 

      struct 

      { 

        ACU_UCHAR  ie[MAXPROGRESS]; 

        ACU_UCHAR  last_msg; 

      } progress_indicator;     /* IN */ 

      struct 

      { 

        ACU_UCHAR  ie[MAXDISPLAY]; 

        ACU_UCHAR  last_msg; 

      } display;       /* IN */ 

    } sig_q931; 

  } unique_xparms; 

} SETUP_ACK_XPARMS; 

Input parameters 

The call_setup_ack() function takes a pointer, setup_ackp, to a 

structure,SETUP_ACK_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

handle  

The handle field identifies the call that will send the setup acknowledge message. 

unique_xparms system-specific fields - Q931 structure 
progress_indicator 

The progress_indicator field can be used to indicate events pertaining to the call 

regarding interworking or in-band information. The ie field of the progress_indicator 

structure should contain the progress information, that is sent transparently to the 
other end. The last_msg field should be left blank. This information is dependent on 

the signalling system and reference should be made to the appropriate specification 
for the protocol. 

Display (MAXDISPLAY = 34)  

The display field can be used to transmit information that may be displayed by the 
user.  

display example (This supplies IA5 information “ABCD”.)  

display.ie[0] = 0x04 (four bytes follow) 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 78 

display.ie[1] = 0x41 

display.ie[2] = 0x42 

display.ie[3] = 0x43 

display.ie[4] = 0x44 

 

last_msg  

The last_msg field should not be used when sending information; set to zero. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 79 

4.33 call_proceeding() - Send call proceeding message 
This function may be used on an incoming call to send a message to the calling party 
to indicate that sufficient information has been obtained to proceed with the call. 
Depending on the protocol this message may already have been sent by the driver. If 
this is the case, using the function call_proceeding() will have no effect on the call. 

This function is only supported in Q.931 and ISUP protocols. This function is 
dependent on the signalling system and reference should be made to the appropriate 
specification for the protocol. 

NOTE 

Not supported for IP Telephony. 

 

Synopsis 
ACU_ERR call_proceeding(PROCEEDING_XPARMS *proceedingp); 

 

typedef struct proceeding_xparms 

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

  Union uniqueu   unique_xparms;  /* IN */ 

} PROCEEDING_XPARMS; 

 

union uniqueu 

{ 

  /* see protocol specific structures */ 

} unique_xparms; 

 

See section 8 for further details on using unique_xparms. 

Q931 protocol specific 
    struct 

    { 

      struct 

      { 

        ACU_UCHAR  ie[MAXPROGRESS]; 

        ACU_UCHAR  last_msg; 

      } progress_indicator; 

      struct 

      { 

        ACU_UCHAR  ie[MAXDISPLAY]; 

        ACU_UCHAR  last_msg; 

      } display; 

      struct 

      { 

        ACU_UCHAR  ie[MAXNOTIFY]; 

        ACU_UCHAR   last_msg; 

      } notify_indicator; 

    } sig_q931; 

ISUP/SS7 protocol specific 
    struct 

    { 

      struct 

      { 

        ACU_UCHAR  ie[MAXPROGRESS]; 

        ACU_UCHAR  last_msg; 

      } progress_indicator; 

      ACU_UCHAR   in_band; 

      ACU_UCHAR   charge_ind; 

      ACU_UCHAR   dest_category; 

      struct 

      { 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 80 

        ACU_UCHAR  valid; 

        ACU_UCHAR  value; 

      } isdn_access_ind; 

      struct  

      { 

        ACU_UCHAR  valid; 

        ACU_UCHAR  value; 

      } isdn_userpart_ind; 

      struct  

      { 

        ACU_UCHAR  valid; 

        ACU_UCHAR  value; 

      } interworking_ind; 

    } sig_isup; 

Input parameters 

The call_proceeding() function takes a pointer, proceedingp, to a 

structure,PROCEEDING_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

handle  

The handle field identifies the call that will send the call proceeding message. 

unique_xparms  

See unique_xparms Q931 for sig_q931 definitions 

See unique_xparms ISUP for sig_isup definitions 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 81 

4.34 call_progress() - Send progress information 
This function may be used to send call progress information to the network. This 
function may be used on an incoming call in the event of interworking or to indicate 
that in-band information is now available. This function is only supported in Q.931, 
ISUP, SIP and H.323 protocols. This information is dependent on the signalling 
system and reference should be made to the appropriate specification for the 
protocol. 

NOTE 

For the SIP and H323 protocols use of this routine enables early media 
announcements. It may therefore be necessary to set the codecs and 
media_Settings structure appropriately to ensure coherent audio. 

Synopsis 
ACU_ERR call_progress(PROGRESS_XPARMS *progressp); 

 

typedef struct progress_xparms 

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

  union uniqueu   unique_xparms;  /* IN */ 

} PROGRESS_XPARMS; 

 

union uniqueu 

{ 

  /* see protocol specific structures */ 

} unique_xparms; 

 

See section 8 for further details on using unique_xparms. 

Q931 specific protocol 
    struct 

    { 

      struct 

      { 

        ACU_UCHAR  ie[MAXPROGRESS]; 

        ACU_UCHAR  last_msg; 

      } progress_indicator; 

      struct 

      { 

        ACU_UCHAR  ie[MAXDISPLAY]; 

        ACU_UCHAR  last_msg; 

      } display; 

      CAUSE  cause; 

    } sig_q931; 

ISUP/SS7 specific protocol 
    struct 

    { 

      struct 

      { 

        ACU_UCHAR  ie[MAXPROGRESS]; 

        ACU_UCHAR  last_msg; 

      } progress_indicator; 

      ACU_UCHAR   in_band; 

      ACU_UCHAR   charge_ind; 

      ACU_UCHAR   dest_category; 

      struct 

      { 

        ACU_UCHAR  valid; 

        ACU_UCHAR  value; 

      } isdn_access_ind; 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 82 

      struct  

      { 

        ACU_UCHAR  valid; 

        ACU_UCHAR  value; 

      } isdn_userpart_ind; 

      struct  

      { 

        ACU_UCHAR  valid; 

        ACU_UCHAR  value; 

      } interworking_ind; 

    } sig_isup; 

IP telephony (iptel) specific protocol 
struct 

{ 

  ACU_CHAR      destination_display_name; 

  ACU_CODEC     codecs[MAXCODECS]; 

  MEDIA_SETTINGS  media_settings; 

  union 

  { 

    struct 

    { 

      ACU_INT   send_reliable_provisional_response; 

      ACU_CHAR   contact_address[MAXADDR]; 

    } sig_sip; 

    struct 

    { 

      ACU_INT  h245_tunneling; 

      ACU_INT  faststart; 

      ACU_INT  early_h245; 

      ACU_INT  location; 

      ACU_INT  description; 

    } sig_h323; 

  } protocol_specific; 

} sig_iptel; 

Input parameters 

The call_progress() function takes a pointer, progressp, to a 

structure,PROGRESS_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

handle 

The handle field identifies the call that will send the progress message. 

unique_xparms 

See unique_xparms Q931 for sig_q931 definitions 

See unique_xparms ISUP for sig_isup definitions 

See unique_xparms IP telephony for sig_iptel definitions 

The following unique parameters are not detailed in unique_xparms and are specific to 

progress_xparms: 

Unique parameters for SIP 
send_reliable_provisional_response 

By default, set to 0, 18* messages are sent unreliably.  Setting this flag to 1 forces 
them to be sent reliably. ERR_PARM is returned if the caller does not support the 
protocol extension required for reliable provisional responses. 

contact_address 

Used to build a non-default contact header, this being useful if the application is 
running on a multi-homed machine and wishes a particular IP address be used in the 
contact.  For chassis containing only one NIC card this field maybe left blank.  It will 
be in URI address format. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 83 

Unique parameters for H.323 
location 

The location field is part of the progress indicator information.  Valid values are: 

L_USER      

Indicates that interworking has occurred directly at the user. 

L_PRIV_NET_LOCAL_USER  

Indicates that interworking has occurred at the private network serving the local 
user. 

L_PUB_NET_LOCAL_USER  

Indicates that interworking has occurred at the public network serving the local 
user. 

L_TRANSIT_NET 

Indicates that interworking has occurred at the transmit network. 

L_PUB_NET_REMOTE_USER 

Indicates that interworking has occurred at the public network service the remote 
user. 

L_PRIV_NET_REMOTE_USER 

Indicates that interworking has occurred at the private network serving the remote 
user. 

L_BEYOND_IW_POINT 

Indicates that interworking has occurred at the network beyond the interworking 
point. 

description 

The description field is part of the progress indicator information.  Valid values are: 

 D_NOT_END_TO_END_ISDN 

 Indicates that the call is not end-to-end ISDN. 

 D_DEST_ADDR_NON_ISDN 

 Indicates that the destination address is non-ISDN. 

 D_ORIG_ADDR_NON_ISDN 

 Indicates that the origination address is non-ISDN. 

 D_CALL_RETURNED_TO_ISDN 

 Indicates that the call has returned to the ISDN. 

 D_IW_OCCURRED 

 Indicates that interworking has occurred. 

 D_INBAND_INFO_AVAIL 

 Indicates that inband information is available. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 84 

4.35 call_get_originating_addr() - Receiving the originating address 
This function may be used to obtain the originating address of an incoming call in 
some Channel Associated Signalling (CAS) systems and ISUP variants where the 
application must explicitly request the originating address from the network.  

This function may be used after an incoming call has been detected but before the 
call has been accepted. Under ISUP, this function may be used until either ACM or 
CON are transmitted. 

NOTE 

Not supported for IP Telephony. 

Synopsis 
ACU_ERR call_get_originating_addr(int handle); 

 

ACU_ERR xcall_get_originating_addr(GET_ORIGINATING_ADDR_XPARMS* 

originating_parms);  

 

typedef struct get_originating_addr_xparms 

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

} GET_ORIGINATING_ADDR_XPARMS; 

Input parameters 

The xcall_get_originating_addr() function takes a pointer originating_parms, to a 

structure,GET_ORIGINATING_ADDR_XPARMS. The structure must be initialised before 

invoking the function, (see section 2.2). 

handle  

The handle field identifies the call that should obtain the originating address. 

Return values 

Use of the function will result in the EV_DETAILS event from the driver when the 

originating address is available. 

The originating address may be inspected by use of the call_details() function. 

In some circumstances multiple call_get_originating_addr() function calls result in 

further information being requested from the network. This requirement will be 
documented in the release notes for the particular signalling system. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 85 

4.36 call_answercode() - Setting the answer code 
Some protocols allow an incoming call to be answered with information about how the 
call is to be handled during the EV_CALL_CONNECTED state. This function can be used to 

pass the answer code to the driver for use during call connection. The answer code is 
primarily for CAS protocols, however, use of the function generally will not adversely 
affect those protocols (ISDN) that do not require the answer code. 

NOTE 

Not supported for IP Telephony. 

Synopsis 
ACU_ERR call_answercode(CAUSE_XPARMS *answerp); 

 

typedef struct cause_xparms 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_CALL_HANDLE  handle;    /* IN */ 

  ACU_INT    cause;    /* IN */ 

  ACU_INT    raw;    /* IN */ 

} CAUSE_XPARMS; 

Input parameters 

The call_answercode() function takes a pointer, answerp, to a structure,CAUSE_XPARMS. 

The structure must be initialised before invoking the function, (see section 2.2).  

handle  

The handle field is used to identify the call to which the answer code applies. 

cause  

The cause field must contain the answer code to be used during the connection of the 

incoming call and will be one of the standard set of answer codes described below. 

raw  

This raw field is not used and should be set to zero. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

NOTE 

It should be noted that call_answercode() simply ‘lodges’ the answer code 
with the device driver for subsequent signaling. 

If the call_answercode() function is to be used then it must be invoked 
before use of either the call_incoming_ringing() or call_accept() functions. 

Standard answer codes 

The following describes the standard set of answer codes provided. 

AC_NORMAL   default acceptance code 

AC_CHARGE   answer call with charging 

AC_NOCHARGE  answer call without charging 

AC_LAST_RELEASE last party release 

AC_SPARE1   spare 

AC_SPARE2   spare 

The AC_SPAREx codes are provided for future expansion but in the R2T1 generic R2 

protocol these codes may have specific values mapped to them by certain driver 
configuration switches. This is documented in the R2 application guide supplied with 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 86 

the software. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 87 

4.37 call_get_charge()- Receiving call charge information 
This function may be used to obtain information regarding the cost of a call. The 
function may be used any time that a valid call handle is available, however, the call 
charge information may not be valid until the call has cleared and the call has gone to 
the EV_IDLE state. The function provides for the receipt of call charging information 

and/or the accumulation of meter pulses. 

NOTE 

Not supported for IP Telephony. 

Synopsis 
ACU_ERR call_get_charge(GET_CHARGE_XPARMS *chargep); 

 

typedef struct get_charge_xparms 

{ 

  ACU_ULONG   size;     /* IN */ 

  ACU_CALL_HANDLE handle;     /* IN */ 

  ACU_INT   type;     /* OUT */ 

  char    charge[CHARGEMAX];  /* OUT */ 

  ACU_UINT   meter;     /* OUT */ 

  union 

  { 

    struct 

    { 

      ACU_UINT   tariff_type;   /* OUT */ 

    } sig_isup; 

  } unique_xparms; 

} GET_CHARGE_XPARMS; 

Input parameters 

The call_get_charge() function takes a pointer, chargep, to a 

structure,GET_CHARGE_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

handle 

The handle field is used to identify the call on which the call charging information is 

requested. 

Return values 
type  

The type field will contain the type of charging information available and will have one 

of the following values: 

• CHARGE_NONE 

There is no valid charging information available in either the charge or meter 
fields. 

• CHARGE_INFO 

The information contained in the element charge is valid and may be used. 

• CHARGE_METER 

The information contained within the meter element is valid and may be used. 
charge 

The charging information of the call if available from the network. This information is 
presented as received from the network and interpretation of the information is left to 
the application. 

meter 

The number of meter pulses received from the network. This information is presented 
as received from the network and the accuracy and timing of the pulse count is 
dependent upon the network. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 88 

tariff_type 

An integer specific to Finland, (Finnish ISUP). Set to zero when not in use. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

NOTE 

If INFO and METER charge information are both present,  charging 
information will be made available to the application via CHARGE_METER. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 89 

4.38 call_put_charge()- Sending call charge information 
This function may be used to send call charging information on the network and may 
be used any time that a valid call handle is available and the call is in the 
EV_CALL_CONNECTED state. It should be noted that it is normally only possible to send 

this information from a Network end protocol. 

The function provides for sending of call charge information and/or meter pulses. The 
choice of information is dependent upon the type of signalling system supported by 
the device driver. 

For signalling systems that support the sending of call charge information, the 
function may be used to pass a null terminated string of IA5 characters of charging 
information to the driver for transmission on the network. The driver passes the 
message ‘as is’ with no interpretation or modification of the character string provided. 

For signalling systems that use meter pulses, use of the function will result in one 
meter pulse being sent on the network, the charging information string being ignored. 

NOTE 

Not supported for IP Telephony. 

Synopsis 
ACU_ERR call_put_charge(PUT_CHARGE_XPARMS *chargep); 
 

typedef struct put_charge_xparms 

{ 

  ACU_ULONG   size;     /* IN */ 

  ACU_CALL_HANDLE handle;     /* IN */ 

  char    charge[CHARGEMAX];  /* IN */ 

  ACU_UINT   meter;     /* IN */ 

  union 

  { 

    struct 

    { 

      ACU_UINT  tariff_type;    /* IN */ 

    } sig_isup; 

  } unique_xparms; 

} PUT_CHARGE_XPARMS;  

Input parameters 

The call_put_charge() function takes a pointer, chargep, to a 

structure,PUT_CHARGE_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

handle 

The handle field is used to identify the call on which the call charging information will 

be sent. 

charge 

The charging information of the call if available from the network. This information is 
presented as received from the network and interpretation of the information is left to 
the application. 

meter  

The number of meter pulses received from the network. This information is presented 
as received from the network and the accuracy and timing of the pulse count is 
dependent upon the network. 

tariff_type  

An integer specific to Finland, (Finnish ISUP). Set to zero when not in use. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 90 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 91 

4.39 call_notify() - Send notification information 
This function may be used on a call to send a message to the network to indicate an 
appropriate call related event during the active state of a call (such as user 
suspended). This function is supported in some Q.931 protocols. This function is 
dependent on the signalling system and reference should be made to the appropriate 
specification for the protocol. 

NOTE 

Not supported for IP Telephony. 

Synopsis 
ACU_ERR call_notify(NOTIFY_XPARMS *notifyp); 
 

typedef struct notify_xparms 

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE  handle;    /* IN */ 

  union 

  { 

    struct 

    { 

      struct 

      { 

        ACU_UCHAR  ie[MAXNOTIFY]; 

        ACU_UCHAR  last_msg; 

      } notify_indicator;    /* IN */ 

      struct 

      { 

        ACU_UCHAR  ie[MAXDISPLAY]; 

        ACU_UCHAR  last_msg; 

      } display;      /* IN */ 

    } sig_q931; 

  } unique_xparms; 

} NOTIFY_XPARMS; 

Input parameters 

The call_notify() function takes a pointer, notifyp, to a structure,NOTIFY_XPARMS. 

The structure must be initialised before invoking the function, (see section 2.2). 

handle 

The handle field identifies the call that will send the notify message. 

unique_xparms system-specific fields -Q931 structure 
notify_indicator  

The notify_indicator field can be used to indicate the information detailing the call 

related event pertaining to the call. The ie field of the notify_indicator structure 

should contain the notify information that is sent transparently to the other end. The 
last_msg field should be set to zero. This information is dependent on the signalling 

system and reference should be made to the appropriate specification for the 
protocol. 

display 

The display field is used to transmit information that may be displayed by the user. 
(MAXDISPLAY = 34) 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 92 

4.40 call_send_keypad_info() - Send Keypad Information 
This function may be used to send keypad information during a call. This function is 
only supported in Q.931 and H.323 protocols.   

NOTE 

Sending of keypad information is only possible in the connected state. 

Synopsis 
ACU_ERR call_send_keypad_info(KEYPAD_XPARMS *keypadp); 

 

typedef struct keypad_xparms 

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE  handle;    /* IN */ 

  ACU_PORT_ID  net;    /* IN */ 

  union 

  { 

    struct 

    { 

      ACU_INT  device;    /* IN */ 

      KEYPAD   keypad;    /* IN */ 

      ACU_INT  location;   /* IN */ 

      DISPLAY  display;    /* IN */ 

    } sig_q931; 

    struct 

    { 

      union 

      { 

        struct 

        { 

          ACU_CHAR  dtmf[MAXNUM];   /* IN */ 

        } sig_h323; 

      } protocol_specific; 

    } sig_iptel; 

  } unique_xparms; 

} KEYPAD_XPARMS; 

Input parameters 

The call_send_keypad_info() function takes a pointer, keypadp, to a 

structure,KEYPAD_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

handle 

The handle field identifies the call that will send the keypad information. 

net  

Reserved for future expansion of the driver. 

unique_xparms protocol specific fields 

Q931 structure 
device 

Reserved for future expansion of the driver. 

keypad 

The keypad field is used to transmit any keypad information (such as supplementary 

service information). 

location  

The location field must contain the following value. Any other values are reserved for 

future expansion of the driver. 

KEYPAD_CONNECT 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 93 

display  

The display field can be used to transmit information that may be displayed by the 

user. 

iptel structure 
dtmf 

Holds the DTMF information that is to be transmitted.  For H.323, the DTMF mode is 

out of band and the information will be sent out on the signalling path using User 
Input Indications. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 94 

4.41 call_send_connectionless() - Call independent signalling 
Some supplementary services require the use of a connectionless network service to 
transmit FACILITY messages. call_send_connectionless() allows these messages to 

be transmitted. This message is not associated with a call and no handle is 
associated with it. 

Synopsis 
ACU_ERR call_send_connectionless(FEATURE_DETAIL_XPARMS* feature_detailsp); 

 

typedef struct feature_detail_xparms  

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

  ACU_PORT_ID  net;    /* IN */ 

  ACU_ULONG   feature_type;   /* IN */ 

  union feature_union feature;    /* IN */ 

} FEATURE_DETAIL_XPARMS; 

 

union feature_union  

{ 

  struct uui_xparms    uui; 

  struct facility_xparms   facility; 

  struct diversion_xparms   diversion; 

  struct feature_hold_xparms  hold; 

  struct feature_transfer_xparms transfer; 

  struct raw_data_struct   raw_data; 

  struct mlpp_xparms    mlpp; 

  struct non_standard_data_xparms non_standard  

}; 

Structure for (Raw) Facility Information 

struct facility_xparms  

{ 

  ACU_INT  command; 

  ACU_UCHAR  control; 

  ACU_UCHAR  length; 

  ACU_UCHAR  data[MAXFACILITY_INFO]; 

  char   destination_addr[MAXNUM]; 

  char   originating_addr[MAXNUM]; 

  ACU_UCHAR  dest_subaddr[MAXNUM]; 

  ACU_UCHAR  dest_numbering_type; 

  ACU_UCHAR  dest_numbering_plan; 

  ACU_UCHAR  orig_numbering_type; 

  ACU_UCHAR  orig_numbering_plan; 

  ACU_UCHAR  orig_numbering_presentation; 

  ACU_UCHAR  orig_numbering_screening; 

}; 

 

See section 10.2 for further details on facility xparm definitions 

Input parameters 

The call_send_connectionless() function takes a pointer, feature_detailsp, to a 

structure,FEATURE_DETAIL_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

Handle 

This field is not used in this API call.  

net  

The net field must be set to the port_id that will be used to transmit the 

connectionless information. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 95 

feature_type 

The feature_type field should be used to indicate the type of feature. The only 

suitable value this field should take is FEATURE_FACILITY. 

To include facility information the feature_type field should be supplied with the value 
FEATURE_FACILITY.   

Facility Information – facility_xparms 
command  

EuroISDN allows the possibility of two types of connectionless transmission. The 
command field selects the mode for this call. This field must contain one of these 

values 

FAC_CLESS_DL_DATA_CMD /* ETS300 196 Section8.3.2.2 */ 

FAC_CLESS_DL_UNIT_DATA_CMD /* ETS300 196 Section8.3.2.4 */ 

This value is ignored when using QSIG. 

facility_xparms  

The facility_xparms structure must be used in the following way: 

data  

The data field should be supplied with protocol dependant information.  

length 

The length of this information should be supplied in the length field. 

It may be appropriate to transmit addressing information in this message.  

*_addr 

The destination_addr, originating_addr and called_subaddr fields may be used 

where appropriate for the protocol. If these fields are used then the following may 
also be used as required: 

dest_numbering_type 

dest_numbering_plan 

orig_numbering_type 

orig_numbering_plan 

orig_numbering_presentation 

orig_numbering_screening 

All other fields are not applicable to call_send_connectionless(). 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

NOTE 

A successful invocation of call_send_connectionless() is no guarantee 
that the network side will receive the message. If an error occurs then the 
FACILITY message may be discarded. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 96 

4.42 call_get_connectionless() - Call independent signalling 
Some supplementary services require the use of a connectionless network service to 
transmit FACILITY messages. call_get_connectionless()will retrieve the latest 

message of this type. 

Synopsis  
ACU_ERR call_get_connectionless (FEATURE_DETAIL_XPARMS* feature_detailsp); 

 

typedef struct feature_detail_xparms  

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

  ACU_PORT_ID  net;    /* IN */ 

  ACU_ULONG   feature_type;   /* IN */ 

  union feature_union feature;    /* IN */ 

} FEATURE_DETAIL_XPARMS; 

 

union feature_union  

{ 

  struct facility_xparms  facility;  

}; 

Structure for (Raw) Facility Information 
struct facility_xparms  

{ 

  ACU_INT  command; 

  ACU_UCHAR  control; 

  ACU_UCHAR  length;                  /* OUT */ 

  ACU_UCHAR  data[MAXFACILITY_INFO];  /* OUT */ 

  char   destination_addr[MAXNUM]; 

  char   originating_addr[MAXNUM]; 

  ACU_UCHAR  dest_subaddr[MAXNUM]; 

  ACU_UCHAR  dest_numbering_type; 

  ACU_UCHAR  dest_numbering_plan; 

  ACU_UCHAR  orig_numbering_type; 

  ACU_UCHAR  orig_numbering_plan; 

  ACU_UCHAR  orig_numbering_presentation; 

  ACU_UCHAR  orig_numbering_screening; 

}; 

 

See section 10.2 for further details on facility xparm definitions 

Input parameters 

The call_get_connectionless() function takes a pointer, feature_detailsp, to a 

structure,FEATURE_DETAIL_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

Handle 

This field is not used in this API call.  

net  

The net field must be set to the port id that will be used to retrieve any 

connectionless information that has arrived for that port. 

feature_type  

The feature_type field should be used to indicate the type of feature. The only 

suitable value this field should take is FEATURE_FACILITY 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 97 

Facility Information – facility_xparms 

If connectionless data was available, the driver will fill the facility_xparms structure 

with the following values. 

length  

The length field will contain the length of the information supplied in the data field. 

data 

The data field will contain protocol dependant information. 

If any address information was supplied then the following fields may contain data: 

destination_addr 

originating_addr 

called_subaddr 

dest_numbering_type 

dest_numbering_plan 

orig_numbering_type 

orig_numbering_plan 

orig_numbering_presentation 

orig_numbering_screening 

NOTE 

Connectionless data is not queued for all protocols and may be 
overwritten if it is not retrieved by an application before the next message 
arrives.  Rather than poll this function, applications can wait for a call 
notification event to signal that there is a message to collect.  See 
call_get_port_notification(). 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 98 

4.43 call_enable_connectionless() - Call independent signalling 
Some protocols require that actions be taken for messages that are not understood. 
In order to provide standard-conforming default behaviour the Aculab API requires 
that applications explicitly enable the reception of these event types. 
call_enable_connectionless() allows the application to control notification of these 

messages. 

Synopsis  
ACU_ERR call_enable_connectionless (FEATURE_ENABLE_XPARMS *enablep); 

 

typedef struct feature_enable_xparms  

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_CALL_HANDLE handle;    /* IN */ 

  ACU_PORT_ID  net;    /* IN */ 

  ACU_ULONG   feature_type;   /* IN */ 

  ACU_INT   enable;    /* IN */ 

} FEATURE_DETAIL_XPARMS; 

Input parameters 

The call_enable_connectionless() function takes a pointer enablep to a 

structure,FEATURE_ENABLE_XPARMS. The structure must be initialised before invoking the 

function (see section 2.2). 

handle 

This field is not used in this API call.  

net  

The net field must be set to the port id that will be used to retrieve any 

connectionless information that has arrived for that port. 

feature_type  

The feature_type field should be used to indicate the type of feature. The currently 

supported types are FEATURE_NSM_RAS, FEATURE_XRS and 

FEATURE_CONNECTIONLESS_FACILITY. 

enable 

If set to a non-zero value messages of the specified feature_type will be delivered to 

the application. In order to ensure standards conformance when FEATURE_NSM_RAS 

messages are delivered to the application, the application must ensure that it sends 
FEATURE_XRS messages in response to any FEATURE_NSM_RAS messages that it does 

not understand. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 99 

4.44 call_maint_port_block()/call_maint_port_unblock()  - block or unblock 
timeslots 
The block function is used to block a group of timeslots within a port, preventing these 
timeslots from being used for subsequent calls. Conversely, unblock is used on a 
blocked port to unblock a group of timeslots for that port, bringing the timeslots back 
into service. 

Synopsis 
ACU_ERR call_maint_port_block (PORT_BLOCKING_XPARMS *blockp); 

ACU_ERR call_maint_port_unblock (PORT_BLOCKING_XPARMS *unblockp); 

 

typedef struct port_blocking_xparms  

{ 

 ACU_ULONG   size;    /* IN */ 

 ACU_PORT_ID   net;    /* IN */ 

 ACU_INT   flags;    /* IN */ 

 ACU_INT   type;    /* IN */ 

 ACU_INT   reserved;   /* IN */ 

 union 

 { 

   ACU_ULONG   ts_mask;    /* IN */ 

 }   unique_xparms; 

} PORT_BLOCKING_XPARMS; 

 

NOTE 

These calls currently support QSIG/SS7/ISUP/ETS300/NI2/AT&T T1 and 
DMS-100 only. 

Input parameters 

The functions take a pointer, blockp or unblockp, to a structure, 

PORT_BLOCKING_XPARMS. The structure must be initialised before invoking the function, 

(see section 2.2). 

net  

Identifies the network port id of the affected circuits. 

flags(SS7/ISUP only) 

If set to ACUC_MAINT_SYNC, allows the command to operate synchronously - i.e. the 

calling thread will sleep within the driver until the remote SP has acknowledged the 
request. 

If set to ACUC_MAINT_EVENT then a port event of type 

ACU_CALL_EVT_BLOCKING_STATE_CHANGE will be generated when the request completes. 

flags (ETS300 & QSIG) 

When set to ACU_MAINT_BLOCK_B_CHAN, this allows a particular timeslot to be 

configured for B-Channel blocking (when called with the call_maint_port_block() 

function) or B-Channel unblocking (when called with the call_maint_port_unblock() 

function). If a timeslot is configured for B-Channel blocking while a call is present, the 
blocking will take effect after that call is cleared. 

flags (ETS300 only) 

When set to ACU_MAINT_ETS_D_CHAN, will result in the establishment of the D channel if 

call_maint_port_unblock() is used, or the disconnection of the D channel if  

call_maint_port_block() is used. Blocking the D channel will return an error 

ERR_PORT_BLOCKED should you attempt to generate a protocol message on the D 

channel. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 100 

flags (NI2/AT&T T1/DMS-100 only) 

When set to ACU_MAINT_SERVICE_BLOCKING, the selection of timeslots defined in the 

ts_mask field will be blocked/unblocked using service messages. After timeslots have 

been blocked in this manner, no outgoing calls should be made through the API on 
those timeslots. Incoming calls for the blocked timeslots will be rejected until 
unblocked 

type  

May be set to ISUP_HW_BLOCK or ISUP_MAINTENANCE_BLOCK to identify whether the 

blocking is because of maintenance operations or because of hardware failure.  

NOTE 

Type has no effect with the NI2, AT&T T1, or DMS-100 signalling systems. 

 

NOTE 

With the NI2, AT&T T1, or DMS-100 signalling systems it is possible that 
the network may change the status of the port. In that case there is 
currently no event /notification to the application. 

 

reserved  

Currently not used; for future enhancements. 

ts_mask  

Is a 32 bit mask where bit 0 represents timeslot 0 etc.  

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 101 

4.45 call_maint_port_reset() - reset and clear timeslots 
This function is used to reset the status of a group of timeslots on a port. This will 
clear any calls in progress on the timeslots defined. 

Synopsis 
ACU_ERR call_maint_port_reset (PORT_RESET_XPARMS *resetp); 

 

typedef struct port_reset_xparms  

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_PORT_ID  net;    /* IN */ 

  ACU_INT        flags;    /* IN */ 

  ACU_INT        reserved;   /* IN */ 

  union 

  { 

    ACU_ULONG       ts_mask;    /* IN */ 

  }  unique_xparms; 

} PORT_RESET_XPARMS; 

 

NOTE 

This call currently supports SS7/ISUP only. 

Input parameters 

The call_maint_port_reset() function takes a pointer resetp, to a 

structure,PORT_RESET_PARMS. The structure must be initialised before invoking the 

function, (see section 2.2) . 

net  

identifies the network port id containing the affected circuits. 

flags 

if set to ACUC_MAINT_SYNC,  allows the command to operate synchronously - i.e. the 

calling thread will sleep within the driver until the remote SP has acknowledged the 
request.  

If set to ACUC_MAINT_EVENT then a port event of type 

ACU_CALL_EVT_RESET_STATE_CHANGE  will be generated when the request completes. 

reserved  

is reserved for possible future enhancements. 

ts_mask  

is a 32 bit mask where bit 0 represents timeslot 0 etc.   

NOTE 

For SS7 multiple reset messages will be sent if the requested circuits are 
not contiguous. 

 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 102 

4.46 call_maint_ts_block()/call_maint_ts_unblock() -  block or unblock a timeslot 
The block function is used to block (take out of service) a specific timeslot, preventing 
it from being used to set up a call. Conversely, unblock is used on a blocked timeslot 
to unblock the timeslot and bring it back into service. 

Synopsis 

ACU_ERR call_maint_ts_block (TS_BLOCKING_XPARMS *blockp); 

ACU_ERR call_maint_ts_unblock (TS_BLOCKING_XPARMS *unblockp); 
 

typedef struct ts_blocking_xparms  

{ 

 ACU_ULONG  size;    /* IN */ 

 ACU_PORT_ID  net;    /* IN */ 

 ACU_INT   ts;     /* IN */ 

 ACU_INT   flags;    /* IN */ 

} TS_BLOCKING_XPARMS; 

 

NOTE 

These calls currently support SS7/ISUP, ETS300, QSIG, NI-2, AT&T T1 and 
DMS-100. 

Input parameters 

The functions takes a pointer, blockp or unblockp, to a structure, TS_BLOCKING_XPARMS. 

The structure must be initialised before invoking the function, (see section 2.2) . 

net  

net field defines the network port id. 

ts 

Is the timeslot that is to be blocked/un-blocked.  

flags(ISUP) 

If set to ACUC_MAINT_SYNC, allows the command to operate synchronously - i.e. the 

calling thread will sleep within the driver until the remote SP has acknowledged the 
request. 

If set to ACUC_MAINT_EVENT then a port event of type 

ACU_CALL_EVT_BLOCKING_STATE_CHANGE will be generated when the request completes. 

flags (ETS300 & QSIG) 

When set to ACU_MAINT_BLOCK_B_CHAN, this allows a particular timeslot to be 

configured for B-Channel blocking (when called with the call_maint_ts_block() 

function) or B-Channel unblocking (when called with the call_maint_ts_unblock() 

function). If a timeslot is configured for B-Channel blocking while a call is present, the 
blocking will take effect after that call is cleared. 

flags (ETS300 only) 

When set to ACU_MAINT_ETS_D_CHAN, will result in the establishment of the D channel if 

call_maint_port_unblock() is used, or the disconnection of the D channel if  

call_maint_port_block() is used. Blocking the D channel will return an error 

ERR_PORT_BLOCKED should you attempt to generate a protocol message on the D 

channel. 

flags (NI-2/AT&T T1/DMS-100) 

When set to ACU_MAINT_SERVICE_BLOCKING, a service message will be sent to block or 

unblock the timeslot indicated in the ts field. After a timeslot has been blocked in this 
manner no outgoing calls should be made through the API on that timeslot. Incoming 
calls for the particular timeslot will be rejected. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 103 

NOTE 

With the NI-2, AT&T T1, or DMS-100 signalling systems it  is possible that 
the network may change the status of the port. In that case there is 
currently  no event /notification to the application. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 104 

4.47 call_maint_port_status() – obtain per-timeslot status 
This function is used to obtain protocol specific per-timeslot status information. 

Synopsis 

ACU_ERR call_maint_port_status(PORT_STATUS_XPARMS *st_parms); 
 

typedef struct port_status_xparms { 

    ACU_ULONG     size;  /* IN */ 

    ACU_PORT_ID   net;  /* IN */ 

    ACU_INT       rqst;  /* IN */   

    ACU_INT       flags;       /* IN */ 

    ACU_ULONG     ts_mask;  /* IN */ 

    ACU_UCHAR     ts_info[32]; /* OUT */ 

} PORT_STATUS_XPARMS; 

Input parameters 

The functions takes a pointer, st_parms, to a structure, TS_STATUS_XPARMS. The 

structure must be initialised before invoking the function, (see section 2.2) . 

net  

net field defines the network port id. 

rqst 

Defines the status information required. Protocol specific, see tables below. 

flags 

None currently defined, set to zero. 

ts_mask 

A 32bit mask identifying the timeslots from which information is required. May be 
updated to indicate the timeslots from which information is valid. 

Return values 
ts_info 

One byte per timeslot containing the requested state information. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

ISUP requests: 

rqst ts_info 

ACU_MAINT_PORT_GET_BLOCK_STATE One or more of: 
ACU_MAINT_PORT_BLOCKED_LOC_MAINT 

ACU_MAINT_PORT_BLOCKED_LOC_HW 

ACU_MAINT_PORT_BLOCKED_REM_MAINT 

ACU_MAINT_PORT_BLOCKED_REM_HW 

ACU_MAINT_PORT_BLOCKED_UCIC 

ACU_MAINT_PORT_BLOCKED_BEFORE_RESET 

ACU_MAINT_PORT_UNBLOCK_IN_PROGRESS 

ACU_MAINT_PORT_BLOCK_IN_PROGRESS 

ACU_MAINT_PORT_GET_RESET_STATE One or more of: 
ACU_MAINT_PORT_RESET_INWARDS 

ACU_MAINT_PORT_RESET_IN_PROGRESS 

ACU_MAINT_PORT_GET_APPLICATION_REF Per SS7 destination value settable in the 
ss7.cfg file, defaults to 0 for ITU and 1 for 
ANSI. 

ACU_MAINT_PORT_GET_CIC_0_7 and 
ACU_MAINY_PORT_GET_CIC_8_15 

Low and high bytes of the ISUP CIC for the 
timeslot. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 105 

ACU_MAINT_PORT_GET_LPC_0_7 

ACU_MAINT_PORT_GET_LPC_8_15 and 
ACU_MAINY_PORT_GET_LPC_16_23 

SS7 local pointcode for the timeslot. 

ACU_MAINT_PORT_GET_RPC_0_7 

ACU_MAINT_PORT_GET_RPC_8_15 and 
ACU_MAINY_PORT_GET_RPC_16_23 

SS7 remote pointcode for the timeslot. 

 

ETS300 requests: 

rqst ts_info 

ACU_MAINT_PORT_GET_SERVICE_STATE None, a SERVICE_REQ message is sent for 

each selected timeslot. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 106 

4.48 call_set_handle_event_queue() - associate a handle with an event queue 
This function is used to associate a call handle with an event queue.  All call events 
that occur for the specified call handle will be notified via this event queue. 

NOTE 

This function can be called at any time – any events pending for the 
handle will be transferred from the old queue to the new queue. 

Synopsis 
ACU_ERR call_set_handle_event_queue(ACU_QUEUE_PARMS* queue_parms); 

 

typedef struct _ACU_QUEUE_PARMS 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_RESOURCE_ID   resource_id;   /* IN */ 

  ACU_EVENT_QUEUE   queue_id;   /* IN */ 

} ACU_QUEUE_PARMS; 

Input Parameters 

The call_set_handle_event_queue() function takes a pointer, queue_parms, to a 

structure, ACU_QUEUE_PARMS. The structure must be initialised before invoking the 

function, (see section 2.2) . 

resource_id 

The resource_id field must be set to a valid call handle. 

queue_id 

The queue_id field must be set to a valid queue as returned by 

acu_allocate_event_queue() when creating a queue. 

Return Values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 107 

4.49 call_get_handle_event_wait_object() - get a wait object for a handle 
This function is used to get a wait object that is associated with a specific call handle.  
This wait object will be signalled while there are call events pending for that call 
handle.  The wait object returned by this function can be used with operating system 
specific wait functions such as WaitForMultipleObjects() or poll(). 

Synopsis 
ACU_ERR  call_get_handle_event_wait_object(CALL_HANDLE_WAIT_OBJECT_PARMS* 

wo_parms); 

 

typedef struct _CALL_HANDLE_WAIT_OBJECT_PARMS 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_CALL_HANDLE  handle;    /* IN */ 

  ACU_WAIT_OBJECT  wait_object;   /* OUT */ 

} CALL_HANDLE_WAIT_OBJECT_PARMS; 

Input Parameters 

The call_get_handle_event_wait_object() function takes a pointer wo_parms, to a 

structure,CALL_HANDLE_WAIT_OBJECT_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2) . 

handle 

handle should be set to the appropriate call handle. 

Return Values 
wait_object 

wait_object will be set to a valid operating system specific wait object associated 

with the specified call handle. 

NOTE 

The wait object returned by this function will be valid while the application 
keeps the associated call handle open.  It will become invalid when 
call_release() is called for that handle. 

 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 108 

4.50 call_set_handle_app_context_token() - associate data with a handle 
This function is used to associate application-defined data with a call handle.  This 
data is returned as the context field by acu_get_event_from_queue(). 

The token assigned using this function can also be retrieved using 
call_get_handle_app_ context_token(). 

Synopsis 
ACU_ERR call_set_handle_app_context_token(ACU_APP_CONTEXT_TOKEN_PARMS* 

token_parms); 

 

typedef struct _ACU_APP_CONTEXT_TOKEN_PARMS 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_RESOURCE_ID   resource_id;   /* IN */ 

  ACU_ACT    app_context_oken;  /* IN */ 

} ACU_APP_CONTEXT_TOKEN_PARMS; 

 

Input Parameters 

The call_set_handle_app_context_token() function takes a pointer token_parms, to a 

structure,ACU_APP_CONTEXT_TOKEN_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2) . 

resource_id 

The resource_id field must be initialised to a valid call handle (returned by 

call_openout(), call_openin() etc.). 

app_context_token 

The token field should be set to the data you want to associate with the call. 

Return Values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 109 

4.51 call_get_handle_app_context_token() - receive data for a handle 
This function is used to retrieve application defined data that was associated with a 
call handle by an earlier call to call_openin(), call_openout(), or 
call_set_handle_app_context_ token(). 

Synopsis 
ACU_ERR call_get_handle_app_context_token(ACU_APP_CONTEXT_TOKEN_PARMS* 

token_parms); 

 

typedef struct _ACU_APP_CONTEXT_TOKEN_PARMS 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_RESOURCE_ID   resource_id;   /* IN */ 

  ACU_ACT    app_context_token; /* OUT */ 

} ACU_APP_CONTEXT_TOKEN_PARMS; 

Input Parameters 

The call_get_handle_app_context_token() function takes a pointer token_parms, to a 

structure,ACU_APP_CONTEXT_TOKEN_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2) . 

resource_id 

The resource_id field must be initialised to a valid call handle (returned by 

call_openout(), call_openin() etc.) 

Return Values 
app_context_token 

The token field will be set to the current application-defined data associated with the 

call. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 110 

4.52 call_set_port_default_handle_event_queue() - set the default call event 
queue for a port 
Each port in the system is associated with a default call event queue for calls made 
on the port. This is initially set to the global call event queue but applications can 
associate a port with a new default call event queue by calling this function.   

NOTE 

This function does not change the event queue for calls made on the port 
prior to this function being called.  Calls made before this function is 
called will be associated with the previous queue associated with the port 
(by default the global call event queue is associated with every port). 

Synopsis 
ACU_ERR call_set_port_default_handle_event_queue(ACU_QUEUE_PARMS* 

queue_parms); 

 

typedef struct _ACU_QUEUE_PARMS 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_RESOURCE_ID   resource_id;   /* IN */ 

  ACU_EVENT_QUEUE   queue_id;   /* IN */ 

} ACU_QUEUE_PARMS; 

Input Parameters 

The call_set_port_default_handle_event_queue() function takes a pointer 

queue_parms, to a structure,ACU_QUEUE_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2) . 

resource_id 

The resource_id field must be set to a valid port id. 

queue_id  

The queue_id field must be set to a valid queue as returned by 

acu_allocate_event_queue() when creating a queue. 

Return Values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 111 

4.53 call_set_port_app_context_token() – associate data with a port 
This function is used to associate application-defined data with a port.  This data is 
returned as the context field by acu_get_event_from_queue(). 

The token assigned using this function can also be retrieved using 
call_get_port_app_context_token(). 

Synopsis 
ACU_ERR call_set_port_app_context_token(ACU_APP_CONTEXT_TOKEN_PARMS* 

token_parms); 

 

typedef struct _ACU_APP_CONTEXT_TOKEN_PARMS 

{ 

  ACU_ULONG     size;    /* IN */ 

  ACU_RESOURCE_ID    resource_id;   /* IN */ 

  ACU_ACT     app_context_token; /* IN */ 

} ACU_APP_CONTEXT_TOKEN_PARMS; 

 

Input Parameters 

The call_set_port_app_context_token() function takes a pointer token_parms, to a 

structure,ACU_APP_CONTEXT_TOKEN_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2). 

resource_id 

The resource_id field must be initialised to a valid port id (returned by 

call_open_port()). 

app_context_token 

The token field should be set to the data you want to associate with the port. 

Return Values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 112 

4.54 call_get_port_app_context_token() - retrieve data for a port 
This function is used to retrieve application-defined data that is associated with a port. 
The data can be set using call_set_port_app_context_token(). 

Synopsis 
ACU_ERR call_get_port_app_context_token(ACU_APP_CONTEXT_TOKEN_PARMS* 

token_parms); 

 

typedef struct tACU_APP_CONTEXT_TOKEN_PARMS 

{ 

  ACU_ULONG     size;    /* IN */ 

  ACU_RESOURCE_ID    resource_id;   /* IN */ 

  ACU_ACT     app_context_token; /* OUT */ 

} ACU_APP_CONTEXT_TOKEN_PARMS; 

 

Input Parameters 

The call_get_port_app_context_token() function takes a pointer token_parms, to a 

structure,ACU_APP_CONTEXT_TOKEN_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2) . 

resource_id 

The resource_id field must be initialised to a valid port id (returned by 

call_open_port()). 

Return Values 
app_context_token  

The token field will be set to the associated data. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 113 

4.55 call_set_port_notification_queue() - set a queue for a port 
This function is used to associate a port with a queue.  All port notification events for 
this port will be notified via this event queue. 

NOTE 

This function can be called at any time – any notification events pending for 
the port will be transferred from the old queue to the new queue. 

Synopsis 
ACU_ERR call_set_port_notification_queue(ACU_QUEUE_PARMS* queue_parms); 

 

typedef struct _ACU_QUEUE_PARMS 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_RESOURCE_ID   resource_id;   /* IN */ 

  ACU_EVENT_QUEUE   queue_id;   /* IN */ 

} ACU_QUEUE_PARMS; 

Input Parameters 

The call_set_port_notification_queue() function takes a pointer queue_parms, to a 

structure,ACU_QUEUE_PARMS. The structure must be initialised before invoking the 

function, (see section 2.2) . 

resource_id 

The resource_id field must be set to a valid port id. 

queue_id 

The queue_id field must be set to a valid queue as returned by 

acu_allocate_event_queue() when creating a queue. 

Return Values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 114 

4.56 call_get_port_notification() - retrieve events for a port 
The call driver queues a number of events that are not associated with a particular 
call.  This function retrieves events that are associated with a particular port. 

Synopsis 
ACU_ERR call_get_port_notification(CALL_PORT_NOTIFICATION_PARMS* eventp); 

 

typedef struct call_port_notification_parms 

{ 

  ACU_ULONG     size;    /* IN */ 

  ACU_PORT_ID   port_id;    /* IN */ 

  ACU_INT    event;    /* OUT */ 

} CALL_PORT_NOTIFICATION_PARMS;  

Input Parameters 

The call_get_port_notification() function takes a pointer eventp, to a 

structure,CALL_PORT_NOTIFICATION_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2) . 

port_id  

The port_id field must be set to a valid port id (returned from a call to 

call_open_port()); 

Return Values 
event 

The event field is set to one of the following values: 

#define Description 
ACU_CALL_EVT_NO_EVENT There are no events in the queue 

ACU_CALL_EVT_L1_CHANGE Layer 1 has changed on the specified 
port – use call_l1_stats() to determine 

what the change is 

ACU_CALL_EVT_L2_CHANGE Layer 2 has changed on the specified 
port – use call_l2_state() to determine 

what the change is 

ACU_CALL_EVT_CONNECTIONLESS A connectionless message has arrived on 
the specified port.  Use 
call_get_connectionless() to retrieve it. 

ACU_CALL_EVT_FIRMWARE_CHANGE The firmware on a port has changed 

ACU_CALL_EVT_HW_CLOCK_STOP This message is sent in the unlikely event 
that the firmware has crashed on a port. 

ACU_CALL_EVT_NO_CHANNEL_AVAILABLE The firmware rejected an incoming call 
because the driver could not process it. 

ACU_CALL_EVT_BLOCKING_STATE_CHANGE The Service state has changed on at 
least one channel. Use call_l2_state() 

to determine which timeslots have been 
blocked or unblocked. 

ACU_CALL_EVT_PORT_COMMS_LOST The connection with the firmware on this 
port has been lost.  This usually indicates 
a network problem but may also be 
triggered when the firmware has stopped 
or crashed.  Firmware will need to be re-
downloaded to the port in order to use the 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 115 

#define Description 

port again. 

ACU_SIP_EV_RESPONSE See The Extended SIP API Guide 

ACU_SIP_EV_REQUEST See The Extended SIP API Guide 

ACU_SIP_EV_REQUEST_TIMEOUT See The Extended SIP API Guide 

ACU_CALL_EVT_BLOCKING_STATE_CHANGE Event generated to indicate a request is 
completed if ACUC_MAINT_EVENT set when 

making a call to 
call_maint_port_block/unblock or 
call_maint_ts_block/unblock. 

ACU_CALL_EVT_RESET_STATE_CHANGE Event generated to indicate a request is 
completed if ACUC_MAINT_EVENT set when 

making a call to call_maint_port_reset. 

 

NOTE 

These notifications are an indication that something has changed.  Upon 
receipt of one of these events, the application will need to make further 
API calls to determine what has changed. 

 

NOTE 

These notifications are queued.  It may be possible that when an 
application retrieves an event, the state change it is describing has been 
superseded by another state change.  Applications should be designed to 
cope with this.  (i.e. don’t assume that because a Layer 2 state change 
notification has been received, Layer 2 has gone down). 

 

NOTE 

ACU_CALL_EVT_L1_CHANGE and ACU_CALL_EVT_L2_CHANGE are not 
automatically sent when firmware is downloaded.  They will be sent if the 
firmware encounters an error condition immediately after download. The 
driver will also send this event if the AT&T blocking-state changes, see 
below 

 

NOTE 

Only the AT&T firmware supports the 
ACU_CALL_EVT_BLOCKING_STATE_CHANGE event. Use the appropriate 
firmware configuration (-s switch) to enable it. See the AT&T firmware 
release notes for more details. 

 

To avoid polling this function you can either:  

• use call_get_port_notification_wait_object() to obtain a wait object that is 

signaled when an event is queued for the port; or 

• create an event queue (using acu_allocate_event_queue()) and then use 

call_set_port_notification_queue() to associate a particular port with that 

queue then wait for events to occur on the queue. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 116 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

Example Usage 
CALL_PORT_WAIT_OBJECT_PARMS wo_parms; 

ACU_PORT_ID; /* the id of a port obtained previously */ 

CALL_PORT_NOTIFICATION_PARMS event_parms; 

ACU_INT error; 

 

INIT_ACU_STRUCT(&wo_parms); 

 

wo_parms.port_id = port_id; 

error = call_get_port_notification_wait_object(&wo_parms); 

if (error != 0) 

{ 

 printf(“Failed getting wait event with error %d\n”, error); 

 exit(-1); 

} 

error = WaitForSingleObject(wo_parms.wait_object, INFINITE); 

if (error == WAIT_OBJECT_0) 

{ 

 INIT_ACU_STRUCT(&event_parms); 

 event_parms.port_id = port_id; 

 error = call_get_port_notification(&event_parms); 

 if (error == 0) 

 { 

  /* handle event here */ 

 } 

} 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 117 

4.57 call_get_port_notification_wait_object() – get the wait object for a port 
This function is used to get the wait object that is associated with a given port’s 
notification event queue.  The event returned by this function can be used with 
operating system specific wait functions such as WaitForMultipleObjects() or 

poll(). 

Synopsis 
ACU_ERR call_get_port_notification_wait_object(CALL_PORT_WAIT_OBJECT_PARMS* 

wo_parms); 

 

typedef struct _CALL_PORT_WAIT_OBJECT_PARMS 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_PORT_ID   port_id;    /* IN */ 

  ACU_WAIT_OBJECT  wait_object;   /* OUT */ 

} CALL_PORT_WAIT_OBJECT_PARMS; 

Input Parameters 

The call_get_port_notification_wait_object() function takes a pointer wo_parms, to 

a structure,CALL_PORT_WAIT_OBJECT_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2). 

port_id 

The port_id parameter should be a valid port id (returned from an earlier call to 

call_open_port()). 

Return Values 
wait_object 

wait_object will be set to a valid operating system specific event associated with the 

specified port. 

NOTE 

The wait object associated with a port will remain signaled while there are 
notification events queued for that port. 

Example Usage 

See the example for call_get_port_notification() shown above. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 118 

4.58 call_get_global_event_wait_object() - get the global wait object for call 
events 
This function is used to get the wait object that is signalled whenever there is a 
pending call event on any call handle that the application owns that is associated with 
the global call event queue (see call_event()). 

The wait object returned by this function can be used with operating system specific 

wait functions such as WaitForMultipleObjects() or poll(). 

Synopsis 
ACU_INT call_get_global_event_wait_object(CALL_GLOBAL_WAIT_OBJECT_PARMS* 

wo_parms); 

 

typedef struct _CALL_GLOBAL_WAIT_OBJECT_PARMS 

{ 

  ACU_ULONG    size;    /* IN */ 

  ACU_WAIT_OBJECT   wait_object;   /* OUT */ 

} CALL_GLOBAL_WAIT_OBJECT_PARMS; 

 

NOTE 

Events will not be reported for calls that have been associated with 
application-created event queues. 

 

Input parameters 

The call_ get_global_event_wait_object() function takes a pointer wo_parms, to a 

structure,CALL_GLOBAL_WAIT_OBJECT_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2) . 

Return Values 
wait_object 

Will be set to a valid operating system specific wait object associated with the global 
call event queue. 

NOTE 

The wait object returned will remain signaled while there are any events 
queued. 

 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 119 

4.59 call_set_global_notification_queue() – set the queue for global notification 
events 
Set the event queue for  global notification events. Future global notification events 
will be notified via this queue. 

Synopsis 
ACU_ERR call_set_global_notification_queue(CALL_SET_GLOBAL_WAIT_QUEUE_PARMS* 

queue_parms); 

 

typedef struct tCALL_SET_GLOBAL_WAIT_QUEUE_PARMS 

{ 

  ACU_UINT    size;    /* IN */ 

  ACU_EVENT_QUEUE   queue_id;   /* IN */ 

} CALL_SET_GLOBAL_WAIT_QUEUE_PARMS; 

Input parameters 

The call_ set_global_notification_queue() function takes a pointer queue_parms, to 

a structure,CALL_ SET_GLOBAL_WAIT_QUEUE_PARMS. The structure must be initialised 

before invoking the function, (see section 2.2) . 

queue_id:  

The queue_id field must be set to a valid queue as returned by 

acu_allocate_event_queue when creating a queue. 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 120 

4.60 call_get_global_notification() - retreive the next global notification event 
This function retrieves the next pending event from the global notification event 
queue. 

NOTE 

Currently the only use of this queue is to determine the outcome of 
Proxy/Gatekeeper registrations (see ipt_add_alias() in the V6 IP Telephony 
Guide). 

 

Synopsis 
ACU_ERR call_get_global_notification(CALL_GET_GLOBAL_NOTIFICATION_PARMS* 

notify_parms); 

 

typedef struct tCALL_GET_GLOBAL_NOTIFICATION_PARMS 

{ 

 ACU_UINT  size;    /* IN */ 

 ACU_UINT  event;    /* OUT */ 

 void*  context;    /* OUT */ 

} CALL_GET_GLOBAL_NOTIFICATION_PARMS; 

Input parameters 

The call_get_global_notification() function takes a pointer notify_parms, to a 

structure,CALL_ GET_GLOBAL_NOTIFICATION_PARMS. The structure must be initialised 

before invoking the function, (see section 2.2) . 

Return values 
event 

Upon successful execution, the event field will hold a value that uniquely identifies the 
event.  O indicates that no event has been returned. 

See the IP telephony API Guide, Registration Event Notification, for a list of the event 
codes associated with Proxy/Gatekeeper registration. 

context 

The context field holds a context that can help identify the operation that the event 
refers to (for instance, in Proxy/Gatekeeper registration, the context is the registration 
handle). 
On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 121 

4.61 call_get_global_notification_wait_object() – get the wait object for global 
notification events 
Returns the wait object which will be signalled when a global notification event is 
pending. 

Synopsis 
ACU_ERR call_get_global_notification_wait_object( 

        CALL_GET_GLOBAL_NOTIFICATION_WAIT_OBJECT_PARMS* wo_parms); 

 

typedef struct tCALL_GET_GLOBAL_NOTIFICATION_WAIT_QUEUE_PARMS 

{ 

  ACU_UINT            size;    /* IN */ 

  ACU_WAIT_OBJECT     wait_object;  /* OUT */ 

} CALL_GET_GLOBAL_NOTIFICATION_WAIT_OBJECT_PARMS; 

Input parameters 

The call_get_global_notification_wait_object() function takes a pointer 

wo_parms, to a structure, CALL_GET_GLOBAL_NOTIFICATION_WAIT_OBJECT_PARMS. The 

structure must be initialised before invoking the function, (see section 2.2) .  

Return 
wait_object 

wait_object will be set to a valid operating system specific wait object associated 

with the global notification event queue. 

NOTE 

The wait object returned will remain signaled while there are any events 
queued. 

 

On successful completion a value of zero is returned. Otherwise a negative value will 
be returned indicating the type of error.  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 122 

4.62 call_open_iptel_port – Open a port for TiNG Media Configuration 
There are times when an application may wish to have a greater level of control over 
the media resources on an IP Telephony call than the basic API offers – for example 
when dealing with IP to IP calls it is not necessary to switch the calls to TDM.  In 
conjunction with Prosody X and Prosody S there is the option to open a special 
system port that allows the application to allocate and deallocate the media resources 
on the board, and thereby to control how they are used.  The protocol will perform 
negotiation as usual, and will configure the users resources accordingly, but will not 
allocate additional resources e.g. TDM stream and timeslot. 

Once an iptel port has been opened using this function, calls on this port can then be 
passed media by supplying a vmprxid and vmptxid in call_openout() for outgoing 

calls, and call_accept(), call_progress() or xcall_incoming_ringing() for 

incoming calls.  These identifiers should be acquired via the TiNG API using the 
functions defined there.  The allocation and deallocation of these resources is the 
responsibility of the application, the protocol will only perform basic configuration 
(codec type, packet length, VAD settings, remote RTP address etc.) 

For more information on TiNG Media Configuration see Appendix K. 

NOTE 

The application is responsible for specifying the valid codecs for the call. 
The application must check which codecs are supported by the board. 

 

Synopsis 
ACU_ERR call_open_iptel_port(CALL_OPEN_IPTEL_PORT_PARMS* port_parms); 

typedef struct tCALL_OPEN_IPTEL_PORT_PARMS 

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_INT   protocol_type;   /* IN */ 

  ACU_PORT_ID  port_id;    /* OUT */ 

} CALL_OPEN_IPTEL_PORT_PARMS; 

Input Parameters 

This call_open_iptel_port() function takes a pointer, port_parms, to a 

structure,CALL_OPEN_IPTEL_PORT_PARMS. The structure must be initialised before 

invoking the function. 

protocol_type 

The protocol_type field must be set to the id of the protocol that owns the port to 

open – either S_SIP or S_H323. 

Return Values 
port_id 

The port_id field will contain the port id to be used when making calls with this port. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 123 

4.63 call_set_dtmf_handling() 
This function can be used to control DTMF User Input Indication event notification 
and relay. 

Synopsis 
ACU_INT call__set_dtmf_handling(CALL_DTMF_HANDLING_XPARMS *dtmf_handlingp); 

 

typedef struct tcall__set_dtmf_handling_xparms 

{ 

  ACU_ULONG     size; 

  ACU_PORT_ID      unused;      /* IN */ 

  ACU_CALL_HANDLE handle;      /* IN */ 

  ACU_UINT       enable_event_notification; /* IN */ 

  ACU_UINT     relay_disabled;    /* IN */ 

} CALL_DTMF_HANDLING_XPARMS; 

Input parameters 

call_set_dtmf_handling() takes a pointer, dtmf_handlingp, to a structure, 

CALL_DTMF_HANDLING_XPARMS.  The structure must be initialised before invoking the 

function. 

unused 

This field is ignored. 

handle 

The handle field is used to identify the call to which the DTMF handling options are to 
apply. 

enable_event_notification 

If set to 1, any User Input Indications that are received from the network will be 
identified at the API level through event notification.  Valid values are : 

 0 – disable event notification 

 1 – enable event notification 

relay_disabled (Not applicable to TiNG media configurations)  

By default any User Input Indications that are received from the network will be 
relayed to the TDM side.  This can be disabled by setting relay_disabled to 1.  

 0 – relay enabled 

 1 – relay disable 

Return values 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 124 

4.64 h323_call_details() - Get h323 call details 
This function is used to gather the details of a current h323 call, either incoming or 
outgoing, connected through the device driver.  It returns a full collection of aliases 
unlike call_details, which contains only a subset. 

Synopsis 
ACU_ERR h323_call_details(H323_DETAIL_XPARMS* detailsp); 

 

typedef struct h323_detail_xparms 

{ 

 ACU_ULONG             size;        /*IN*/ 

 ACU_CALL_HANDLE       handle;       /*IN*/ 

 ACU_LONG              timeout;       /*OUT*/ 

 ACU_INT               valid;        /*OUT*/ 

 ACU_INT               stream;       /*OUT*/ 

 ACU_INT               ts;        /*OUT*/ 

 ACU_INT               calltype;       /*OUT*/ 

 ACU_CHAR              destination_addr[MAXADDR];   /*OUT*/ 

 ACU_CHAR              originating_addr[MAXADDR];   /*OUT*/ 

 ACU_CHAR              connected_addr[MAXADDR];    /*OUT*/ 

 ACU_ACT               app_context_token;     /*OUT*/ 

 ACU_ULONG             feature_information;     /*OUT*/ 

 ACU_CHAR              destination_display_name[MAXDISPLAY]; /*OUT*/ 

 ACU_CHAR              originating_display_name[MAXDISPLAY]; /*OUT*/ 

 ACU_CODEC             codecs[MAXCODECS];     /*OUT*/ 

 MEDIA_SETTINGS        media_settings;      /*OUT*/ 

 ACU_POINTER           vmprxid;       /*OUT*/ 

 ACU_POINTER           vmptxid;       /*OUT*/ 

 ACU_CHAR              media_call_type[MAXMEDIACALLTYPE];  /*OUT*/ 

 ACU_CHAR              destination_alias[MAXADDR];   /*OUT*/ 

 ACU_CHAR              originating_alias[MAXADDR];   /*OUT*/ 

 ACU_INT               h245_tunneling;      /*OUT*/ 

 ACU_INT               faststart;       /*OUT*/ 

 ACU_INT               early_h245;       /*OUT*/ 

 ACU_CHAR              dtmf[MAXNUM];      /*OUT*/ 

 ACU_INT               progress_location;     /*OUT*/ 

 ACU_INT               progress_description;    /*OUT*/ 

 ACU_ALIAS_LIST        originating_aliases;     /*OUT*/ 

 ACU_ALIAS_LIST        destination_aliases;     /*OUT*/ 

} ACU_PACK_DIRECTIVE H323_DETAIL_XPARMS; 

 

   typedef struct acu_alias_list 

{ 

 ACU_INT               no_of_aliases; 

 ACU_CHAR              aliases[MAXALIASES][MAXADDR]; 

} ACU_PACK_DIRECTIVE ACU_ALIAS_LIST; 

Input parameters 

The h323_call_details() function takes a pointer, detailsp, to a structure, 

H323_DETAIL_XPARMS. The structure must be initialised before invoking the function, 

(see section 2.2). 

handle  

The handle field is used to identify the call that is to be examined. 

Return values 
timeout  

Not used. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 125 

valid  

Is a Boolean value, that indicates whether the details returned are valid or not. 

1 details invalid – indicates that there is no valid information in the 
structure  

2 details valid – indicates that there is some valid information in the 
structure 

NOTE 

When the valid field indicates that there is some information in the 
structure, this does not mean that all information has been received for 
this call. 

stream  

Will contain the network stream number on which the call was received. For a full 
description of the stream numbering on Aculab cards consult the Switch Driver API 
Guide. 

ts  

Will contain the timeslot associated with the call.  

calltype  

Will indicate the direction of the call in progress and will have the values: 

OUTGOING:  for outgoing call 

INCOMING:  for incoming call 

originating_addr and destination_addr  

Will contain the calling line identity (CLI) and direct dial in (DDI) digits respectively if 
received by the signalling system. 

connected_addr  

Will contain the actual number of the party connected to a call. This may differ from 
the destination_addr field due to services such as call redirection. 

app_context_token 

The app_context_token field contains the value that was associated with the handle 

when the call was opened using call_openin() or call_openout(). 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

feature_information  

Contains an indication of whether any supplementary service information has been 
received and if so what type of information has been received. A separate API call, 
call_feature_ details(), must be used to retrieve this information.  

This field can have any combination of the following values 

FEATURE_FACILITY 

FEATURE_USER_USER 

FEATURE_DIVERSION 

FEATURE_HOLD_RECONNECT 

FEATURE_TRANSFER 

FEATURE_RAW_DATA 

FEATURE_RAW_MSG 

destination_display_name, originating_display_name, codecs, media_settings, 
vmprxid, vmptxid, media_call_type, destination_alias, originating_alias, 
h245_tunneling, faststart, early_h245, dtmf, progress_location, progress_description 

As per the values defined in Unique_xparms for Iptel 

originating_aliases 

Contains the originating endpoints aliases in an array of strings, where each string is 
an alias represented in URI notation.  The structure includes an element 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 126 

no_of_aliases which defines how many aliases have been set in the element aliases  

destination_aliases 

Contains the destination endpoints aliases in an array of strings, where each string is 
an alias represented in URI notation.  The structure includes an element 
no_of_aliases which defines how many aliases have been set in the element aliases  

NOTE 

Be aware that the details returned by this function are not historical.  In an 
application that is slow to process its event queue a number of 
EV_DETAILS events may be queued.  The first call to h323_call_details() 
will return all of the updated details signaled by the remaining 
EV_DETAILS events in the event queue. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 127 

4.65 h323_gateway_mode() - Set H.323 transfer gateway mode 
This function is used to set H.323 call transfer gateway mode and is required to 
facilitate H.323 call transfer across a network gateway.  

When enabled, the H.323 service will not respond to incoming call transfer messages 
as defined by H.450.2 but will instead raise an EV_EXT_TRANSFER_INFORMATION event 

when an Invoke or ReturnResult message is received or an EV_TRANSFER_REJECT 

when a ReturnError message is received. Furthermore, several H.323 Call Transfer 
messages can only be sent when gateway mode is enabled. 

Synopsis 
ACU_ERR h323_gateway_mode(H323_GATEWAY_MODE_PARMS* modep); 

typedef struct h323_gateway_mode_parms 

{ 

 ACU_ULONG             size;     /*IN*/ 

 ACU_PORT_ID           port_id;    /*IN*/ 

 ACU_INT               mode;     /*IN*/ 

} ACU_PACK_DIRECTIVE H323_GATEWAY_MODE_PARMS; 

Input parameters 

The h323_gateway_mode() function takes a pointer, modep, to a structure, 

H323_GATEWAY_MODE_PARMS. The structure must be initialised before invoking the 

function (see section 2.2). 

port_id 

The port_id field must be set to a valid port id (returned from a call to 

call_open_port()); 

mode 

The mode field is used to set the H.323 gateway mode. When set to IPT_ENABLED, 

H.323 gateway mode is enabled.  When set to IPT_DISABLED, H.323 gateway mode is 

disabled. 

Call Transfer 

The four functions; call_hold(), call_enquiry(), call_reconnect() and 

call_transfer() are used to implement call transfer and associated features. This 

section describes the order in which these calls must be made and how different 
signalling systems handle the call transfer procedure. 

Call transfer has been implemented on a single port basis (enquiry and held call must 
be on the same network port) for DPNSS, ETS300, NI2, DMS-100, and QSIG etc in 
accordance with the following documents. 

EuroISDN ETS300 196 Generic Functional Protocol for the Support of 
Supplementary Services.  

ETS300 369 Explicit Call Transfer (ECT). 

NI2 GR-2865-CORE Generic Requirements for ISDN PRI Two B-Channel 
Transfer. 

Or Nortel NIS-A211-1 ISDN Primary Rate User-Network Interface 
Specification (When –cNA1 switch applied) 

QSIG Call Transfer Supplementary Service. 

  (ISO/IEC 13869/13874, ECMA176/178, ETS300 259/261). 

DPNSS BTNR 188 - Sections 12 & 13 (Hold and Three Party Working. New Path 
only). 

H.323 H.450.2 Call transfer supplementary service for H.323. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 128 

SIP Session Initiated Protocol service examples – see 
http://www.ietf.org/internet-drafts/draft-ietf-sipping-service-examples-
09.txt  

DMS-100 Nortel NIS-A211-1 ISDN Primary Rate User-Network Interface 
Specification 

 

The normal process for making a call transfer is as follows: 

1. The call that is to be transferred is first put on hold by using call_hold(). 

2. An enquiry call is then made via a call to call_enquiry().  

3. Once the call is connected a transfer may be initiated by a call to 
call_transfer().  

A call in the held state may be reconnected via a call to call_reconnect(). 

For further details on call transfer with SIP, please see the Aculab SIP programmers 
guide. 

NOTE 

For protocols that do not support putting a call in a hold state, a call to call_hold 
will not result in anything being transmitted on the line with the request acting as 
a ‘dummy’ hold, and no error will be indicated to the application. This is 
deliberately designed so as to allow an application to be coded in exactly the 
same way as for a protocol that supports call hold, maintaining the generic 
nature of the call control API. 

 

For ETS300, NI-2, DMS-100, & QSIG the call transfer could also be requested when 
the enquiry call reaches the ringing (alerting) stage as follows: 

1. The call that is to be transferred is first put on hold by using call_hold(). 

2. An enquiry call is then made via a call to call_enquiry(). 

3. Once the call is alerting (EV_WAIT_FOR_ACCEPT) a transfer may be initiated by a 

call to call_transfer(). 

 (An enquiry call can be in an alerting state). 

NOTE 

For EuroISDN, call transfer in the alert state is an optional part of the 
protocol and therefore may not be supported by all networks. 

 

NOTE 

Call hold before a call transfer is optional for EuroISDN, DPNSS, NI-2, and 
DMS-100. A transfer can be done without the call first being put on hold. 
For EuroISDN, call transfer without hold is an  optional part of the protocol 
and therefore may not be supported by all networks 

 

NOTE 

For QSIG, only call transfer without hold is supported. 

 

NOTE 

For EuroISDN, call transfer without hold may not be supported by all 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 129 

networks. 

 

NOTE 

For H.323 the enquiry call may be virtual.  In this case no enquiry call is 
made on the network. call_enquiry() is called with the cnf flag set to 
CNF_TSVIRTUAL.  Additionally, for H.323 it is not necessary to place the 
call on hold first. 

 

NOTE 

For protocols that do not support putting a call in a hold state, a call to 
call_hold will not result in anything being transmitted on the wire, with no 
error indication returned to the calling application. This allows an 
application to be coded in the same way for both protocols that do, and 
protocols that do not, require a call to be put on hold. Maintaining the 
protocol independency  of the call control API. 

 

Once a call has been made to call_transfer() then the clear down procedure of the 

link will differ according to protocol and switch manufacturer. Protocols ETS300, NI2 
and DMS-100 will clear down the link on receipt of the transfer (if the switch permits 
the operation). Protocols DPNSS and QSIG will enter a transit state in which all 
messages will be passed transparently between the two parties involved. Once the 
switch has established that this link is redundant it will establish a direct link and tear 
down the redundant link, using either Route Optimisation (DPNSS) or Path 
Replacement (QSIG). 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 130 

4.66 call_hold() - Put a call on hold 
An incoming or outgoing call can be put on hold by use of the call_hold() function. 

To allow enhancements to the driver API this call will in turn call xcall_hold() that 

may be called directly. 

A successful hold will result in the state EV_HOLD. It is possible for a switch to reject a 

hold message sent by the Aculab software. If this happens the call will move to the 
state EV_HOLD_REJECT. For protocols that do not support hold then this function will 

automatically move the call to the state EV_HOLD. 

Synopsis 
ACU_ERR call_hold(int handle); 
 

ACU_ERR xcall_hold(HOLD_XPARMS *holdp); 

 

typedef struct hold_xparms 

{ 

  ACU_ULONG  size;    /* IN */ 

  ACU_CALL_HANDLE handle;   /* IN */ 

  union 

  { 

    struct 

    { 

      ACU_INT hold_type;  /* IN */ 

    } sig_h323; 

  } ACU_PACK_DIRECTIVE  unique_xparms; 

} HOLD_XPARMS; 

Input parameters 
call_hold() 

The input parameter handle identifies the call that is to be put on hold. 

xcall_hold() 

The xcall_hold() function takes a pointer, holdp, to a structure,HOLD_XPARMS. The 

structure must be initialised before invoking the function, (see section 2.2). 

handle  

The handle field identifies the call that is to be put on hold. 

H.323 Specific Parameters 
hold_type 

The hold_type field identifies the method of call hold to be used. Options are 

ACU_HOLD_NEAR_END (initiates a near end hold as defined in H.450.4), ACU_HOLD_REMOTE 

(initiates a remote hold as defined in H.450.4) or ACU_HOLD_MEDIA (initates a third party 

hold by sending an empty capability set). 

NOTE 

When an EV_HOLD event is detected a call to call_feature_details can 
determine the type of hold. 

Return values 

On successful completion a value of zero is returned. Otherwise a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 131 

4.67 call_reconnect() - Reconnect a call on hold 
A call that is in the held state can be reconnected by use of the call_reconnect() 

function. To allow enhancements to the driver API this call will in turn call 
xcall_reconnect() which may be called directly. This call will cause the call to return 

to the connected state. It is possible for a switch to reject a reconnect message sent 
by the application. If this happens the call will move to the state CS_RECONNECT_REJECT.  

NOTE 

For protocol reasons, an H.323 call may be in CS_HOLD state due to a 
remote pause, rather than because call_hold() has been called.  In this 
case, call_reconnect() cannot reconnect the call, and  
CS_RECONNECT_REJECT will be generated.  Such calls must be resumed 
remotely. 

 

Synopsis 
ACU_ERR call_reconnect(int handle); 

 

ACU_ERR xcall_reconnect(HOLD_XPARMS *holdp); 

 

typedef struct hold_xparms 

{ 

  ACU_ULONG    size;   /* IN */ 

  ACU_CALL_HANDLE  handle;   /* IN */ 

  union 

  { 

    struct 

    { 

      ACU_INT  hold_type;  /* IN */ 

    } sig_h323; 

  }ACU_PACK_DIRECTIVE  unique_xparms; 

} HOLD_XPARMS; 

Input parameters 
call_reconnect() 

The input parameter handle identifies the call that is to be reconnected. 

xcall_reconnect() 

The xcall_reconnect() function takes a pointer, holdp, to a structure,HOLD_XPARMS. 

The structure must be initialised before invoking the function, (see section 2.2).  

handle  

The handle field identifies the call that is to be reconnected. 

H.323 Specific Parameters 

hold_type 

The hold_type field identifies the method of call hold to be reconnected. Options are 

ACU_HOLD_NEAR_END (initiates a near end reconnect as defined in H.450.4), 

ACU_HOLD_REMOTE (initiates a remote reconnect as defined in H.450.4 or 

ACU_HOLD_MEDIA (initates a third party reconnect by sending a new capability set). 

Return values 

On successful completion a value of zero is returned. Otherwise a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 132 

4.68 call_enquiry() - Make an enquiry call 
During the process of call transfer, this function allows an application to make an 
enquiry call, that is, an outgoing call to a third party. 

The function is essentially the same as call_openout(), having all of the same call 

states and events. The function registers the enquiry call requirement with the device 
driver. If the driver is satisfied with the calling parameters, it will return a unique call 
handle. The call handle must be used in all successive call control related operations 
for this call. 

Synopsis 
ACU_ERR call_enquiry (struct out_xparms *enquiryp) 
 

NOTE 

For a full description of out_xparms, see the call_openout(). 

 

Input parameters 

The call_enquiry() function takes a pointer, enquiryp, to a structure,out_xparms. The 

structure must be initialised as specified for call_openout()before invoking the 

function. 

NOTE 

When choosing the time slot it is important to be aware of the type of 
transfer available for the protocol. For ETS300 it possible to use the 
timeslot of the held call and thus use fewer timeslots. To initiate such an 
enquiry the timeslot of the held party must be specified in the timeslot 
field of out_xparms. For NI2, QSIG and DPNSS the call must go out on a 
different timeslot. 

 

Return values 

On successful completion a value of zero is returned; otherwise a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 133 

4.69 call_transfer() - Call transfer 
After a successful enquiry call, the calls may be transferred by use of the 
call_transfer() function call. The enquiry call is deemed successful if the state of 

the enquiry call has reached CS_CONNECTED or CS_OUTGOING_RINGING (for ‘blind’ 

transfer). 

Synopsis 
ACU_ERR call_transfer(TRANSFER_XPARMS *transferp); 

 

typedef struct transfer_xparms 

{ 

  ACU_ULONG  size;   /* IN */ 

  ACU_INT  handlea;   /* IN */ 

  ACU_INT  handlec;   /* IN */ 

} TRANSFER_XPARMS; 

Input parameters 

The call_transfer() function takes a pointer, transferp, to a 

structure,TRANSFER_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

handlea  

The handlea field is the handle of the ‘A Party’, that is the handle of the call that is on 

hold. 

handlec  

The handlec field is the handle of the ‘C Party’ call, that is the handle for the enquiry 

call (returned by call_enquiry()). 

Example: 

INIT_ACU_CL_STRUCT (&transfer); 

transfer.handlea = hold_handle; 

transfer.handlec = enquiry_handle; 

call_transfer(&transfer);  

Return values 

On successful completion a value of zero is returned; otherwise a negative value will 
be returned indicating the type of error. 

Some protocols have the ability to reject transfer messages. If the switch rejects the 
transfer then an EV_TRANSFER_REJECT event will be received on the enquiry call. For 

ETS300 or QSIG this event can be received on either of the two calls involved in the 
transfer. If no rejection message is received then the held and enquiry calls will stay 
in the same state until the switch clears down the calls. For ETS300, and NI2 this 
should be almost instantaneous. With QSIG and DPNSS this process takes longer as 
the switch must optimise the link and use an alternative path. 

Resilience framework 

This feature provides a framework in which application level resilience may be built 
into call control networks. Multiple redundant call control applications are executed in 
such a way that a “spare” application may recover calls originally setup by a 
redundant application. 

API support for redundant applications 

By default Aculab telephony software exhibits a simple client-server based behaviour 
regarding the conservation of call control resources. When an application abnormally 
terminates the Aculab telephony software hosting any calls left open are configured to 
“clear down” those calls and return any associated resource. Such behaviour is 
detrimental to a system wishing to provide application-level resilience, which would 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 134 

prefer that a spare application recover calls left by a now defunct application. 

The following APIs permit the original application to enquire of a system unique 
identifier for call, and in doing so instruct the server software not to clear this call in 
the event of application demise. The identifier acquired by call_get_failover_id() 

may be saved to a storage mechanism of choice. The ownership of a call modified by 
the previous functionality may then be transferred to a different application through 
call_reopen(). 

The resilience APIs are intended to provide an initial foundation for the use of 
application writers. The application writer must supply additional resources to “glue” 
the overall system together. An essential component for such a system is a storage 
medium, for example a network file system or shared memory, in order that failover 
identifiers and call information may be saved and retrieved. Additionally, a scheme for 
detecting application failures must be devised to determine when to activate backup 
applications. 

The requisite APIs are detailed below.  

NOTE 

These resilience functions are not supported by all signalling protocols: 
please refer to the specific signalling protocol firmware release notes for 
further clarification. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 135 

4.70 call_get_failover_id() - Get unique identifier for a call 
The routine call_get_failover_id() provides the facility of retrieving a unique 

identifier for a call. The Aculab Call handle is not sufficient for this purpose as it is 
only unique on a particular chassis and not unique to the issuing software/firmware in 
distributed scenarios. After the failover identifier has been collected, the Aculab 
telephony software relinquishes the requirement to clear down that particular call on 
application termination. The calling application may save this identifier to a storage 
medium for future reference. All aspects of call control are still permitted using the 
current call handle by the original application after executing 
call_get_failover_id(). 

The failover identifier may be retrieved by another application and used to "re-open" 
the original call. It is the application developer’s responsibility to remove the identifier 
from storage when the “last owned” call handle has been released.  

A failover identifier may only be collected from a call handle when that call is in an 
appropriate state:  

• For SIP, all states except EV_WAIT_FOR_INCOMING are valid 

• For ISDN, the call must have valid call details 

ERR_COMMAND will be returned if call_get_failover_id() is called for a handle in an 

invalid state. 

Synopsis 
ACU_ERR call_get_failover_id(CALL_GET_FAILOVER_ID_PARMS* parms);  

 

typedef struct tCALL_GET_FAILOVER_ID_PARMS 

{ 

 ACU_ULONG   size;  /* IN */ 

 ACU_CALL_HANDLE handle;  /* IN */ 

 ACU_FAILOVER_ID failover_id; /* OUT */ 

} CALL_GET_FAILOVER_ID_PARMS; 

 

The function call_get_failover_id () takes a pointer to a structure 

CALL_GET_FAILOVER_ID_PARMS. The structure must be initialised before invoking the 

function. 

Input Parameters 
handle 

The handle field contains the Aculab call handle relating the call whose failover 
identifier we wish to retrieve. 

Return Values 
failover_id 

On successful execution a 64 bit failover identifier value for the call will be written to 
this field.  

On successful completion, a value of zero is returned. The following codes may be 
returned to report errors: 

ERR_HANDLE  Supplied handle was invalid 

ERR_COMMAND  Call was in inappropriate state for the command to complete 

ERR_CFAIL  Unspecific error occurred 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 136 

4.71 call_reopen() - Recover a handle to an earlier call 
This routine acquires a handle to a call which was previously opened and in which a 
failover identifier has been retrieved. When the recovering application successfully re-
opens a call, the "ownership" of that call is transferred from the previous application 
to this recovering application. Call control operations will be invalid on the handle in 
the previous application, any subsequent function calls receiving an ERR_HANDLE 

return. Call control events will now be raised to the re-opening program. It is possible 
for a call to re-opened several times once a failover id has been acquired. 

When a call has been successfully re-opened, the last call control event is presented 
to the new application to assist the synchronisation of the call control state machine. 

Synopsis 

ACU_ERR call_reopen(CALL_REOPEN_PARMS* parms);    

 

typedef struct tCALL_REOPEN_PARMS 

{ 

 ACU_ULONG   size;   /* IN */ 

 ACU_PORT_ID  net;    /* IN */ 

 ACU_FAILOVER_ID failover_id;  /* IN */ 

 ACU_EVENT_QUEUE queue_id;   /* IN */ 

 ACU_ACT   app_context_token; /* IN */ 

 ACU_CALL_HANDLE handle;   /* OUT */ 

} CALL_REOPEN_PARMS; 

Input parameters 
net 

The port id in which this call is to be opened on. 

failover_id 

Unique identifier for the call as collected by call_get_failover_id. 

queue_id 

The event queue to which events for this call should be sent. This must be either a 
unique event queue identity as returned by acu_allocate_event_queue() or zero to 

denote the default call event queue for the port that this call is made on. 

app_context_token 

An application specific token which may be returned with call events for this call. 

Return values 
handle 

An application specific handle to the recovered call. 

On successful completion, a value of zero is returned. The following codes may be 
returned to report errors: 

ERR_HANDLE Supplied handle was invalid 

ERR_CFAIL Unspecific error occurred 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 137 

4.72 call_reattach_fmw() – Reattach the call driver to running signaling firmware. 
This routine allows a new call driver to attach to a port’s firmware whose original 
driver is now defunct. Reattachment is necessary as it allows a call driver to 
synchronize with a running firmware and gain knowledge of any existing calls. After 
reattachment, applications may gain access to existing calls using call_reopen(). 

Subsequent to invoking this routine, call control by the original call driver is no longer 
possible.  

Synopsis 
ACU_ERR call_reattach_fmw(CALL_REATTACH_PARMS* parms); 

    

typedef struct call_reattach_parms   

{ 

  ACU_ULONG  size;      /*IN*/ 

  ACU_PORT_ID net;       /*IN*/ 

  ACU_CHAR  config_string[CL_MAX_FMW_PARMS]; /*IN*/ 

} ACU_PACK_DIRECTIVE CALL_REATTACH_PARMS; 

Input parameters 
net 

The port id where running signalling firmware resides. 

config_string  

A null terminated string containing the protocol configuration command line 
arguments that were implemented at firmware download (for example, -c and -s 
switches). 

Return values 

ERR_NOT_IMPLEMENTED Function not implemented for hardware. 

ERR_COMMAND Function called when firmware is in an inappropriate state.  

ERR_CFAIL Unspecific error occurred 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 138 

4.73 call_release_lost_failover_ids() – Release any unattached call handles. 
Under certain circumstances the application may no longer have any record of the 
failover identifiers currently associated with calls on the system. If this happens then 
the resources associated with these calls can be released by using this routine. Any 
calls in progress will be cleared down. 

Synopsis 
ACU_ERR call_release_lost_failover_ids(CALL_RELEASE_LOST_FAILOVER_IDS_PARMS* 

parms); 

typedef struct tCALL_RELEASE_LOST_FAILOVER_IDS_PARMS 

{ 

 ACU_ULONG  size; /* IN */ 

 ACU_PORT_ID  net;  /* IN */ 

} ACU_PACK_DIRECTIVE CALL_RELEASE_LOST_FAILOVER_IDS_PARMS; 

Input parameters 
net 

The port id in which this call is to be opened on. 

Return values 
On successful completion, a value of zero is returned. The following codes may be 
returned to report errors: 

ERR_CFAIL Unspecific error occurred 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 139 

4.74 call_change_media() – Change the media for an existing call 
An existing (audio) call can be renegotiated to by use of the call_change_media() 

function, for example to change the call to use T38 Fax.  

A successful negotiation will result in the extended state 
EV_EXT_MEDIA_CHANGE_ACCEPT, followed by EV_EXT_MEDIA_CHANGE_COMPLETED. If the 

negototiation fails EV_EXT_MEDIA_CHANGE_REJECT or EV_EXT_MEDIA_CHANGE_TIMEOUT (i.e. 

no response) will be raised. 

Synopsis 
ACU_ERR call_change_media(CALL_CHANGE_MEDIA_PARMS* mediap); 
 

typedef struct call_change_media_parms 

{ 

  ACU_ULONG             size; 

  ACU_CALL_HANDLE       handle; /*IN*/ 

  union 

  { 

    union 

    {  

      struct 

      { 

        ACU_CHAR local_rtp_address[ACU_MAX_IP_ADDRESS]; /*IN*/ 

        ACU_UINT local_rtp_port;          /*IN*/ 

        ACU_CHAR local_rtcp_address[ACU_MAX_IP_ADDRESS];/*IN*/ 

        ACU_UINT local_rtcp_port;          /*IN*/ 

        ACU_CHAR remote_rtp_address[ACU_MAX_IP_ADDRESS]; 

        ACU_UINT remote_rtp_port; 

        ACU_CHAR remote_rtcp_address[ACU_MAX_IP_ADDRESS]; 

        ACU_UINT remote_rtcp_port; 

        union 

        { 

          struct 

          { 

            struct 

            { 

              ACU_UINT    transport_type; /*IN*/ 

              ACU_UINT    bit_rate; /*IN*/ 

              ACU_UINT    fill_bit_removal; /*IN*/ 

              ACU_UINT    transcoding_jbig; /*IN*/ 

              ACU_UINT    transcoding_mmr; /*IN*/ 

              ACU_UINT    version; /*IN*/ 

              ACU_UINT    fax_rate_management; /*IN*/ 

              ACU_UINT    udp_max_buffer; /*IN*/ 

              ACU_UINT    udp_max_datagram; /*IN*/ 

              ACU_UINT    udp_error_correction;/*IN*/ 

              ACU_UINT    tcp_bidirectional; /*IN*/ 

            } t38Fax; 

          } data;           

        } media; 

        ACU_UINT reject_reason; 

      } sig_h323;       

    } sig_iptel; 

  } unique_xparms; 

} ACU_PACK_DIRECTIVE CALL_CHANGE_MEDIA_PARMS; 

Input parameters 
call_change_media() 

The call_change_media() function takes a pointer, mediap, to a 

structure,CALL_CHANGE_MEDIA_PARMS. The structure must be initialised before invoking 

the function, (see section 2.2). 

handle  

The handle field identifies the call that is to have its media changed. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 140 

H.323 Specific Parameters 
local_rtp_address 

The local_rtp_address field contains the IP address that the remote endpoint should 

use to send rtp data to. 

local_rtp_port 

The local_rtp_port field contains the IP port that the remote endpoint should use to 

send rtp data to. 

local_rtcp_address 

The local_rtcp_address field contains the IP address that the remote endpoint 

should use to send rtcp data to. 

local_rtcp_port 

The local_rtcp_port field contains the IP port that the remote endpoint should use to 

send rtcp data to. 

H.323 T38 Fax Specific Parameters 

The media.data.t38Fax structure contains a number of fields that can be used to 
negotiate a T38 fax call. Not all settings may be appropriate and will depend on the 
capabilities of the T38 software. 

transport_type 

The transport_type field indicates whether UDP or TCP should be used. For UDP 

this field should be set to T38_FAX_TRANSPORT_UDP. For TCP this field should be set to 
T38_FAX_TRANSPORT_TCP. 

bit_rate 

The bit_rate field contains the requested bit rate in units of 100 bit/s. 

fill_bit_rate 

The fill_bit_rate field if set to 1 indicates that it has the ability to remove and insert 

fill bits. 

transcoding_jbig 

The transcoding_jbig field if set to 1 indicates that the gateway has the ability to 

transcode in real time between the line compression and JBIG for transfer over the IP 
network. 

transcoding_mmr 

The transcoding_mmr field if set to 1 indicates that the gateway has the ability to 

transcode in real time between the line compression and MMR for transfer over the IP 
network. 

version 

The version field indicates the version of T38 used. It should be set to one of the 

following values T38_FAX_VERSION_1, T38_FAX_VERSION_2 or T38_FAX_VERSION_3. 

fax_rate_management 

The fax_rate_management field indicates whether local generation of TCF is required 

(for TCP) or if transfer of TCF is required (UDP). It should be set to one of the 
following values T38_FAX_RATE_MANAGEMENT_LOCAL_TCF or 

T38_FAX_RATE_MANAGEMENT_TRANSFERRED_TCF. 

udp_max_buffer 

The udp_max_buffer field, if set to a non-zero value, indicates the maximum number 

of octets that can be stored before an overflow condition occurs. The default is 0, 
indicating that there is no maximum value. 

udp_max_datagram 

The udp_max_datagram field, if set to a non-zero value, indicates the maximum size of 

a packet that can be received. The default is 0, indicating that there is no maximum 
size. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 141 

udp_error_correction 

The udp_error_correction field indicates whether FEC (RFC 2733) or redundancy 

(RFC 2198) error correction is to be used. It should be set to one of the following 
values T38_FAX_ERROR_CORRECTION_FEC or T38_FAX_ERROR_CORRECTION_REDUNDANCY. 

tcp_bidirectional 

The tcp_bidirectional field if set to 1 indicates support for single bidirectional 

channels. 

NOTE 

For H323 Any media successfully negotiated using this function will no 
longer be managed by the H323 service and will instead be under the 
control of the application. 

 

Return values 

On successful completion a value of zero is returned. Otherwise a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 142 

4.75 call_change_media_accept() 
The event EV_EXT_MEDIA_CHANGE_REQUEST indicates a change to the media associated 

with a call. To accept this change the call_change_media_accept() function must be 

used.  

When the negotiation is completed the extended event 
EV_EXT_MEDIA_CHANGE_COMPLETED is raised. 

Synopsis 
ACU_ERR call_change_media_accept(CALL_CHANGE_MEDIA_ACCEPT_PARMS* acceptp); 

 

typedef struct call_change_media_accept_parms 

{ 

 ACU_ULONG            size; 

 ACU_CALL_HANDLE      handle; /*IN*/ 

 union 

 { 

  union 

  {    

   struct 

   { 

    ACU_CHAR rtp_address[ACU_MAX_IP_ADDRESS]; /*IN*/ 

    ACU_UINT rtp_port; /*IN*/ 

    ACU_CHAR rtcp_address[ACU_MAX_IP_ADDRESS]; /*IN*/ 

    ACU_UINT rtcp_port; /*IN*/ 

   } sig_h323;    

  } sig_iptel; 

 } unique_xparms; 

} ACU_PACK_DIRECTIVE CALL_CHANGE_MEDIA_ACCEPT_PARMS; 

Input parameters 
call_change_media_accept() 

The call_change_media_accept() function takes a pointer, acceptp, to a 

structure,CALL_CHANGE_MEDIA_ACCEPT_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2). 

handle  

The handle field identifies the call that is to have its media changed. 

H.323 Specific Parameters 
rtp_address 

The rtp_address field contains the IP address that the remote endpoint should use to 

send rtp data to. 

rtp_port 

The rtp_port field contains the IP port that the remote endpoint should use to send 

rtp data to. 

rtcp_address 

The rtcp_address field contains the IP address that the remote endpoint should use 

to send rtcp data to. 

rtcp_port 

The rtcp_port field contains the IP port that the remote endpoint should use to send 

rtcp data to. 

NOTE 

For H323 Any media successfully negotiated using this function will no 
longer be managed by the H323 service and will instead be under the 
control of the application. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 143 

Return values 

On successful completion a value of zero is returned. Otherwise a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 144 

4.76 call_change_media_reject() 
The event EV_EXT_MEDIA_CHANGE_REQUEST indicates a change to the media associated 

with a call. To reject this change the call_change_media_reject() function must be 

used.  

Synopsis 
ACU_ERR call_change_media_reject(CALL_CHANGE_MEDIA_REJECT_PARMS* rejectp); 

 

typedef struct call_change_media_reject_parms 

{ 

 ACU_ULONG             size; 

 ACU_CALL_HANDLE    handle; /*IN*/ 

 ACU_UINT      reason; /*IN*/ 

} ACU_PACK_DIRECTIVE CALL_CHANGE_MEDIA_REJECT_PARMS; 

Input parameters 
call_change_media_reject() 

The call_change_media_reject() function takes a pointer, rejectp, to a 

structure,CALL_CHANGE_MEDIA_REJECT_PARMS. The structure must be initialised before 

invoking the function, (see section 2.2). 

handle  

The handle field identifies the call that is to have its media changed. 

reason 

The reason field must be set ot a value that indicates the reason for rejecting the 

proposed media change. For H323 possible values are 
H323_MEDIA_REJECT_MODE_UNAVAILABLE, H323_MEDIA_REJECT_MULTIPOINT_CONSTRAINT 

and H323_MEDIA_REJECT_REQUEST_DENIED. 

Return values 

On successful completion a value of zero is returned. Otherwise a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 145 

4.77 call_media_details() – Get details of a change of media for an existing call 
When one of the following events EV_EXT_MEDIA_CHANGE_REQUEST, 

EV_EXT_MEDIA_CHANGE_REJECT or EV_EXT_MEDIA_CHANGE_COMPLETED is raised there will 

be information available for the application to use. To collect this information 
call_media_details() should be called. 

Synopsis 
ACU_ERR call_change_media(CALL_CHANGE_MEDIA_PARMS* detailsp); 
 

typedef struct call_change_media_parms 

{ 

  ACU_ULONG             size; 

  ACU_CALL_HANDLE       handle; /*IN*/ 

  union 

  { 

    union 

    { 

      struct 

      { 

        ACU_CHAR local_rtp_address[ACU_MAX_IP_ADDRESS]; /* OUT */ 

        ACU_UINT local_rtp_port;          /* OUT */ 

        ACU_CHAR local_rtcp_address[ACU_MAX_IP_ADDRESS]; /* OUT */ 

        ACU_UINT local_rtcp_port;          /* OUT */ 

        ACU_CHAR remote_rtp_address[ACU_MAX_IP_ADDRESS]; /* OUT */ 

        ACU_UINT remote_rtp_port;          /* OUT */ 

        ACU_CHAR remote_rtcp_address[ACU_MAX_IP_ADDRESS]; /* OUT */ 

        ACU_UINT remote_rtcp_port; /* OUT */ 

        union 

        { 

          struct 

          { 

            struct 

            { 

              ACU_UINT    transport_type; /* OUT */ 

              ACU_UINT    bit_rate; /* OUT */ 

              ACU_UINT    fill_bit_removal; /* OUT */ 

              ACU_UINT    transcoding_jbig; /* OUT */ 

              ACU_UINT    transcoding_mmr; /* OUT */ 

              ACU_UINT    version; /* OUT */ 

              ACU_UINT    fax_rate_management; /* OUT */ 

              ACU_UINT    udp_max_buffer; /* OUT */ 

              ACU_UINT    udp_max_datagram; /* OUT */ 

              ACU_UINT    udp_error_correction; /* OUT */ 

              ACU_UINT    tcp_bidirectional; /* OUT */ 

            } t38Fax; 

          } data;           

        } media; 

        ACU_UINT reject_reason; /* OUT */ 

      } sig_h323;       

    } sig_iptel; 

  } unique_xparms; 

} ACU_PACK_DIRECTIVE CALL_CHANGE_MEDIA_PARMS; 

Input parameters 
call_media_details() 

The call_media_details() function takes a pointer, detailsp, to a 

structure,CALL_CHANGE_MEDIA_PARMS. The structure must be initialised before invoking 

the function, (see section 2.2). 

handle  

The handle field identifies the call for which details should be collected. 

H.323 Specific Parameters 
local_rtp_address 

The local_rtp_address field contains the IP address that the remote endpoint will use 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 146 

to send rtp data to. 

local_rtp_port 

The local_rtp_port field contains the IP port that the remote endpoint will use to 

send rtp data to. 

local_rtcp_address 

The local_rtcp_address field contains the IP address that the remote endpoint 

should use to send rtcp data to. 

local_rtcp_port 

The local_rtcp_port field contains the IP port that the remote endpoint should use to 

send rtcp data to. 

remote_rtp_address 

The remote_rtp_address field contains the IP address that the local endpoint will use 

to send rtp data to. 

remote_rtp_port 

The remote_rtp_port field contains the IP port that the local endpoint will use to send 

rtp data to. 

remote_rtcp_address 

The remote_rtcp_address field contains the IP address that the local endpoint should 

use to send rtcp data to. 

remote_rtcp_port 

The remote_rtcp_port field contains the IP port that the local endpoint should use to 

send rtcp data to. 

reject_reason 

The reject_reason field contains the reason a proposed media change was rejected 

by the remote end. Possible reasons are H323_MEDIA_REJECT_MODE_UNAVAILABLE, 

H323_MEDIA_REJECT_MULTIPOINT_CONSTRAINT and H323_MEDIA_REJECT_REQUEST_DENIED. 

This field will only be set after a EV_EXT_MEDIA_CHANGE_REJECTED event. 

The remote_rtp_address, remote_rtp_port, remote_rtcp_address and 

remote_rtcp_port fields will only be ready to read after receiving the 

EV_EXT_MEDIA_CHANGE_COMPLETED event. 

H.323 T38 Fax Specific Parameters 
transport_type 

The transport_type field indicates whether UDP or TCP should be used. For UDP 

this field will be set to T38_FAX_TRANSPORT_UDP. For TCP this field will be set to 
T38_FAX_TRANSPORT_TCP. 

bit_rate 

The bit_rate field contains the requested bit rate in units of 100 bit/s. 

fill_bit_rate 

The fill_bit_rate field if set to 1 indicates the ability to remove and insert fill bits. 

transcoding_jbig 

The transcoding_jbig field if set to 1 indicates the ability to transcode in real time 

between the line compression and JBIG for transfer over the IP network. 

transcoding_mmr 

The transcoding_mmr field if set to 1 indicates the ability to transcode in real time 

between the line compression and MMR for transfer over the IP network. 

version 

The version field indicates the version of T38 used. It will be set to one of the 

following values T38_FAX_VERSION_1, T38_FAX_VERSION_2 or T38_FAX_VERSION_3. 

fax_rate_management 

The fax_rate_management field indicates whether local generation of TCF is required 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 147 

(for TCP) or if transfer of TCF is required (UDP). It will be set to one of the following 
values T38_FAX_RATE_MANAGEMENT_LOCAL_TCF or 

T38_FAX_RATE_MANAGEMENT_TRANSFERRED_TCF. 

udp_max_buffer 

The udp_max_buffer field, if set to a non-zero value, indicates the maximum number 

of octets that can be stored before an overflow condition occurs. The default is 0, 
indicating that there is no maximum value. 

udp_max_datagram 

The udp_max_datagram field, if set to a non-zero value, indicates the maximum size of 

a packet that can be received. The default is 0, indicating that there is no maximum 
size. 

udp_error_correction 

The udp_error_correction field indicates whether FEC (RFC 2733) or redundancy 

(RFC 2198) error correction is to be used. It will be set to one of the following values 
T38_FAX_ERROR_CORRECTION_FEC or T38_FAX_ERROR_CORRECTION_REDUNDANCY. 

tcp_bidirectional. 

The tcp_bidirectional field if set to 1 indicates support for single bidirectional 

channels. 

The fields in the t38Fax struct will be available to read after receiving a 

EV_EXT_MEDIA_CHANGE_REQUEST event. 

Return values 

On successful completion a value of zero is returned. Otherwise a negative value will 
be returned indicating the type of error. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 148 

5 Miscellaneous functions 
The multiple device driver API supports a mixture of Aculab cards in the same 
system. The following functions are provided so that an application can obtain: 

the direction of a call 

the port number for a particular handle 

to convert a handle to logical channel number 

NOTE 

These functions do not make calls to the device driver but are resolved by 
the library. 

 

API Description 
call_port_2_swdrvr() Used to obtain the switch id relating to a particular 

port id. This switch id may then be used to access a 
particular switch in a multiple switch driver 
environment. (See Switch Control API Guide). 

call_handle_2_io() Used to convert a given call reference value or 
handle to an indication of call direction. 

call_handle_2_port() Used to convert a given handle to its equivalent port 
id number. 

call_handle_2_chan() Used to convert a given handle to a logical channel 
number, which may be useful as an index into a 
control structure array. This removes the 
requirement for scanning control structure arrays for 
any given handle value. 

call_get_port_dsp_stea

m() 
Used to retrieve a trunk DSP stream that was 
allocated to a network port at protocol firmware 
download time 

idle_net_ts() Used to write the IDLE pattern on to a given network 
stream and timeslot once the call has been 
terminated. 

call_api_version() 

 

Returns the revision number of the API with any 
additional note as applicable. 

 

NOTE 

It is now possible to associate data with a call, so the above techniques are 
included for backwards compatibility. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 149 

5.1 call_port_2_swdrvr() - Determine port’s switch 
This function may be used to obtain the switch id relating to a particular network port. 
This switch id may then be used to access a particular switch in a multiple switch 
driver environment. (See Switch Control API Guide).  

 

NOTE 

For information on downloading firmware to an IP telephony card refer to 
the IP Telephony Card V6 API Guide. 

Synopsis 
ACU_ERR call_port_2_swdrvr(ACU_PORT_ID portnum); 

Input parameters 

The input parameter portnum identifies the network port number for which the switch 

driver number is required and will have a valid port id as returned from 
call_open_port(). 

Return values 

On successful completion the function will either return the switch id number relating 
to the port id provided or a negative value will be returned indicating the type of error 
(see Error Codes). 

5.2 call_handle_2_io() - Convert handle to call direction 
This function can be used to determine call direction the given handle. 

Synopsis 
ACU_ERR call_handle_2_io(ACU_CALL_HANDLE handle); 

Input parameters 

The input parameter handle must contain a valid call handle. 

Return values 

On completion, the function will return: 

0 - Incoming call 

1 - Outgoing call 

2 – Enquiry call 

The return value may be useful as an index into an array of control structures 
selecting either incoming outgoing calls. 

NOTE 

In V6 it is prefereable to associate data with a call handle using the 
app_context_token field of call_openin() or call_openout(). 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 150 

5.3 call_handle_2_port() - Determine port_id of a given handle 
This function can be used to determine the port_id given. 

Synopsis 
ACU_ERR call_handle_2_port(ACU_CALL_HANDLE handle); 

Input parameters  

The input parameter handle must contain a valid call handle. 

Return values 

On successful completion the function will return valid port id as returned from 
call_open_port() with the given handle. Otherwise a negative value will be returned 

indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 151 

5.4 call_handle_2_chan() - Convert handle to logical channel number 
This function can be used to convert a given handle to a logical channel number, 
which may be useful as an index into a control structure array. This removes the 
requirement for scanning control structure arrays for any given handle value. 

NOTE 

call_handle_2_chan() is deprecated.  to associate data with a call, use the 
app_context_token field of call_openin() or call_openout() 

 

NOTE 

Traditionally the maximum number of channels achievable in a particular 
direction on a particular port was limited to NCHAN (255).  When using IP 
Telephony, especially when an application is not using any media 
processing resources for a call, it is possible to allocate more than 
NCHAN calls on a single port.  When this happens, call_handle_2_chan() 
will return a channel larger than NCHAN.  NCHAN has not been changed 
for backwards compatibility reasons. 

 

The logical channel has no relationship with the timeslot value. The timeslot value 
can only be obtained using the call_details() API call. 

Synopsis 
ACU_ERR call_handle_2_chan(ACU_CALL_HANDLE handle); 

Input parameters 

The input parameter handle must contain a valid call handle. 

Return values 

On successful completion the function will return the value of the logical channel 
associated with this handle and will have the range 0 - 255. Otherwise a negative 

value will be returned indicating the type of error. 

NOTE 

The channel number is only unique for the port the call is on. 

 

NOTE 

The channel number returned is not the timeslot number but is the number 
of the call control block in the device driver responsible for this call. When 
the call is in progress the timeslot will be dynamically assigned to a 
control block. 

 

There is no function in the Aculab API that can convert a call handle to a timeslot. If 
you need to ascertain the timeslot then use the handle in conjunction with the 
call_details() function to obtain this information. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 152 

5.5 call_get_port_dsp_stream() – Retrieve a trunk DSP stream allocated to a  
network port.  
This function is used to retrieve a trunk DSP stream that was allocated to a network 
port at protocol firmware download time.  

NOTE 

Currently only supported by PMX hardware. 

 

Synopsis 
ACU_ERR call_get_port_dsp_stream (CALL_DSP_STREAM_PARMS* parms);    

 

typedef struct tCALL_DSP_STREAM_PARMS   

{            

ACU_ULONG size;     /*IN*/ 

ACU_PORT_ID port_id;     /*IN*/ 

ACU_UINT stream;     /*OUT*/ 

} ACU_PACK_DIRECTIVE CALL_DSP_STREAM_PARMS; 

 

Input parameters 
Port_id 

The port id where running signalling firmware resides. 

Return values 
Stream 

The associated Trunk DSP stream. 

On successful completion, a value of zero is returned; otherwise a negative value will 
be returned indicting the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 153 

5.6 idle_net_ts() - Write the IDLE pattern to the network timeslot 
This function may be used to write the IDLE pattern on to a given network stream and 
timeslot once the call has been terminated. 

Synopsis 
ACU_ERR idle_net_ts(ACU_PORT_ID portnum, int timeslot) 

 

NOTE 

This function makes use of the switch API and, as such, will only function 
correctly if the application has already opened the card for switch API use 
using the acu_open_switch() function. 

Input parameters 

The input parameter portnum identifies the network port id for which the stream 

number is required and will have a valid port id as returned from call_open_port(). 

The input parameter timeslot must contain a valid timeslot number on the network 

stream specified by portnum to which the IDLE pattern is to be written. 

 

NOTE 

It is important that this function should be used especially when using CAS tone 
signaling. Calling the function at the end of the incoming or outgoing call will 
ensure that the tone detect logic is reconnected to the network port ready to 
process the next call. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 154 

5.7 call_api_version() 
Returns the revision number of the API with any additional note as applicable. 

Synopsis  
ACU_ERR call_api_version(CALL_API_VERSION_PARMS* version); 

 

typedef struct tCALL_API_VERSION_PARMS 

{ 

  ACU_UINT   size;    // IN 

  ACU_UINT   major;    // OUT 

  ACU_UINT   minor;    // OUT 

  ACU_UINT   rev;     // OUT 

  ACU_CHAR   desc[MAX_VER_DESC]; // OUT 

} CALL_API_VERSION_PARMS; 

Returns 
major 

The first numerical value of the revison. 

minor 

The second numerical value of the revision. 

rev 

The third numerical value of the revision. 

desc 

A null terminated string containing human readable text describing the version, for 
example: 

6.1.3 Beta 

On successful completion a value of zero is returned. Otherwise a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 155 

6 Downloading and Configuring Firmware 
The section of the guide describes the functions available in the library to allow the 
signalling system firmware to be downloaded onto Aculab cards via the device driver 
or allow the signalling system to be reset and restarted. 

API Description 
call_restart_fmw() Used to restart or change the configuration of the signalling 

system firmware on a port on an Aculab card without having 
to reboot the machine. The function will cause the selected 
port processor on the card to be reset and the firmware to be 
downloaded.  

call_reconfig_fmw () Used to reconfigure the –s switches for the signalling system 
firmware without restarting the firmware. 

call_stop_fmw() This function is used to stop the firmware on a port. 

call_is_download() Used to ascertain whether signalling system firmware should 
be downloaded to a port. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 156 

6.1 call_restart_fmw() - Restart signalling system firmware 
This function is used to restart or change the configuration of the signalling system 
firmware on a port on an Aculab card without having to reboot the machine. The 
function will cause the selected port processor on the card to be reset and the 
firmware to be downloaded. The call_restart_fmw() function may be used to effect 

the initial firmware download.  

Synopsis 
ACU_ERR call_restart_fmw(RESTART_XPARMS *restartp); 
 

typedef struct restart_xparms 

{ 

  ACU_ULONG   size;    /* IN */ 

  ACU_PORT_ID  net;    /* IN */ 

  ACU_CHAR   *filenamep;   /* IN */ 

  ACU_CHAR   *config_stringp;  /* IN */ 

  ACU_CHAR   *dspa_filenamep;  /* Not used */ 

  ACU_CHAR   *dspb_filenamep;  /* Not used */ 

} RESTART_XPARMS; 

Input parameters 

The call_restart_fmw() function takes a pointer, restartp, to a 

structure,RESTART_XPARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

net  

The net field must contain the network port_id on the card on which the signalling 

system firmware is to be restarted, as returned from call_open_port(). 

filenamep  

The filenamep field must contain a pointer to a null terminated ASCII string containing 

the name of the firmware file to be downloaded including any path or drive symbol 
information required to access that file.  

config_stringp  

The config_stringp field must contain a pointer to a null terminated ASCII string of 

configuration information for the signalling system. This information is described in 
the Call, Switch and Speech Installation Guide. 

For example: 

struct restart_xparms rxp; 

rxp.config_stringp = “-cNE -cD4”; 

NOTE 

If no configuration information is provided, then config_stringp must 
contain a pointer to an empty string. Only Call driver configuration options 
may be used in this field. Any hardware configuration options must be 
already configured in the appropriate way for the system. 

 

Return values 

On successful completion a value of zero is returned, otherwise a negative value will 
be returned indicating the type of error. 

The call_restart_fmw() function will reset the processor and hardware on the 

specified port only, none of the other ports will be affected. The configuration 
switches will be read prior to starting the firmware. The file presented for downloading 
will then be read by the library, verified that it is a firmware file, transferred to the 
Aculab card and executed by the on board monitor. The driver will check the firmware 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 157 

to ensure that it can be supported and the device driver will then register it for use. 

NOTE 

Before restarting the firmware ensure that: 

• there are no calls in progress 
• there are no open call handles 
• there are no processes blocked in the device driver 

NOTE 

After restarting: 

• the network port must be re-initialised 
• if the network was the clock reference for the system, the clock reference must 

be re-established either from the network or the MVIP|\SC-Bus\H100 bus. 
It is recommended that the restart procedure be used to change modes of operation 
of the signalling system and not as a method of restarting a ‘runaway’ application. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 158 

6.2 call_reconfig_fmw () – reconfigure the signalling system firmware 
This function is used to reconfigure the –s switches for the signalling system firmware 
without restarting the firmware. This function is only supported for these signalling 
systems – EuroISDN, QSIG, NI-2, AT&T T1, CAS (T1RB) and ISUP/SS7. 

ACU_ERR call_reconfig_fmw (RECONFIG_XPARMS *reconfig) 

 

typedef struct reconfig_xparms 

{ 

 ACU_ULONG  size; 

 ACU_PORT_ID net; 

 ACU_CHAR*  switch_stringp; 

} RECONFIG_XPARMS; 

Description 

This function call can be used to reconfigure firmware parameters (-s switches). 
Except for ISUP only the the –s99,n switch is supported. 

Input Parameters 
net 

This field must contain the network port_id on the card for which the firmware is to 

be reconfigured. 

switch_stringp 

A null terminated string holding the firmware download switches to be reconfigured. 

NOTE 

Except for ISUP/SS7 only the –s99,xx switch is supported and the string 
returned by call_get_fmw_dl_parms() is not updated (See the firmware 
release notes for a description of this switch). 

 

NOTE 

ISUP/SS7 allows ISUP circuits and MTP2 signalling links be added or 
removed, call_get_fmw_dl_params() will return an updated string. 
Layer 1 parameters cannot be changed. 
Refer to the SS7 Installation and Admin guide for further information. 

 

Example: 

RECONFIG_XPARMS reconfig; 

char switch_string[15]; 

ACU_ERR result; 

 

strcpy(switch_string, "-s99,224"); /* -s99,224 to turn trace on / -s99,0 to 

turn trace off */ 

INIT_ACU_CL_STRUCT (&reconfig); 

reconfig.net = port_id; 

reconfig.switch_stringp = switch_string; 

result = call_reconfig_fmw(&reconfig); 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 159 

6.3 call_stop_fmw() 
This function is used to stop the firmware on a port. 

For cards that can be controlled by multiple hosts, this function will relinquish control 
of the port so that another host can use it. 

NOTE 

It is up to the developer to synchronise access to different resources 
between applications running on different hosts. 

Synopsis 
ACU_ERR call_stop_fmw(CALL_STOP_FMW_PARMS* stop_parms); 

 

typedef struct tCALL_STOP_FMW_PARMS 

{ 

  ACU_ULONG    size; 

  ACU_PORT_ID  port_id; 

} CALL_STOP_FMW_PARMS; 

Input parameters 

The call_stop_fmw() function takes a pointer, stop_parms, to a 

structure,CALL_STOP_FMW_ PARMS. The structure must be initialised before invoking the 

function, (see section 2.2). 

size 

This is the size of the structure.  Use INIT_ACU_CL_STRUCT() to initialise this field. 

port_id 

This is the port_id of the port to stop. 

Return values 

On successful completion a value of zero is returned, otherwise a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 160 

6.4 call_is_download() - Check if network port requires firmware download 
This function may be used to ascertain whether signalling system firmware should be 
downloaded to a port. 

NOTE 

Not supported for IP Telephony.  For more information on the status of 
board firmware on an IP telephony card refer to the IP Telephony Card V6 
API Guide. 

Synopsis 
ACU_ERR call_is_download(ACU_PORT_ID portnum); 

Input parameters 

The input parameter portnum must contain the number of the network port on the card 

on for which the enquiry is being made and will have a valid port id as returned from 
call_open_port(). 

Return values 

0 The value zero will be returned if NO firmware download is required. 

1 The value 1 will be returned if signalling system firmware must be 

downloaded to the specified network port. 

-ve A negative value will be returned if an error has occurred. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 161 

7 Diagnostic Functions 
This section describes functions that may be used for diagnostic purposes. The 
functions provide an overview of how the system is behaving so that any problems 
that may occur can be readily diagnosed. 

API Description 
call_dcba() Used to read the CAS ABCD signalling bits on the network 

interface. The signalling bits present on the network port are 
not affected by the use of this function. 

call_protocol_trace() All signalling systems pass protocol information to the 
device driver. This function allows the application to recover 
the protocol information form the Aculab card for display or 
diagnostic purposes. 

call_l1_stats() Used to obtain the current condition of Layer 1 of the 
signalling system and allows an application to inspect and 
clear line condition flags and counters. 

call_l2_state() Used to obtain the current condition of Layer 2 of the 
signalling system. This may be useful when installing an 
application on site. Used in conjunction with the layer 1 
statistics, this function will give indication of whether the 
Aculab card is correctly configured to the exchange. 

call_start_trace() Starts the trace collection on a port identified by a port_id 
supplied by the user. 

call_stop_trace() Stops the collection of trace for a given port_id. 

call_set_trace_mode() Allows the user to change the tracing parameter whilst trace 
is being collected. This works on a per port basis. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 162 

7.1 call_dcba() - Reading the CAS ABCD bits 
This function may be used to read the CAS ABCD signalling bits on the network 
interface. The signalling bits present on the network port are not affected by the use 
of this function. 

Synopsis 
ACU_ERR call_dcba(DCBA_XPARMS *dcbap); 

 

typedef struct dcba_xparms 

{ 

  ACU_ULONG  size;   /* IN */ 

  ACU_PORT_ID net;   /* IN */ 

  ACU_UCHAR  tdcba[16];  /* OUT */ 

  ACU_UCHAR  rdcba[16];  /* OUT */ 

} DCBA_XPARMS; 

Input parameters 

The call_dcba() function takes a pointer, dcbap, to a structure,DCBA_XPARMS. The 

structure must be initialised before invoking the function, (see section 2.2). 

net  

The net field must contain the network port id on the card from which the abcd bits 

are to be obtained, as returned from call_open_port(). 

Return values 
tdcba  

The character array tdcba will contain the ABCD bits being transmitted by the card at 

the time of the function call. 

rdcba  

The character array rdcba will contain the ABCD bits being received by the card at 

the time of the function call. 

On successful completion, a value of zero will be returned; otherwise a negative 
value will be returned indicating the type of error. 

NOTE 

The information returned by call_dcba() is the current state of the ABCD 
bits. It is therefore possible for the application to miss rapid transitions of 
any of the signaling bits. 

Use of call_dcba() with a ISDN protocol is allowed but will not result in any 

meaningful information being returned. 

 

NOTE 

For PMX and PCIe based hardware, call_dcba() support is enabled using a 
firmware configuration switch. For performance reasons, it is 
recommended that call_dcba() is only enabled for debug purposes. Please 
refer to the firmware release notes for further clarification. 

Format of the tdcba and rdcba arrays 

Each element of the transmit and receive arrays ( tdcba and rdcba respectively ) 
contains information about two timeslots. . The way each element is formatted 
depends on a network port’s hardware and line type. 

The format of the transmit and receive arrays are as follows: 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 163 

tdcba array for all hardware, with any line type.  

Element  Bit Position and Timeslot (TS)   

   7654 TS  3210 TS 

tdcba[0]     dcba 16  dcba 0 

tdcba[1]     dcba 17  dcba 1 

tdcba[2]     dcba 18  dcba 2 

tdcba[3]     dcba 19  dcba 3 

•    •   • 

•    •   • 
tdcba[12]     dcba 28  dcba 12 

tdcba[13]     dcba 29  dcba 13 

tdcba[14]     dcba 30  dcba 14 

tdcba[15]     dcba 31  dcba 15  

rdcba array for all remaining hardware, with any line type. 

Element  Bit Position and Timeslot (TS)   

   7654 TS  3210 TS 

rdcba[0]     abcd 0  abcd 16 

rdcba[1]     abcd 1  abcd 17 

rdcba[2]     abcd 2  abcd 18 

rdcba[3]     abcd 3  abcd 19 

•    •   • 

•    •   • 
rdcba[12]     abcd 12  abcd 28 

rdcba[13]     abcd 13  abcd 29 

rdcba[14]     abcd 14  abcd 30 

rdcba[15]     abcd 15  abcd 31  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 164 

7.2 call_protocol_trace() - Obtaining protocol information 
All signalling systems pass protocol information to the device driver. This function 
allows the application to recover the protocol information form the Aculab card for 
display or diagnostic purposes. 

NOTE 

This function is not supported for IP Telephony. 

Synopsis 
ACU_ERR call_protocol_trace(LOG_XPARMS *logp); 

 

typedef struct log_xparms 

{ 

  ACU_ULONG  size;   /* IN */ 

  ACU_PORT_ID net;   /* IN */ 

  struct log  log;   /* OUT */ 

} LOG_XPARMS; 

 

typedef struct log 

{ 

  ACU_LONG   TimeStamp;   /* OUT */ 

  ACU_UCHAR   RxTx;    /* OUT */ 

  ACU_UCHAR   Data_Packet[75];  /* OUT */ 

} LOG; 

Input parameters 

The call_protocol_trace() function takes a pointer, logp, to a structure,LOG_XPARMS. 

The structure must be initialised before invoking the function, (see section 2.2). 

net  

The net field must contain the network port_id on the card from which the protocol 

information is to be obtained, as returned from call_open_port(). 

Return values 
log  

The log field is a structure containing the protocol information and contains the 

following: 

TimeStamp  

The return value TimeStamp contains a time value in 5ms increments relative to when 

the protocol was started on the Aculab card. With PMX based hardware the 
increment is 1ms instead of 5ms. 

RxTx  

The field RxTx contains a Boolean value that indicates the direction of the protocol 

information, that is whether the message was received or transmitted. 

RxTx = 0 Receive 

RxTx = 1 Transmit 

Data_Packet  

The return value Data_Packet is an array containing the protocol message. 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 165 

Format of Data_Packet 

For ISDN protocols Data_Packet contains the actual message received or transmitted 

from Layer 2 of the protocol stack in hexadecimal format, where: 

Data_Packet[0]   = number of bytes following 

Data_Packet[1..74]  = protocol information 

If there is no protocol trace available then: 
Data_Packet[0] == 0 and TimeStamp and RxTx are not valid. 

For the CAS protocols Data_Packet contains null terminated ASCII text fabricated by 

the CAS protocol running on the Aculab card. This text contains the abcd bits and 

state transitions that have occurred in the CAS signalling system and will only be 
available if the –s99 switch has been set in the device driver (see the release notes 
for CAS variants). 

If there is no data available then: 

Data_Packet[0] == 0 and TimeStamp and RxTx are not valid. 

NOTE 

The actual contents of Data_Packet is not documented, is entirely 
dependent upon the protocol being examined at the time and 
interpretation should be left to the Aculab Support Department. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 166 

7.3 call_l1_stats() - Layer 1, statistics 
This function may be used to obtain the current condition of Layer 1 of the signalling 
system and allows an application to inspect and clear line condition flags and 
counters. 

NOTE 

This function is not supported for IP Telephony. 

 

Synopsis 
ACU_ERR call_l1_stats(L1_XSTATS *l1_statsp); 

typedef struct l1_xstats 

{ 

  ACU_ULONG  size; 

  ACU_PORT_ID net; 

  struct getset getset; 

  struct get  get; 

} L1_XSTATS; 

 

typedef struct getset 

{ 

  ACU_INT   linestat; 

  ACU_INT   bipvios; 

  ACU_INT   faserrs; 

  ACU_INT   sliperrs; 

} GETSET; 

 

typedef struct get 

{ 

  ACU_UCHAR  nos; 

  ACU_UCHAR  ais; 

  ACU_UCHAR  los; 

  ACU_UCHAR  rra; 

  ACU_UCHAR  tra; 

  ACU_UCHAR  rma; 

  ACU_UCHAR  tma; 

  ACU_UCHAR  usr; 

  ACU_UCHAR  majorrev; 

  ACU_UCHAR  minorrev; 

  ACU_ULONG  clock; 

  char   buildstr[16]; 

  char   manstr[16]; 

  char   sigstr[16]; 

} GET; 

Input parameters 

The call_l1_stats() function takes a pointer, l1_statsp, to a structure,L1_XSTATS. 

The structure must be initialised before invoking the function, (see section 2.2). 

net  

The net field must contain the network port_id on the Aculab card on which the layer 

1 statistics are to be obtained, as returned from call_open_port(). 

l1_xstats  

The l1_xstats structure contains two further structures, the getset structure and the 

get structure. 

Return value 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 

Memset the whole structure to zero to return the getset and get structure 

parameters. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 167 

NOTE 

Setting the getset values to 0xFFFF resets the layer 1 stats. 

The getset structure 

This structure contains layer 1 information that may be read and modified by the 
application. So information bits and counter values may be obtained and reset once 
they have been read. 

For any element in the getset structure the driver performs the following operations. 

The layer 1 value will be ANDed with the bitwise inverse of the value supplied in the 

getset structure, then the value will be returned. 

inestat &= ~l1_stats.getset.linestat; 

l1_stats.getset.linestat = linestat; 

Therefore, to read a layer 1 value without modifying its contents, the element of the 
getset structure should be set to zero prior to invoking the function. 

l1_stats.getset.linestat = 0; 

To reset a layer 1 value the element of the getset structure should be set to all 1 bits 

prior to invoking the function. 

l1_stats.getset.linestat = ~0; 

linestat 

This location provides several line status indication flags as follows: 

Name Description 
LSTAT_NOS Lost Signal Flag 

LSTAT_LOS Lost Synchronisation Flag 

LSTAT_AIS Alarm in Service 

LSTAT_FEC Error Rate > 1 in 1000 Flag 

LSTAT_RRA Alarm from Remote End 

LSTAT_SLP Frame Slip in Receive Buffer 
Flag 

LSTAT_CVC Bipolar Code Violation Flag 

LSTAT_CRC CRC error 

LSTAT_FFA False Frame Alignment 

LSTAT_CML CAS Multiframe Lost 

 

Each of these status bits are set and latched when detected by the card and are 
updated as and when they occur. 

Each bit may be individually reset. For example, to reset the LSTAT_NOS bit: 

l1_stats.getset.linestat = LSTAT_NOS; 

Only the LSTAT_NOS bit will be reset and all other bits will be returned unaffected. 

bipvios- Bipolar Violations 

bipvios counts the occurrences of bipolar violations on the receive line from the 

network. Frequent occurrences of bipolar violations are usually an indication of poor 
line quality, and will often indicate a degree of corruption of B-channel data. This 
location may be reset at any time to restart the count. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 168 

To GET the bipvios count: 

l1_stats.getset.bipvios = 0; 

To RESET the bipvios count: 

l1_stats.getset.bipvios = ~0; 

faserrs - Frame Alignment Signal Errors 

faserrs provides a count of the number frames that include at least 1 bit in error in 

the Frame Alignment Signal (FAS). This location may be reset at any time to restart 
the count. 

To GET the faserrs count: 

l1_stats.getset.faserrs = 0; 

To RESET the faserrs count: 

l1_stats.getset.faserrs = ~0; 

sliperrs - Frame Slip Errors 

sliperrs provides a count of the number of received frame slips in the incoming 

G703 signal. 

NOTE 

If frame slips are detected, it usually indicates that there are problems with 
the configuration. These must be corrected. 

 

If a network connected port is correctly deriving it’s clocking from the network frame 
slips should not occur. Frame slips can occur when the clock control setup is 
incorrect or inappropriate.  

For example, if clocking is set to be derived from another card on the MVIP, SC Bus 
or H100 bus, and that card is disconnected, out of service, or not correctly initialised, 
then frame slips are likely to occur. 

To GET the sliperrs count: 

l1_stats.getset.sliperrs = 0; 

To RESET the sliperrs count: 

l1_stats.getset.sliperrs = ~0; 

The get structure 

This structure contains layer 1 information that may be read by the application. The 
elements in the ‘get’ structure may assume any value prior to invoking the function. 

nos 

Semaphore indicating the occurrence of the Lost Signal condition. The semaphore 
will be set to 0xff on condition and will persist as long as the condition. 

ais 

Semaphore indicating the occurrence of the Incoming Alarm Indication condition. The 
semaphore will be set to 0xff on condition and will persist as long as the condition. 

los 

Semaphore indicating the occurrence of the Lost Synchronisation condition. The 
semaphore will be set to 0xff on condition and will persist as long as the condition. 

rra 

Semaphore indicating the occurrence of the Receive Remote Alarm condition. The 
semaphore will be set to 0xff on condition and will persist as long as the condition. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 169 

tra 

Semaphore indicating the occurrence of the Transmit Remote Alarm condition. The 
semaphore will be set to 0xff on condition and will persist as long as the condition. It 

should be noted that the tra semaphore might be set by either Layer 1 of the protocol 

or because of the call_send_alarm() function. 

rma 

Semaphore to indicate the receipt of the Receive Multi-Frame alarm. The semaphore 
will be set to 0xff on condition and will persist as long as the condition persists. This 

is currently only supported in the CAS protocols. 

tma 

Semaphore to indicate the occurrence of the Transmit Multi-Frame alarm. The 
semaphore will be set to 0xff on condition and will persist as long as the condition 

persists. 

It should be noted that the tma semaphore might be set by either Layer 1 of the 

protocol or because of the call_send_alarm() function. This is currently only 

supported in the CAS protocols. 

usr 

Provides fault conditions documented under CCITT I431.  

Condition 0xf1 - operational – primary rate 

Condition 0xf3 - network side – basic rate 

Condition 0xf7 - user side – basic rate 

majorrev, minorrev 

Major and Minor Revision These locations will receive the value of the signalling 
software major and minor revision numbers once the port signalling software has 
initialised. 

buildstr, manstr, sigstr 

These locations provide extra information regarding the version of the firmware, once 
the port signalling software has been initialised. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 170 

7.4 call_l2_state() - Layer 2 State 
This function may be used to obtain the current condition of Layer 2 of the signalling 
system. This may be useful when installing an application on site. Used in conjunction 
with the layer 1 statistics, this function will give indication of whether the Aculab card 
is correctly configured to the exchange. 

NOTE 

This function is not supported for SIP. 

 

Synopsis 
ACU_ERR call_l2_state(L2_XSTATE *l2_statep); 

 

typedef struct l2_xstate 

{ 

  ACU_ULONG  size;  /* IN */ 

  ACU_PORT_ID net;   /* IN */ 

  ACU_LONG  state;   /* OUT */ 

} L2_XSTATE; 

Input parameters 

The call_l2_state() function takes a pointer, l2_statep, to a structure,L2_XSTATE. 

The structure must be initialised before invoking the function, (see section 2.2). 

net  

The net field must contain the network port id on the card for which the layer 2 state 

is to be obtained, as returned from call_open_port(). 

Return values 
state  

The state field is a bit field, each bit indicating the state of the timeslots at layer 2. Bit 

0 of state indicates the condition of layer 2 for timeslot 0 while bit 31 of state 

indicates the condition of layer 2 for timeslot 31. A bit set to ‘1’ indicates that Layer 2 
for that timeslot is operational, while a bit cleared to ‘0’ indicates the non-operation of 
that timeslot. 

NOTE 

For CAS signaling systems the state bit field indicates the condition of the 
‘far end’ of the signaling system. A bit reset to 0 indicates that the ‘far end’ 
is sending the BUSY pattern so will not receive incoming calls. A bit set to 
1 indicates that the ‘far end’ will accept incoming calls. 

 

NOTE 

For H.323 signalling systems the returned bit field will either be all ‘0’s to 
indicate that the system is not registered with a gatekeeper, or all ‘1’s to 
indicate that it is currently registered. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 171 

NOTE 

When using the AT&T protocol the state bitmap will reveal changes in the 
Service state. The bitmap will now show which channels have been 
blocked or unblocked. Receipt of an 
ACU_CALL_EVT_BLOCKING_STATE_CHANGE event will prompt the 
application to check the current state. This behaviour must be enabled 
with the appropriate AT&T firmware configuration (-s switch); see the 
AT&T release notes for more details. If it is enabled then the bitmap will 
set bits to 1 when the timeslot is in-service and when L2 is also active. 
Otherwise, the function will only report the current L2 state. 

 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 172 

7.5 call_start_trace() 
Starts the trace collection on a port identified by a port_id supplied by the user. The 
flags parameter sets the type of tracing that is required. This may be altered mid trace 
using call_set_trace_mode(); 

The filename parameter is optional. If specified, the trace for the given port will go to 
a file named filename. Otherwise the trace will be written to STDOUT. 

Synopsis 
ACU_ERR call_start_ trace( START_TRACE_PARMS* start_trace_info ); 

 

typedef struct _START_TRACE_PARMS 

{ 

  ACU_ULONG  size     /* IN */ 

  ACU_PORT_ID port_id;    /* IN */ 

  ACU_UINT  flags;    /* IN */ 

  ACU_UINT  extra_flags   /* IN */ 

  ACU_UINT  delay;    /* IN */ 

  ACU_CHAR  filename[MAX_LENGTH]; /* IN */ 

} START_TRACE_PARMS; 

Input parameters 
port_id 

This is the port_id returned by call_open_port(). It sets the port that is to be 

traced.  Multiple ports can be traced by calling this function multiple times. 

flags 

Trace flags define the type of trace to be collected. These are defined in the header 
file under TRACE FLAGS. 

extra_flags 

Protocol specific flags for trace. 

delay 

This can only be set by the first port set to collect trace. It controls the length between 
trace collections. If this is left set to 0, the default will be 100 ms. 

filename 

The name of the output file. This will divert the trace from stdout to a file. A file will be 
created in the application’s working directory. If the file doesn’t exist it will be created, 
otherwise, new trace will be appended to the the existing file. 

Returns 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 173 

7.6 call_stop_trace() 
Stops the collection of trace for a given port_id. The port is indicated by port_id and 

is a valid port ID as returned by a call to call_open_port().  

Stopping trace collection on an IP port (SIP & H.323) results in the trace mode being 
set to zero. This means that the circular buffer used to collect trace is emptied. If 
trace is started again, only trace from the point at which trace collection was restarted 
is collected. 

Stopping trace collection on a non-IP port will retain the trace buffer. When trace is 
started again, the new trace will include any previous trace that has been retained in 
the buffer. 

Synopsis 
ACU_ERR call_stop_trace( ACU_PORT_ID); 

Input parameters 
port_id 

This is a port_id currently being traced, which must be a valid port as returned from 

a call to call_open_port(). 

Returns 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 174 

7.7 call_set_trace_mode() 
Allows the user to change the tracing parameter whilst trace is being collected. This 
works on a per port basis. 

Synopsis 
ACU_ERR call_set_trace_mode(TRACE_MODE_PARMS *trace_mode_info); 

 

typedef struct _TRACE_MODE_PARMS 

{ 

  ACU_ULONG  size    /* IN */ 

  ACU_PORT_ID  port_id;   /* IN */ 

  ACU_UNIT  flags;   /* IN */ 

  ACU_UINT  extra_flags  /* IN */ 

} TRACE_MODE_PARMS; 

Input parameters 
port_id 

this is the port_id return from a call to call_open_port(). It sets the port that is to be 
traced. Multiple ports can be traced by calling this function multiple times. 

flags 

Trace flags define the type of trace to be collected. No flags are set default. 

TRACE_API_CALL  : Trace API 

TRACE_PROTOCOL  : Trace  protocol 

TRACE_EVENT   : Trace internal event generation information 

TRACE_HW   : Trace hardware specific information 

TRACE_RESOURCE  : Trace resource allocation 

TRACE_GENERIC  : Trace generic driver internals 

TRACE_LEVEL_LOW  : Trace only essential information 

TRACE_LEVEL_MEDIUM : Trace more detailed information  

TRACE_LEVEL_HIGH  : Trace very detailed information 

TRACE_TLS   : Trace the thin layer 

extra_flags 

Protocol specific flags for trace. 

Returns 

On successful completion, a value of zero is returned; otherwise, a negative value will 
be returned indicating the type of error. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 175 

8 unique_xparms 
The parameter unique_xparms is a union that provides extensions required by specific 

signalling systems. The union will vary depending upon the signalling system 
supported by the device driver and cards. 

typedef union uniquex  

{ 

  UNIQUEX_DASS      sig_dass; 

  UNIQUEX_DPNSS     sig_dpnss; 

  UNIQUEX_CAS       sig_cas; 

  UNIQUEX_Q931      sig_q931; 

  UNIQUEX_ISUP      sig_isup; 

  UNIQUEX_IPTEL     sig_iptel; /* #include iptel_lib.h and iptel_lib.lib */ 

} UNIQUEXU; 

8.1 unique_xparms for Q931  
typedef struct uniquex_q931 

{ 

  ACU_UCHAR  service_octet; 

  ACU_UCHAR  add_info_octet; 

  ACU_UCHAR  dest_numbering_type; 

  ACU_UCHAR  dest_numbering_plan; 

  struct 

  { 

    ACU_UCHAR  ie[MAXBEARER]; 

    ACU_UCHAR  last_msg; 

  } bearer; 

  ACU_UCHAR  orig_numbering_type; 

  ACU_UCHAR  orig_numbering_plan; 

  ACU_UCHAR  orig_numbering_presentation; 

  ACU_UCHAR  orig_numbering_screening; 

  ACU_UCHAR  conn_numbering_type; 

  ACU_UCHAR  conn_numbering_plan; 

  ACU_UCHAR  conn_numbering_presentation; 

  ACU_UCHAR  conn_numbering_screening; 

  ACU_UCHAR  dest_subaddr[MAXNUM]; 

  ACU_UCHAR  orig_subaddr[MAXNUM]; 

  struct 

  { 

    ACU_UCHAR  ie[MAXHILAYER]; 

    ACU_UCHAR  last_msg; 

  } hilayer; 

  struct 

  { 

    ACU_UCHAR  ie[MAXLOLAYER]; 

    ACU_UCHAR  last_msg; 

  } lolayer; 

  struct 

  { 

    ACU_UCHAR  ie[MAXPROGRESS]; 

    ACU_UCHAR  last_msg; 

  } progress_indicator; 

  struct 

  { 

    ACU_UCHAR  ie[MAXNOTIFY]; 

    ACU_UCHAR  last_msg; 

  } notify_indicator; 

  struct 

  { 

    ACU_UCHAR  ie[MAXNUM]; 

    ACU_UCHAR  last_msg; 

  } keypad; 

  struct 

  { 

    ACU_UCHAR  ie[MAXDISPLAY]; 

    ACU_UCHAR  last_msg; 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 176 

  } display; 

  ACU_LONG   slotmap; 

  EP   endpoint_id; 

  ACU_UCHAR  oli_ani_2; 

  struct  

  { 

    ACU_UCHAR ie[MAXCAUSE]; 

    ACU_UCHAR last_msg; 

  } cause; 

  ACU_UCHAR  additional_orig_addr[MAXADDR]; 

  ACU_UCHAR  add_orig_numbering_type; 

  ACU_UCHAR  add_orig_numbering_plan; 

  ACU_UCHAR  add_orig_numbering_presentation; 

  ACU_UCHAR  add_orig_numbering_screening; 

  ACU_UCHAR  omit_calling_party_ie; 

  ACU_USHORT  call_ref_value; 

  ACU_UCHAR  conn_subaddr[MAXNUM]; 

} UNIQUEX_Q931; 

Q931 Specific Information 

The Q931 structure, sig_q931, must be initialised in the following way before 

invoking the function. 

service_octet  

Must contain a valid service indicator for the call and must be appropriate for the 
signalling system, for example, 

UNKNOWN_SERVICE 

TELEPHONY 

ABSERVICE 

X21SERVICE 

FAXGP4 

VIDEO64K 

DATA64K 

X25SERVICE 

TELETEXT64 

MIXEDMODE 

TELEACTION 

GRAPHIC 

VIDEOTEXT 

VIDEOPHONE 

add_info_octet  

Must contain additional information about the service required by the application and 
must be related to the service_octet and appropriate for the signalling system, for 

example, 

For TELEPHONY 

ISDN_3K1 

ANALOGUE 

ISDN_7K 

For ABSERVICE 

FAXGP2 

FAXGP3 

For X21SERVICE 

UC4 

UC5 

UC6 

UC19 

For X25SERVICE 

UC8 

UC9 

UC10 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 177 

UC11 

UC13 

UC19K2 

For VIDEOPHONE 

SOUND_3K1 

SOUND_7K 

IMAGE 

If the service_octet and add_info_octet both contain zero, the device driver will 

assume default values of: 

service_octet = TELEPHONY 

add_info_octet = ANALOGUE 

dest_numbering_type 

Can contain a valid numbering type for the call and must be appropriate for the 
signalling system. Allowable values are: 

NT_UNKNOWN 

NT_INTERNATIONAL 

NT_NATIONAL 

NT_NETWORK_SPECIFIC 

NT_SUBSCRIBER_NUMBER 

NT_ABBREVIATED_NUMBER 

 

NOTE 

Some signaling systems may not have support for all these values. 

 

The default value is NT_UNKNOWN. 

dest_numbering_Plan 

Can contain a valid numbering plan for the call and must be appropriate for the 
signalling system. For example, allowable values may include: 
NP_UNKNOWN 

NP_ISDN 

NP_DATA 

NP_TELEX 

NP_NATIONAL_STANDARD 

NP_PRIVATE 

 

NOTE 

Some signaling systems may not have support for all these values. 

 

The default value is NT_UNKNOWN. 

bearer 

The bearer field is used to provide ‘bearer code’ information to the protocol. The 

format of the bearer code is dependent upon the signalling system and reference 
should be made to the appropriate specification for the protocol. (MAXBEARER = 16) 

For those signalling systems that support bearer codes, the service octet and bearer 
code convey the same information in different forms and the application may use 
either method. The device driver makes the following assumption when presented 
with a bearer code and service octet. 

if bearer.ie[0] == 0 use Service Octet 

if bearer.ie[0] != 0 then use bearer code. 

If you do not wish to use the bearer code then ensure that the bearer field is empty. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 178 

bearer.ie[0] = 0 

orig_numbering_type 

Values as detailed in dest_numbering_type above. 

orig_numbering_plan 

Values as detailed in dest_numbering_plan above. 

orig_numbering_presentation 

The orig_numbering_presentation field indicates the intention of the calling party for 

the presentation of the calling number (originating_address) to the called party. 

The four values are: 

PR_ALLOWED (Presentation Allowed) 

PR_RESTRICTED (Presentation Restricted) 

PR_NOTAVAILABLE (Number not available due to interworking) 

PR_RESERVED 

orig_numbering_screening 

The possible values for this field are: 

SC_NOTSCREENED (User provided, not screened) 

SC_VERIFYPASS* (User provided, verified and passed) 

SC_VERIFYFAIL (User provided, verified and failed) 

SC_NETWORKPROVIDED* (network provided) 

conn_numbering_type (not applicable for an outgoing call) 

This field must contain a valid numbering type for the call and be appropriate for the 
signalling system. Allowable values are: 

NT_UNKNOWN 

NT_INTERNATIONAL 

NT_NATIONAL 

NT_NETWORK_SPECIFIC 

NT_SUBSCRIBER_NUMBER 

NT_ABBREVIATED_NUMBER 

Some signalling systems may not have support for all these values.  

The default value is NT_UNKNOWN. 

conn_numbering_plan (not applicable for an outgoing call) 

This field must contain a valid numbering plan for the call and be appropriate for the 
signalling system. For example, allowable values may include: 

NP_UNKNOWN 

NP_ISDN 

NP_DATA 

NP_TELEX 

NP_NATIONAL_STANDARD 

NP_PRIVATE 

Some signalling systems may not have support for all these values.  

The default value is NP_UNKNOWN for Q.931 and NP_ISDN for ISUP. 

conn_numbering_presentation (not applicable for an outgoing call) 

This input parameter indicates the intention of the calling party for the presentation of 
the calling number (connected_address) to the called party. 

The four values are: 

PR_ALLOWED (Presentation Allowed) 

PR_RESTRICTED (Presentation Restricted) 

PR_NOTAVAILABLE (Number not available due to interworking) 

PR_RESERVED 

conn_numbering_screening 

Is not applicable for an outgoing call. The possible values for this field are: 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 179 

SC_NOTSCREENED (User provided, not screened) 

SC_VERIFYPASS* (User provided, verified and passed) 

SC_VERIFYFAIL (User provided, verified and failed) 

SC_NETWORKPROVIDED* (network provided) 

dest_subaddr 

Maximum length MAXNUM using digits 0 to 9. See Appendix F: for further details. 

orig_subaddr 

Maximum length MAXNUM using digits 0 to 9. See Appendix F: for further details. 

hilayer & lolayer 

By using the hilayer and lolayer fields in association with bearer, the call type may 

be specified to the remote user. The format of hilayer and lolayer is dependent 

upon the signalling system and reference should be made to the appropriate 
specification for the protocol. 

The ie field of the hilayer structure should contain the high layer compatibility 

information that is sent transparently to the other end. The last_msg field of the 

hilayer structure should be set to zero. (MAXHILAYER = 16) 

The ie field of the lolayer structure should contain the low layer compatibility 

information that is sent transparently to the other end. The last_msg field of the 

lolayer structure should be set to zero.(MAXLOLAYER = 16) 

progress_indicator 

The progress_indicator field can be used to indicate events pertaining to the call 

regarding interworking or in-band information. The ie field of the progress_indicator 

structure should contain the progress information that will be transmitted unmodified 
by the drivers. The last_msg field should be set to zero. This information is dependent 

on the signalling system and reference should be made to the appropriate 
specification for the protocol.  (MAXPROGRESS = 4) 

notify_indicator (not applicable for an outgoing call) 

 (MAXNOTIFY = 4) 

The notify_indicator field will provide valid notify information to the application. The 

ie field of the notify_indicator structure will contain the notify information. This 

information is dependent on the signalling specification and reference should be 
made to the appropriate specification for the protocol. The last_msg field in the 

notify_indicator structure will contain the value of the message that delivered the 

last progress information element. 

keypad 

The keypad field can be used to transmit IA5 characters (0 to9) that may be used to 

control supplementary services. (MAXNUM = 32) 

display 

The display field can be used to transmit information that may be displayed by the 

user. (MAXDISPLAY = 34) 

slotmap 

A 32 bit string used to indicate which timeslots to use for an outgoing call. The 
following example will make a call utilising timeslots 12 and 19. 

 

31                                    0 

0000 0000 0000 1000 0001 0000 0000 0000 

NOTE 

Avoid using signalling channels, for example timeslot 16 for E1. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 180 

 

endpoint_id 

A gatekeeper assigned token supplied in the RCF message identifying the endpoint 
and should be returned in all future communication with the gatekeeper while the 
system remains registered. 

Cause ie  

holds the raw coding as supplied by the signalling system with the first element as the 
length field. 

last_msg  

shows the last message type the cause received, which can be one of : 

Q931_PROGRESS 

Q931_DISCONNECT 

Q931_RELEASE 

Q931_RELEASE_CMPL 

 

NOTE 

The last_msg field should not be used when sending information 

 

additional_orig_addr 

The input character buffer additional_orig_addr can be supplied with a null 

terminated string of IA5 digits. This string represents an additional originating 
subscriber number. The string can be passed to the signalling system when the 
outgoing call is made, as required, on a per call basis. 

add_orig_numbering_type; 

Can contain a valid numbering type for the call and must be appropriate for the 
signalling system. Allowable values are: 

NT_UNKNOWN 

NT_INTERNATIONAL 

NT_NATIONAL 

NT_NETWORK_SPECIFIC 

NT_SUBSCRIBER_NUMBER 

NT_ABBREVIATED_NUMBER 

NOTE 

Some signaling systems may not have support for all these values. 

 

The default value is NT_UNKNOWN. 

add_orig_numbering_plan; 

Can contain a valid numbering plan for the call and must be appropriate for the 
signalling system. For example, allowable values may include: 
NP_UNKNOWN 

NP_ISDN 

NP_DATA 

NP_TELEX 

NP_NATIONAL_STANDARD 

NP_PRIVATE 

The default value is NT_UNKNOWN. 

add_orig_numbering_presentation; 

The add_orig_numbering_presentation field indicates the intention of the calling party 

for the presentation of the additional calling number (additional_orig_addr) to the 

called party. 

The four values are: 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 181 

PR_ALLOWED (Presentation Allowed) 

PR_RESTRICTED (Presentation Restricted) 

PR_NOTAVAILABLE (Number not available due to interworking) 

PR_RESERVED 

add_orig_numbering_screening; 

The possible values for this field are: 

SC_NOTSCREENED (User provided, not screened) 

SC_VERIFYPASS* (User provided, verified and passed) 

SC_VERIFYFAIL (User provided, verified and failed) 

SC_NETWORKPROVIDED* (network provided) 

omit_calling_party_ie; 

Reserved for future use. 

call_ref_value; 

A unique value assigned by the originating side of a call, which may be the same 
value as the call handle. 

The purpose of the call reference is to be able to identify a call message, for example, 
a call facility registration or cancellation request message. 

conn_subaddr 

Maximum length MAXNUM using digits 0 to 9. See Appendix F: for further details. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 182 

8.2 unique_xparms for DASS2 
typedef struct uniquex_dass 

{ 

  ACU_UCHAR  sic1; 

  ACU_UCHAR  sic2; 

} UNIQUEX_DASS; 

DASS structure 

The DASS structure, sig_dass, must be initialised in the following way before 

invoking the function. 

The sic1 and sic2 fields must contain information about the service required by the 

application and must be appropriate for the signalling system. If both sic1 and sic2 

contain zero, then the driver will allocate a default value of speech. 

sic1  

Digital Access Signalling System N0 2 (DASS2) service indictor codes are octets, 
sic1 and sic2. The sic1 octet is structured as follows: 

Bits 1 to 4 

These bits specify either the speech characteristics, for example, A-Law 64Kbit/s, or 
the data rate. 

Bits 5-7 

These bits specify the type of information and include: 

Speech 

Data 

Teletex 

Videotex 

Facsimile 

SSTV 

Bit 8 

Indicates if there is a second (further) octet; 

0 = no further octet 

1 = further octet 

sic2  

Digital Access Signalling System N0 2 (DASS2) servcie indictor codes are octets, 
sic1 and sic2. The sic2 octet is structured as follows: 

Bits 1 to 3 

These bits specify either the synchronous or asynchronous modes of operation. 

Bit 4 

Duplex Mode: 

0 = Full duplex 

1 = Half duplex 

Bits 5-7 

These bits specify the data format, clock and flow control parameters 

Bit 8 

Indicates there are no further octets, always set to 0. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 183 

8.3 unique_xparms for DPNSS 
typedef struct uniquex_dpnss 

{ 

  ACU_UCHAR  sic1; 

  ACU_UCHAR  sic2; 

  ACU_UCHAR  clc[MAXCLC]; 

} UNIQUEX_DPNSS; 

DPNSS structure 

The DPNSS structure, sig_dpnss, must be initialised in the following way before 

invoking the function. 

The sic1 and sic2 fields must contain information about the service required by the 

application and must be appropriate for the signalling system. If both sic1 and sic2 

contain zero, then the driver will allocate a default value of speech. 

sic1  

Digital Access Signalling System N0 2 (DASS2) service indictor codes are octets, 
sic1 and sic2. The sic1 octet is structured as follows: 

Bits 1 to 4 

These bits specify either the speech characteristics, for example, A-Law 64Kbit/s, or 
the data rate. 

Bits 5-7 

These bits specify the type of information and include: 

Speech 

Data 

Bit 8 

Indicates if there is a second (further) octet; 

0 = no further octet 

1 = further octet 

sic2  

Digital Access Signalling System N0 2 (DASS2) servcie indictor codes are octets, 
sic1 and sic2. The sic2 octet is structured as follows: 

Bits 1 to 3 

These bits specify either the synchronous or asynchronous modes of operation. 

Bit 4 

Duplex Mode: 

0 = Full duplex 

1 = Half duplex 

Bits 5-7 

These bits specify the data format, clock and flow control parameters 

Bit 8 

Indicates there are no further octets, always set to 0. 

clc  

clc (MAXCLC = 10) can contain additional information about the calling line category 

for DPNSS. For example: 

struct out_xparms outxp; 

strcpy(outxp.unique_xparms.sig_dpnss.clc,“*2”); 

If you do not wish to use clc then set 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 184 

clc[0] = 0.  

In this case the driver will assume the default calling line category of ‘*1’. 

NOTE 

To allow for future upgrades and enhancements none of the elements of 
the unique_xparms will be value checked by the driver and will be passed 
directly to the signaling system. 

 

The following examples apply: 

1 Ordinary 
2 Decadic 
3 ISDN 
4 PSTN 
5 SSMF5 
6 Operator 
7 Network 
8 Conference (no longer a valid option). 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 185 

8.4 unique_xparms for CAS  
typedef struct uniquex_cas 

{ 

  ACU_UCHAR  category; 

} UNIQUEX_CAS; 
 

category (R2T1 only) 

Used for the presentation & restriction of CLI 

NOTE 

The "-s47,n" R2T1 firmware configuration switch must be implemented for 
this option. 

 

When making an outgoing going call:  

If category is set to 0, CLI is indicated as 'Not Restricted'. 

If category is set to 1, CLI is indicated as 'Restricted'.  

When receiving an incoming call: 

If category is set to 0 after calling call_details, CLI is 'Not Restricted'. 

If category is set to 1 after calling call_details, CLI is 'Restricted'. 

If category is set to 2 after calling call_details, CLI is 'Restricted' and no CLI was 

received. 

Contact Aculab for details details of the CAS protocols currently supported. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 186 

8.5 unique_xparms for ISUP/SS7 
Not all calls that use unique_xparms use all parameters listed, in these cases the 
parameters used are indicated in the section for the parameter.  

typedef struct uniquex_isup   

{ 

  ACU_UCHAR  service_octet; 

  ACU_UCHAR  add_info_octet; 

  ACU_UCHAR  dest_natureof_addr; 

  ACU_UCHAR  dest_numbering_plan; 

 

  struct 

  { 

    ACU_UCHAR ie[MAXBEARER]; 

    ACU_UCHAR last_msg; 

  } bearer; 

 

  ACU_UCHAR  orig_natureof_addr; 

  ACU_UCHAR  orig_numbering_plan; 

  ACU_UCHAR  orig_numbering_presentation; 

  ACU_UCHAR  orig_numbering_screening; 

  ACU_UCHAR  conn_natureof_addr; 

  ACU_UCHAR  conn_numbering_plan; 

  ACU_UCHAR  conn_numbering_presentation; 

  ACU_UCHAR  conn_numbering_screening; 

  ACU_UCHAR  conn_number_req;  /* only used in call_openout */ 

  ACU_UCHAR  orig_category; 

  ACU_UCHAR  orig_number_incomplete; 

  ACU_UCHAR  dest_subaddr[MAXNUM]; 

  ACU_UCHAR  orig_subaddr[MAXNUM]; 

 

  struct 

  { 

    ACU_UCHAR ie[MAXHILAYER]; 

    ACU_UCHAR last_msg; 

  } hilayer; 

 

  struct 

  { 

    ACU_UCHAR ie[MAXLOLAYER]; 

    ACU_UCHAR last_msg; 

  } lolayer; 

 

  struct 

  { 

    ACU_UCHAR ie[MAXPROGRESS]; 

    ACU_UCHAR last_msg; 

  } progress_indicator; 

 

  ACU_UCHAR  in_band; 

  ACU_UCHAR  nat_inter_call_ind; /* not used in call_openout */ 

  ACU_UCHAR  interworking_ind; 

  ACU_UCHAR  isdn_userpart_ind; 

  ACU_UCHAR  isdn_userpart_pref_ind; 

  ACU_UCHAR  isdn_access_ind; 

  ACU_UCHAR  dest_int_nw_ind; 

  ACU_UCHAR  continuity_check_ind; 

  ACU_UCHAR  satellite_ind; 

  ACU_UCHAR  charge_ind; 

  ACU_UCHAR  dest_category;  /* not used in call_openout */ 

  ACU_UCHAR      add_calling_num_qualifier_ind; 

  ACU_UCHAR      add_calling_num_natureof_addr; 

  ACU_UCHAR      add_calling_num_plan; 

  ACU_UCHAR      add_calling_num_presentation; 

  ACU_UCHAR      add_calling_num_screening; 

  ACU_UCHAR      add_calling_num_incomplete; 

  ACU_UCHAR      add_calling_num[MAXNUM]; 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 187 

  ACU_UCHAR      exchange_type; 

  ACU_UCHAR      collect_call_request_ind; 

  ACU_UCHAR  raw_fci[2] 

  ACU_UCHAR  raw_nci 

  ACU_UCHAR  raw_bci[2] 

} UNIQUEX_ISUP; 

 

As for Q931 Specific Information but with the following additional 
parameters. 
dest_natureof_addr and conn_natureof_addr  

Must contain a valid nature of address for the call and be appropriate for the signaling 
system. Allowable values include: 

NOA_SUBSCRIBER_NUMBER 

NOA_NATIONAL_RESERVED 

NOA_NATIONAL 

NOA_INTERNATIONAL 

These are the values defined by Q.767 (International ISUP), although the driver will 
pass other values transparently.  The default value is NOA_INTERNATIONAL. 

conn_number_req 

When set to a non-zero value, indicates that the caller has requested that the 
connected number is supplied when available. 

0 supply connected number not allowed 

1 supply connected number allowed 

orig_category 

The calling party's category is used to specify a type of call, for example: 

CPC_FRENCH_OPERATOR 

CPC_ENGLISH_OPERATOR 

CPC_GERMAN_OPERATOR 

CPC_RUSSIAN_OPERATOR 

CPC_SPANISH_OPERATOR 

CPC_ORDINARY_SUBSCRIBER 

CPC_PRIORITY_SUBSCRIBER 

CPC_DATA 

CPC_TEST 

CPC_PAYPHONE 

 

These are the some of the values defined by Q.763; the driver will pass other values 
transparently. The default value is CPC_ORDINARY_SUBSCRIBER 

orig_number_incomplete 

This is the calling party incomplete (NI) parameter value as defined in Q763. It can be 
in one of two states: 

0 complete 

1 incomplete 

in_band 

Used to indicate if optional backward call information is available on the call. 

0 no indication - In band information is not available 

1 In band information or an appropriate pattern is now available 

nat_inter_call_ind 

When set to a non-zero value, indicates that the call is to be treated as an 
international call. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 188 

NOTE 

The fields - isdn_access_ind, isdn_userpart_ind and interworking_ind 
need to be set in a slightly unusual way.  This is to provide source-level 
compatibility with applications that were written to earlier versions of the 
API that did not support these fields.  If the 'valid' field is set to a non-zero 
value, then the parameter value will be taken from the 'value' field.  If the 
'valid' field is zero, isdn_access_in will default to 1, and isdn_userpart_ind 
and interworking_ind will echo the same status as the corresponding field 
sent by the originator of the call. 

 

interworking_ind 

The interworking_ind field, when set to a non-zero value, indicates that interwoking 

has occurred, i.e. that SS7 has not been used in all parts of the networking 
connection. See note below regarding usage. 

isdn_userpart_ind  

This field indicates whether ISUP signaling has been used by all preceeding parts of 
the network connection (0 = Not ISUP all the way, 1 = ISUP).  

isdn_userpart_pref_ind 

The ISUP preference indicator will be encoded in the forward call indicators from the 
originating switch to enable correct routing at intermediate switches by indicate 
whether ISUP is preferred/required/not required all the way. Allowable values include: 

PI_ISUP_PREFERRED 

PI_ISUP_NOT_REQUIRED 

PI_ISUP_REQUIRED 

isdn_access_ind 

This field indicates whether the called party is ISDN (1 = true, 0 = false).  

dest_int_nw_ind 

The dest_int_nw_ind field, when set to a non-zero value, indicates that routing to an 

internal network number is not allowed. 

continuity_check_ind 

The continuity_check_ind field, when set to a non-zero value, indicates that a 

continuity check is being performed either on this or a previous circuit. The user must 
wait for this to complete before progressing with the call. When the continuity check 
completes the bit will clear. Values currently assigned to this parameter include: 

CCI_NOT_REQUIRED 

CCI_REQUIRED - a continuity check is being performed on the circuit. 

CCI_PREVIOUS - a continuity check is being performed on a previous cct. 

NOTE 

When a value of CCI_REQUIRED is encountered, the application must loop 
back transmit/receive data paths for the appropriate timeslot and then wait 
for the continuity check to complete. 

 

satellite_ind 

One of the nature of connection indicators, this may be set to either 1 or 2 if it is 
known that the call already includes 1 or 2 satellite circuits respectively. 

0 no satellite circuits in the connection 

1 one satellite circuit in the connection 

2 two satellite circuits in the connection 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 189 

charge_ind 

The charge_ind field is applicable to outgoing calls only, and indicates whether the 

call is chargeable. The value may change at any state transition or event during call 
setup. Values assigned to this field include: 

CHARGE_IND_NO_INDICATION 

CHARGE_IND_NO_CHARGE 

CHARGE_IND_CHARGE 

dest_category  

This field provides further information about the called party.  Values assigned by ITU 
are as follows: 

0 = No indication 

1 = Ordinary subscriber 

2 = Payphone 

3 = spare 

exchange_type 

The exchange_type field specifies the ISUP Exchange Type for the call, as described 
by Q.764 paragraph 2.9.5.2. Values assigned to this field include: 

EXCHANGE_TYPE_A 

EXCHANGE_TYPE_B 

collect_call_request_ind 

The collect_call_request_ind field allows an application to query or specify the value 
of a Collect Call Request parameter in an IAM message.  The format of the Collect 
Call Request parameter is described by Q.763 section 3.81. 

Add calling number 

These fields allow an additional calling party number to be sent during 
call_openout(). The additional calling party number will appear in an oubound IAM 

as a Generic Number parameter. 

add_calling_num_qualifier_ind 

The value for the number qualifier field as specified in Q.763 section 3.26 

add_calling_num_natureof_addr 

Must contain a valid nature of address. Allowable values include: 

NOA_SUBSCRIBER_NUMBER 

NOA_NATIONAL 

NOA_INTERNATIONAL 

The default value is NOA_INTERNATIONAL 

add_calling_num_plan 

Can contain a valid numbering plan for the call and must be appropriate for 

the signalling system. Allowable values are as specified in Q.763 section 

3.26. Some signalling systems may not support all of these values. 

NP_ISDN 

NP_DATA 

NP_TELE 

add_calling_num_presentation 

This field indicates the intention of the calling party for the presentation of the calling 
number (originating_address) to the called party. 

The possible values are: 

PR_ALLOWED (Presentation Allowed) 

PR_RESTRICTED (Presentation Restricted) 

PR_NOTAVAILABLE (Number not available due to interworking) 

add_calling_num_screening 

The possible values for this field are: 

SC_NOTSCREENED (User provided, not screened) 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 190 

SC_VERIFYPASS (User provided, verified and passed) 

SC_VERIFYFAIL (User provided, verified and failed) 

SC_NETWORKPROVIDED (network provided) 

add_calling_num_incomplete 

This is the number incomplete indicator as defined in Q763 section 3.26 d). It can be 
in one of two states: 

0 = complete 

1 = incomplete 

add_calling_num 

The digits to be sent should be placed in this field.  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 191 

8.6 unique_xparms for IP telephony (iptel) 
The parameters that are common for all IP Telephony protocols will form the basis of 
a structure called, uniquex_iptel.  This structure will also contain a union of 

structures called protocol_specific.  Parameters specific to a particular IP 

Telephony protocol will be defined here, one structure per protocol. 

To use uniquex_iptel, you must include the iptel_lib.lib library and #include 
iptel_lib.h 

NOTE 

The IP telephony unique structure parameters used by xcall_getcause and 
xcall_disconnect vary slightly from the uniquex_iptel structure parameters 
used by all other generic API calls. 

 

typedef struct uniquex_iptel 

{ 

  ACU_CHAR    destination_display_name[MAXDISPLAY]; 

  ACU_CHAR    originating_display_name[MAXDISPLAY]; 

  ACU_CODEC    codecs[MAXCODECS];   

  MEDIA_SETTINGS   media_settings; 

  ACU_POINTER   vmprxid; 

  ACU_POINTER   vmptxid; 

  ACU_CHAR    media_call_type[MAXMEDIACALLTYPE]; 

  union protocol_union  protocol_specific; 

  ACU_UINT    ipv6_media; 

} UNIQUEX_IPTEL; 

 

typedef struct acu_codec 

{ 

  ACU_INT       codec_type; 

  ACU_INT       vad; 

  ACU_INT       fpp; 

  ACU_ULONG     options; 

} ACU_CODEC; 

 

typedef struct media_settings 

{ 

  ACU_INT    tdm_encoding; 

  ACU_INT    encode_gain; 

  ACU_INT    decode_gain; 

  ACU_INT    echo_cancellation; 

  ACU_INT    echo_suppression; 

  ACU_INT    echo_span; 

  ACU_UINT    rtp_tos; 

  ACU_UINT    rtcp_tos; 

  ACU_UINT     dtmf_detector; 

} MEDIA_SETTINGS; 

 

union protocol_union 

{ 

  struct 

  { 

    ACU_CHAR    destination_alias[MAXADDR]; 

    ACU_CHAR    originating_alias[MAXADDR]; 

    ACU_INT     h245_tunneling; 

    ACU_INT     faststart; 

    ACU_INT     early_h245; 

    ACU_CHAR    dtmf[MAXNUM]; 

    ACU_INT     progress_location; 

    ACU_INT     progress_description; 

  } sig_h323; 

 

  struct 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 192 

  { 

    ACU_CHAR    contact_address[MAXADDR]; 

    ACU_INT     zero_connection_address_hold; 

    ACU_INT     disable_reliable_provisional_response; 

    ACU_INT     disable_early_media; 

  } sig_sip; 

}; 

 

destination_display_name 

Used to transmit destination display information. 

originating_display_name 

Used to transmit originating display information. 

codecs 

Codec assignment array that encapsulates the settings available on a per codec 
basis.  It contains a list of the permitted codecs that may be negotiated with the 
remote endpoint during call establishment.  The first entry is treated as highest 
priority and the last entry is treated as the lowest.  

codec_type 

Permitted codec values are: 

  G711_ALAW              

  G711_ULAW              

  G723                   

  G729                   

  G729A                  

Valid permutations for the codec structure are as follows : 

G711_ALAW    VAD on 

G711_ALAW    VAD off 

G711_ULAW   VAD on 

G711_ULAW   VAD off 

G723    VAD on 

G723    VAD off 

G729    VAD off 

G729    VAD on 

G729A    VAD off 

G729A    VAD on 

With fpp set in the range 1-3. 

If a codec is specified that is not supported by the board then the API will ignore it. 
This allows the same codec list to be used over boards with different capabilities. 

If no valid codecs are specified then the system codec list will be used. If this also 
contains no valid codecs then calls will be failed with a parameter error. 

vad 

Allows the voice activity detector to be turned on for this call.  Turning on the voice 
activity detector allows the IP Telephony card to perform silence suppression for that 
call.  Permitted values are : 

 VAD_ON      1 

 VAD_OFF     0 

fpp 

Can be used in API calls, prior to call connection, to specify the actual number of 
frames per packet.  The minimum value is 1 and the maximum value is 3, with the 
default being 2 frames per packet. 

options 

Required for future development.  

media_settings 

Parameter information that is required by the Media Gateway API.  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 193 

tdm_encoding 

The tdm_encoding parameter allows -law or a-law encoding to be selected for the 

telephony interface on a per call basis and has no effect on the selected IP 
Telephony codec.  If no value is specified for the call, the system will default to the 

encoding configured for the firmware, this is currently set to -law.  The permitted 
values are:  

 TDM_ULAW  1 

 TDM_ALAW  2 

encode_gain/decode_gain 

The encode_gain parameter allows adjustment of the input signal from the telephony 

interface to the IP Telephony encoder, while the decode_gain parameter allows 

adjustment of the output signal from the IP Telephony decoder to the telephony 
interface.  Permitted values for these two parameters are:  

Allow the IP Telephony card to choose a sensible default gain level.  This is currently 
equivalent to setting a gain of 0x2000 

 0x0001 – 0xFFFF   specify a gain level manually 

NOTE 

encode_gain and decode_gain are not supported on Prosody X cards, and 
will be ignored. 

 

echo_cancellation 

The possible values are : 

EC_OFF  – disables echo canceller (invalidates echo_span option) 

EC_ON  – enables G.168 echo canceller for Prosody X cards.  

EC_ON_NLP – enablesG.168 echo canceller with non-linear processing for 

Prosody X  cards.  

echo_suppression 

The possible values are :  

ES_OFF  - echo suppression option is disabled 

ES_12DB  - echo suppression option is enabled 

 

NOTE 

The echo canceler and suppressor are independent subsytems of the 
echo software and as such can be controlled independently. 

 

echo_span 

This is the length, in milliseconds, of the echo canceller tail.  It may be 4, 6, 8, 10, 12, 

14, 16 or 32ms tail length. 

NOTE 

A 32ms tail length cannot be used with G.723.1 

 

The defaults for echo_cancellation, echo_suppression and echo_span are : EC_G165, 

ES_OFF, 16.  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 194 

NOTE 

echo_suppression and echo_span are not supported on Prosody X cards, 
and will be ignored. 

 

rtp_tos 

The byte field rtp_tos specifies the type of service field that will be used in the IP 

headers of RTP packets sent by the board on a per call basis for call_openout() and 

xcall_accept() functions. To set the ToS to zero a value of 0x100 should be used.  

rtcp_tos 

The byte field rtcp_tos specifies the type of service field that will be used in the IP 
headers of RTCP packets sent by the board on a per call basis for call_openout() 

and xcall_accept() functions. To set the ToS to zero a value of 0x100 should be 

used.  

dtmf_detector 

The IP Telephony card can detect DTMF in the audio stream switched to it and treat it 
differently to normal audio by blocking DTMF in the outgoing audio stream and 
sending RFC 2833 frames instead.  

If dtmf_detector is set to IPT_ENABLED then this processing will be performed. 

if dtmf_detector is set to IPT_DISABLED then DTMF will not be detected, and will be 

treated as normal audio.  

vmprxid  

Used for TiNG media configuration, see Appendix K for details.  

vmptxid 

Used for TiNG media configuration, see Appendix K for details.  

media_call_type 

This is a call type defined via the TiNG Resource Manager.  If specified for a call on a 
card, that uses the TiNG Resource Manager, then resources of that call type will be 
reserved for this call.  It must be specified in call_openout() or call_opening(), 

otherwise a default call type will be used.  Supported call types for IP Telephony are:  

acu+g711+td+echo 

acu+g711+td 

acu+g711+echo 

acu+g711. 

If you have G.729 support on your card, the following call types may also be 
supported:  

acu+g711+g729+td+echo 

acu+g711+g729+td 

acu+g711+g729+echo 

acu+g711+g729.   

See the TiNG Resource manager API for more information on call types.  Any 
media_call_type setting will only be used for cards which support the TiNG Resource 

Manager, such as Prosody X.  

protocol_union (protocol_specific) 

A union of structures representing various IP Telephony signalling protocols.   

ipv6_media 

Present in version 6.6.0 and later. When set to a non-zero value, the connection 
address for RTP will use IPv6. Otherwise it will default to IPv4. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 195 

Unique parameters for H.323 
destination_alias 

Only applies when using call_openout() or call_details().  For H.323 this will take 

the form of an additional alias for the destination target.  It will be in URI address 
format.  

originating_alias 

Only applies when using call_openout() or call_details().  For H.323 this will take 

the form of an additional alias for the originating source.  It will be in URI address 
format.  

h245_tunneling 

Allows H.245 Tunneling to be enabled for this call.  This is the process of sending 
H.245 PDUs through the Q.931 channel (encapsulating the H.245 messages within 
H.225/Q.931 messages). The same TCP/IP socket that is already in use for the Call 
Signalling Channel, is also used by the H.245 Control Channel.  

If set to IPT_ENABLED, tunnelling is enabled. 

If set to IPT_DISABLED, tunnelling is disabled. 

NOTE 

H.245 Tunneling is enabled by default.  This default can be overridden 
using ipt_set_protocol_defaults.  Refer to IP Telephony card V6 API Guide 
for further information. 

 

faststart 

Allows Fast Start, also known as Fast Connect, to be enabled for this call.  This 
procedure reduces the time required to set up a call to one round-trip delay following 
the H.225 TCP connection.  If set to IPT_ENABLED, Fast Start is enabled.  If set to 

IPT_DISABLED, Fast Start is disabled. 

NOTE 

Fast Start is enabled by default.  This default can be overridden using 
ipt_set_protocol_defaults.  Refer to IP Telephony card V6 API Guide for 
further information. 

 

early_h245 

Allows early H.245 to be enabled by default for this call.  This involves opening the 
H.245 channel before H.225 has completed.  By starting H.245 early, two endpoints 
can establish media quicker.  If set to IPT_ENABLED, early H.245 is enabled.  If set to 

IPT_DISABLED, early H.245 is disabled.  

NOTE 

early H.245 is enabled by default.  This default can be overridden using 
ipt_set_protocol_defaults.  Refer to IP Telephony card V6 API Guide for 
further information. 

 

dtmf 

Only applies when using call_details() as a result of EV_DETAILS to retrieve details 

of the current call, either incoming or outgoing.  It holds the User Input Indication 
information that has just been received on the network for the call. 

progress_location 

Only applies when using call_details() as a result of EV_PROGRESS to retrieve details 

of the current call.  It holds the progress location information that has just been 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 196 

received on the network for the call. 

progress_description 

Only applies when using call_details() as a result of EV_PROGRESS to retrieve details 

of the current call.  It holds the progress description information that has just been 
received on the network for the call. 

Unique parameters for SIP 
contact_address 

Used to build a non-default contact header.  For chassis containing only one NIC card 
this field should be left blank.  It will be in URI address format. 

URIs are a well defined international standard for supporting multiple addressing 
types.  They take the form: 

 <scheme>:<scheme-specific-part> 

Examples of URIs could be:  

 sip:joe.bloggs@aculab.com 

 h323:joe.bloggs@aculab.com 

 mailto:joe.bloggs@aculab.com 

 http://www.aculab.com 

 tel:+441315610104 

NOTE 

The SIP service currently only supports the sip: uri. 

 

IANA’s (Internet Assigned Numbers Authority) current register of registered schemes 
can be found at http://www.iana.org/assignments/uri-schemes. 

If the address supplied does not conform exactly to the URI format, for example, 
<scheme>: section missing, the IP protocol will try to determine what has been 

entered. 

zero_connection_address_hold 

When set the service assumes that remote party implements call hold to the earlier 
Internet specification, that is c=0.0.0.0 in the SDP body. By default the service 
assumes that the latest specification (a=sendonly/recvonly). It may be set in 

call_openout or xcall_accept. 

disable_reliable_provisional_response 

For an incoming call, if the INVITE message from the caller suggests that the caller 

does not support reliable provisional response (absence of “Supported: 100rel”), this 
flag will be set in call_details. It is not used in order that parties may choose to 

switch off reliable provisional responses. 

disable_early_media 

For an outgoing call, when this is set the calling party refuses to participate in an early 
media session, even if one is offered by the called party. By default the calling party 
will participate in such sessions, if offered by called party. 

Example usage: 

To set the TDM encoding, say for incomming ringing, you can use the following: 

struct incoming_ringing_xparms ringing_xparms; 

ringing_parms.unique_xparms.sig_iptel.media_settings.tdm_encoding=TDM_ALAW; 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 197 

9 disconnect_xparms 
Used by: 

ACC_ERR xcall_getcause(DISCONNECT_XPARMS *causep); 

ACC_ERR xcall_disconnect(DISCONNECT_XPARMS *causep); 

ACC_ERR xcall_release(DISCONNECT_XPARMS *causep); 

and takes the form: 

typedef struct disconnect_xparms 

{ 

  ACU_ULONG   size; 

  ACU_CALL_HANDLE handle; 

  ACU_INT   cause; 

  union uniqueu   unique_xparms; 

} DISCONNECT_XPARMS; 

 

union uniqueu 

{ 

  /* see the following protocol specific structures */ 

} unique_xparms; 

9.1 Q931  
    struct 

    { 

      ACU_INT  raw; 

      struct 

      { 

        ACU_UCHAR  ie[MAXBEARER]; 

        ACU_UCHAR  last_msg; 

      } progress_indicator; 

      struct 

      { 

        ACU_UCHAR  ie[MAXDISPLAY]; 

        ACU_UCHAR  last_msg; 

      } display; 

      struct 

      { 

        ACU_UCHAR  ie[MAXBEARER]; 

        ACU_UCHAR  last_msg; 

      } notify_indicator; 

      ACU_INT  location; 

      ACU_INT         coding_standard; 

    } sig_q931; 

9.2 ISUP/SS7  
    struct 

    { 

      ACU_INT  raw; 

      struct 

      { 

        ACU_UCHAR  ie[MAXPROGRESS]; 

        ACU_UCHAR  last_msg; 

      } progress_indicator; 

        ACU_INT  location; 

        ACU_INT  reattempt; 

    } sig_isup; 

location 

The user can specify the location value to be used, or use a value of -1 to default to  
the location value specified in the ss7 configuration file. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 198 

9.3 DPNSS  
    struct 

    { 

      ACU_INT   raw; 

    } sig_dpnss; 

9.4 DASS  
    struct 

    { 

      ACU_INT   raw; 

    } sig_dass; 

9.5 CAS  
    struct 

    { 

      ACU_INT   raw; 

    } sig_cas; 

9.6 IP telephony (iptel) 
    Struct 

    { 

      union 

      { 

        struct 

        { 

          ACU_INT   raw; 

          ACU_INT   raw_type; 

        } sig_h323; 

        struct 

        { 

          ACU_INT    raw; 

          ACU_CHAR   warning[MAXSIPWARNING]; 

          ACU_CHAR   response_explanation[MAXSIPRESPONSEEXPLANATION]; 

        } sig_sip; 

      } protocol_specfic; 

    } sig_iptel; 

The disconnect_xparms structure can be used when more protocol specific 

information is made available relating to the clearing of the incoming or outgoing call. 

handle  

Is used to identify the call. 

cause  

May be used to provide the device driver with the generic clearing cause for the call. 
The cause must one from the standard set of generic LC_xxxx clearing causes as 

detailed in Appendix E:. 

unique_xparms 

raw 

Protocol specific clearing cause.  Must contain a value that is appropriate for the 
protocol in use. 

raw_type (H.323) 

Used to identify the H.323 specific clearing cause type.  Valid values are : 

H225_RCR     - H.225 release complete reason 

Q931_CAUSE    - Q.931 clearing cause 

progress_indicator (Q931) 

May be used to indicate events pertaining to the call regarding in-band information. 
The ie field of the progress_indicator structure should contain the progress 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 199 

information which is sent transparently to the other end. The last_msg field should be 

left blank. This information is dependent on the signalling system and reference 
should be made to the appropriate specification for the protocol. 

progress_indicator (ISUP) 

Is currently unused for ISUP and is ignored by the driver. 

notify_indicator (Q931) 

Can be used to indicate the information detailing the call related event pertaining to 
the call. The ie field of the notify_indicator structure should contain the notify 

information that is sent transparently to the other end. The last_msg field should be 

set to zero. This information is dependent on the signalling system and reference 
should be made to the appropriate specification for the protocol. 

display (Q931) 

Can be used to transmit information that may be displayed by the user. 

location (ISUP) 

Provides the device driver with the value that will be used in the cause indicators 
parameter if an ISUP RELEASE message is sent. 

reattempt (ISUP)  

If set to a non-zero value, this indicates that an outgoing call has failed owing to a 
transient condition (such as call collision) and is reattempt able. 

Warning (SIP) 

This field contains the contents of the SIP Warning header if one is present in the 
terminating SIP response. 

response_explanation(SIP) 

This field may contain extra information suggesting what action may be taken in order 
that future call attempt should succeed.  The nature of this information is dependent 
on the raw cause (ie. the SIP response code).  If raw cause is 420 (Bad Extension) 
and the response has an unsupported header then this string contains the options not 
supported by the remote end.  

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 200 

10 Feature xparms 
There are a number of data structures used in the extended feature section of the call 
API. These are: 

uui_xparms 

facility_xparms 

diversion_xparms 

feature_hold_xparms 

feature_transfer_xparms 

raw_data_struct 

mlpp_xparms 

non_standard_data_xparms 

raw_msg_xparms 

call_waiting_xparms 

restart_channel_xparms 

addressed_non_standard_data_xparms 

feature_activation_xparms 

information_request_xparms 

name_presentation_xparms 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 201 

10.1 uui_xparms - user to user information 
User-to-user (UU) signalling is passed transparently across a network to the receiving 
user. UU services are currently supported on Aculab EuroISDN (primary rate), SS7, 
NI2 and QSIG signalling systems. 

Types of service include: 

Service 1 – used to send data during the call setup and clearing phases 

Service 2 – used to send data during the call alerting stage. 

Service 3 – used to send data in the call-connected state. 

Normally it is necessary to request a service and receive an acceptance before a 
service can be used to send data. Calling the user makes the service requests, but as 
a network option it may be possible for service 3 to be requested by the called user 
when in the connected state. Not all networks will support all three types of service.  

An exception to the above applies to service 1 where data can be sent in a call setup 
message without sending a request (implicit preferred request). 

If a service is requested as required but the called party or the network rejects the 
service, then the call is normally cleared by either the called party or the network. 

Data can be sent at the same time as a request for service. 

The UU services on Aculab EuroISDN and QSIG are based on the services 
described in ETSI EN 286-1. The SS7 implementation is based on Q737.1 

To include UU information the feature_information field should be supplied with the 

value FEATURE_USER_USER. 

typedef struct uui_xparms  

{ 

  ACU_INT  command; 

  ACU_UINT  request; 

  ACU_INT  tx_response; 

  ACU_INT  rx_response; 

  char   control; 

  char   flow_control; 

  ACU_UCHAR  protocol; 

  char   more; 

  ACU_UCHAR  length; 

  ACU_UCHAR  data[MAXUUI_INFO]; 

} UUI_XPARMS; 

The uui_xparms structure must be used in the following way to transmit information in 

call_feature_openout(), call_feature_send() or call_feature_details(). 

command 

For uui_xparms, the command field may be used to define what is transmitted. The 

possible values are: 

UU_SERVICE_CMD - When sending a UU service request or response.  

UU_DATA_CMD  - When sending UU data 

UU_GET_PENDING_DATA_CMD - Only applicable to call_feature_details(). 

NOTE 

For ETS300, the UU_DATA_CMD command may be used to send UU data 

and UU service requests/responses in the same protocol message. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 202 

request 

If a UU service has been requested of the application then following a call to 
call_feature_details() the request field will contain the value of the requested 

service. If no service has been requested then the value will be zero.  

If a service request needs to be made using call_feature_send() or 

call_feature_openout() then the request field should be set to the requested service. 

call_feature_openout() uses UU service 1-3 but call_feature_send() only uses UU 

service 3. Requests for service 1 and/or 2 should only be made using 
call_feature_openout(). 

Valid values for the request field are: 

UUS_1_IMPLICITLY_PREFERRED 

UUS_1_REQUIRED 

UUS_1_PREFERRED 

UUS_2_REQUIRED 

UUS_2_PREFERRED 

UUS_3_REQUIRED 

UUS_3_PREFERRED 

 

tx_response 

tx_response is used when sending a response to a service request using 

call_feature_send(). It indicates whether or not the request had been accepted. 

Valid values are:  

UUS_1_ACCEPTED 

UUS_1_REFUSED_BY_PEER 

UUS_1_REFUSED_BY_NET 

UUS_2_ACCEPTED 

UUS_2_REFUSED 

UUS_3_ACCEPTED 

UUS_3_REFUSED 

NOTE 

For ETS300, use of the UUS_1_REFUSED_BY_PEER and 

UUS_1_REFUSED_BY_NET values when setting uui_xparms.tx_response  

requires v6.5.46 call drivers or newer. 

 

NOTE 

For ETS300, when setting uui_xparms.tx_response to either  

UUS_2_REFUSED or UUS_3_REFUSED, the call driver will send an 

appropriate rejection end type (by peer or by network) in the protocol 
message based on the call firmware running. 

 

NOTE 

For ETS300, the call driver may automatically respond to UU service 
requests by either accepting them (if the –cFU switch is set) or refusing 

them (if the –cFU switch is omitted). The automatic UU service response 

occurs when the application fails to supply the call driver with a UU 
service response (using call_feature_send()) before calling 

call_incoming_ringing() or call_accept(). The automatic UU 

responses maybe disabled using the –cDAUUS configuration switch. 

Requires version v6.5.46 call drivers or newer. 

 

rx_response 

If the application has requested a User to User service then following a call to 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 203 

call_feature_details() the rx_response field may contain the response of the other 

party to this request. A response can take one of the following values:  

UUS_1_ACCEPTED 

UUS_1_REFUSED_BY_PEER 

UUS_1_REFUSED_BY_NET 

UUS_2_ACCEPTED 

UUS_2_REFUSED_BY_PEER 

UUS_2_REFUSED_BY_NET 

UUS_3_ACCEPTED 

UUS_3_REFUSED_BY_PEER 

UUS_3_REFUSED_BY_NET 

Control 

The control field can take one of two values that will affect the way the facility 
information is transmitted. These values are  

CONTROL_DEFAULT   - The information will be transmitted immediately in a 

Q.931 FACILITY message by the driver 

CONTROL_NEXT_CC_MESSAGE - The information will be stored and send in the 

next appropriate call control message. 

flow_control 

If an application sends UU service 3 data and the driver wishes to indicate that this 
will be the last transmission until some future time, then the UUI_FC_STOP_SENDING bit 

in the flow_control field will be set. If capacity remains to send additional messages, 

this bit is cleared.  

If an application continues to send UU service 3 data before sending is once more 
possible, then the UUI_FC_DATA_DISCARDED bit in the flow_control field will be set and 

the data will not be queued for transmission. 

NOTE 

Flow control is not applicable to ISUP/SS7 and should be set to zero. 

 

protocol 

The protocol field should be supplied with one of the following values 

UUI_PROTOCOL_USER_SPECIFIC 

UUI_PROTOCOL_OSI_HIGHER_LAYER 

UUI_PROTOCOL_CCITT_X244  

UUI_PROTOCOL_SYSMNG_CONV 

UUI_PROTOCOL_IA5 

UUI_PROTOCOL_CCITT_V120  

UUI_PROTOCOL_CCITT_Q931  

more 

If the more field contains a non-zero value then this is an indication to the receiver that 

more data will follow belonging to the same block. 

length 

This is the length in bytes of the data being supplied in the data field. The max value 

is subject to the current data function, for example, for uui_xparms the value would be 

as currently defined in the header file for MAXUUI_INFO. 

In most instances the current maximum is 128 bytes. 

data 

The data field should be supplied with or contain information structured according to 

the protocol parameter described previously. The length of this information should be 
supplied in the length field. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 204 

NOTE 

To send a protocol discriminator octet under ISUP/SS7 when length is zero, 
set the first byte of data to the special value UUI_NO_DATA_IN_MESSAGE. 

 

Using User to User Information with NI2 

It is possible to send User-to-User Information (UUI) with the following protocol 
messages in NI2: 

SETUP 

Sent using call_feature_openout, with the uui_xparms request field controlling call 

behaviour if the far end does not support UUI, as below 

uui_xparms.command  = UU_DATA_CMD; 

uui_xparms.request  = UUS_1_PREFERRED; //OR UUS_1_REQUIRED 

uui_xparms.control  = CONTROL_DEFAULT;  

uui_xparms.protocol = UUI_PROTOCOL_CCITT_Q931; 

 

With UUS_1_REQUIRED if the far end responds with a STATUS message showing it 

does not support UUI the driver will release the call. 

With UUS_1_PREFERRED if the far end responds with a STATUS message showing it 

does not support UUI the driver will not drop the call, but will not convey further 
UUI messages which are attempted to be sent to the far end 

CONNECT, DISCONNECT, RELEASE and PROGRESS 

Sent using call_feature_send, populated as below, prior to the call control API call 

used to send the next call control message 

feature_detail_xparms.feature_type  = FEATURE_USER_USER; 

feature_detail_xparms.message_control  = CONTROL_NEXT_CC_MESSAGE; 

feature_detail_xparms.feature.uui.request = UUS_1_IMPLICITLY_PREFERRED; 

USER INFORMATION 

Sent using call_feature_send, populated as below,  

feature_detail_xparms.feature_type  = FEATURE_USER_USER; 

feature_detail_xparms.message_control  = CONTROL_DEFAULT; 

feature_detail_xparms.feature.uui.request = UUS_1_IMPLICITLY_PREFERRED; 

 

NOTE 

UUI in NI2 uses UUI in a SETUP message to request UUI for the rest of the 
call. If UUI is not sent/received in the SETUP message but  attempts are 
made to send UUI in subsequent call control messages an error will be 
returned to the application. 

 

NOTE 

To enable UUI with NI2 the –cFUN switch must be added to the firmware 

download parameters. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 205 

NOTE 

To enable USER INFORMATION messages with NI2, the –s80,n must be 

added to the download parameters. Please see the firmware release notes 
for more details. Requires v6.5.26 call drivers (or newer) and v1.6.23 NI2 
firmware (or newer). 

 

Using User to User Information service with AT&T 

Firmware must be downloaded with -cFU set. Unlike with the Q.931 signalling types, 
where the services are split up into services 1, 2 and 3, with AT&T they are split into 
MA-UUI, CA-TSC and NCA-TSC. 

Message Associated UUI (MA-UUI) 

User to user data is transferred in Q.931 call control messages either at call setup or 
call clearing phases of a call. This can be in SETUP, ALERT, CONNECT or 
DISCONNECT messages. 

To send data in a SETUP message... 

Use call_feature_openout() with command in the uui_xparms structure set to 

UUS_ATT_MA_UUI and data populated with the data to send and length field set. 

To receive data from a SETUP message. 

After EV_INCOMING_CALL_DET, call details will show user to user feature available. Then 

call call_feature_details() with feature_type set to FEATURE_USER_USER. The data 

field in the uui_xparms structure would be populated with the data received, and 
length set to the length of the data. 

To send data in other call control messages 

After EV_INCOMING_CALL_DET, send call_feature_send() with feature_type set to 

FEATURE_USER_USER, and command in the uui_xparms structure set to UUS_ATT_MA_UUI. 

data would be populated with the data to send and length field set. For example do 
this before call_incoming_ringing() to send in ALERT message. 

To receive data from other call control messages 
(ALERT/CONNECT/DISCONNECT)... 

For other call control messages a call to call_feature_details() would retrieve the 

data received in the same way with feature_type set to FEATURE_USER_USER. 

Call Associated Temporary Signalling Connections (CA-TSC) 

CA-TSC is like a combination of services 2 and 3 on ETSI ETS300/QSIG. However 
one difference is that CA-TSC allows user to user data to be exchanged before the 
alerting message is received by the calling user. This can be done if the called user 
responds to accept the service before the alerting message is sent. 

Requesting CA-TSC at call setup 

Request using call_feature_openout() and feature_information set to 

FEATURE_USER_USER. request in the uui_xparms structure is set to UUS_ATT_CA_TSC. 

Requesting CA-TSC after call setup 

Use call_feature_send() with feature_type set to FEATURE_USER_USER. In the 

uui_xparms structure request should be set to UUS_ATT_CA_TSC. 

In either case a response would be received in an extended event EV_EXTENDED, 
EV_EXT_UUS_SERVICE_REQUEST 

If accepted then rx_response would be set to ATNT_UUS_CA_TSC_ACCEPTED 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 206 

If rejected then rx_response would be set to ATNT_UUS_CA_TSC_REJECTED 

CA-TSC Data Transfer 

After CA-TSC has been accepted, User to User data can be transferred. 

The maximum length of data than can be transmitted or received with AT&T is 
MAXUUI_INFO_ATT, which is different from the length allowed with ETS300 or QSIG 
(MAXUUI_INFO). 

To send CA-TSC data for either an incoming or outgoing call after the service has 
been set up, call call_feature_send() with feature_type set to FEATURE_USER_USER 

and command in the uui_xparms structure set to UUS_ATT_CA_TSC_DATA. 

To receive CA-TSC data for either an incoming or outgoing call after the service has 
been set up, an event will be received EV_EXTENDED, EV_EXT_UUI_PENDING. A call to 

call_feature_details() with feature_type set to FEATURE_USER_USER will result in the 

data field of the uui_xparms structure populated with the received data and length to 
the length of the data. 

CA-TSC  Congestion Messages (for flow control) 

When using the CA-TSC service it is possible for either end to send a 'Receive not 
ready' indication. The end that sends the 'receive not ready' is the one that can clear 
it with a 'receive ready'. When a receive not ready is received, no more data should 
be sent until the condition is cleared. The network can discard any messages 
received after a 'receive not ready' has been sent. 

If a congestion message with receive not ready is received, a EV_EXT_UUI_CONGESTED 

extended event will be received. 

When the condition is cleared a EV_EXT_UUI_UNCONGESTED extended event will be 

received. 

To send a receive not ready message use call_feature_send() with feature_type set 
to FEATURE_USER_USER and command in the uui_xparms structure set to 

UUS_ATT_CONGESTION_RNR. 

To send a receive ready message use call_feature_send() with feature_type set to 
FEATURE_USER_USER and command in the uui_xparms structure set to 

UUS_ATT_CONGESTION_RR. 

Non-Call Associated Temporary Signalling Connections (NCA-TSC) 

This allows a call to be set up with no bearer. The call is set up and cleared in a 
similar way to a normal call. User to user data can be exchanged after the call is 
connected in USER INFORMATION messages. 

To set up a call with NCA-TSC 

To set up the NCA-TSC call, use call_feature_openout() with feature_information 

set to FEATURE_USER_USER and in the uui_xparms structure have request set to 

UUS_ATT_NCA_TSC. 

If it is necessary to select between SDN and ACCUNET Switched Digital then these 
values can be used - UUS_ATT_NCA_TSC_SDN and UUS_ATT_NCA_TSC_ACCUNET. The default 

with UUS_ATT_NCA_TSC is to have the request set to SDN. 

To accept an incoming call with NCA-TSC 

An incoming call will be detected with EV_INCOMING_CALL_DET. The result from 

call_details() will include feature_information set to FEATURE_USER_USER. The result 

from call_feature_details() with feature_type set to FEATURE_USER_USER will have 

request set to UUS_ATT_NCA_TSC. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 207 

To accept an incoming request for NCA-TSC use call_feature_send() with 

feature_type set to FEATURE_USER_USER and tx_response in the uui_xparms structure 

set to ATNT_UUS_NCA_TSC_ACCEPTED. The call will go to connected state. 

To send NCA-TSC data for either an incoming or outgoing call after the service has 
been set up, call call_feature_send() with feature_type set to FEATURE_USER_USER 

and command in the uui_xparms structure set to UUS_ATT_NCA_TSC_DATA. 

To receive NCA-TSC data for either an incoming or outgoing call after the service has 
been set up, an event will be received EV_EXTENDED, EV_EXT_UUI_PENDING. A call to 

call_feature_details() with feature_type set to FEATURE_USER_USER will result in the 

data field of the uui_xparms structure populated with the received data and length to 
the length of the data. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 208 

10.2 facility_xparms - facility information 
To include facility information, the feature_information field should be supplied with 

the value FEATURE_FACILITY. 

typedef struct facility_xparms 

{ 

  ACU_INT   command; 

  ACU_UCHAR   control; 

  ACU_UCHAR   length; 

  ACU_UCHAR   data[MAXFACILITY_INFO]; 

  char    destination_addr[MAXNUM]; 

  char    originating_addr[MAXNUM]; 

  ACU_UCHAR   dest_subaddr[MAXNUM]; 

  ACU_UCHAR   dest_numbering_type; 

  ACU_UCHAR   dest_numbering_plan; 

  ACU_UCHAR   orig_numbering_type; 

  ACU_UCHAR   orig_numbering_plan; 

  ACU_UCHAR   orig_numbering_presentation; 

  ACU_UCHAR   orig_numbering_screening; 

  ACU_UCHAR   more; 

} FACILITY_XPARMS; 

Example call_feature_openout() 

The facility_xparms structure must be used in the following way to transmit 

information in call_feature_openout(): 

data 

The data field should be supplied with protocol dependant information. 

length  

The length of this information should be supplied in the length field. 

All other fields are not applicable for an outgoing call. 

Example Call_feature_send() 
control  

The control field can take one of two values that will affect the way the facility 

information is transmitted. These values are  

CONTROL_DEFAULTS /* Immediate */ 

If the immediate option is taken then the information will be transmitted immediately in 
a Q.931 FACILITY message by the driver. 

CONTROL_NEXT_CC_MESSAGE /* Next call control message */ 

If the Next Call Control Message option is chosen then the information will be stored 
and sent in the next appropriate call control message. 

Example: 

If call_incoming_ringing() was subsequently called then the information would be 

included in a Q.931 ALERTING message). 

The data field should be supplied with protocol dependant information.  

The length of this information should be supplied in the length field. 

All other fields are not applicable to call_feature_send() 

Facility_xparm parameter definitions 
Command 

For facilities_xparms, EuroISDN allows the possibility of two types of 

connectionless transmission. The command field selects the mode for this call. If 
using the connectionless data facility, this field must contain one of the values:  

FAC_CLESS_DL_DATA_CMD     ETS300 196 Section 8.3.2.2 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 209 

FAC_CLESS_DL_UNIT_DATA_CMD   ETS300 196 Section 8.3.2.4 

This field only needs to be filled when sending data using connectionless data. If the 
data is being sent as a part of a call then it should not be filled in. 

This value is ignored when using QSIG. 

Control 

The control field can take one of two values that will affect the way the facility 
information is transmitted. These values are  

CONTROL_DEFAULT 

Immediate - the information will be transmitted immediately in a Q.931 FACILITY 
message by the driver. 

CONTROL_NEXT_CC_MESSAGE 

Next Call Control Message (the information will be stored and sent in the next 
appropriate call control message). 

Length 

This is the length in bytes of the data being supplied in the data field. The max value 
is subject to the current data function, for example, for uui_xparms the value would be 

as currently defined in the header file for MAXUUI_INFO.  

In most instances the current maximum is 128 bytes. 

Data 

The data parameter is not to be confused with data types.  

For data types the device driver makes the following assumptions about the data 
types char, int and long: 

char: 8 bit, signed 

int: 32 bit, signed 

long: 32 bit, signed 

destination_addr 

The input character buffer contains a null terminated string of IA5 digits (0-9). This 
field can be:  

• The whole of the number to be dialled (en bloc). 

• Part of the number to be dialled (overlap sending). 

• Empty, indicating no digits provided (overlap sending). 

The destination_addr contains the IP address of the call destination. It must be an 

unsigned long in network byte order, as returned by the inet_addr socket function. 

The digits supplied are copied, (not concatenated) to destination_addr. If, when 
initiating the outgoing call, the sending_complete parameter was set to 1, then the 

destination_addr field may contain a ‘!’ to indicate that the number is complete. 

originating_addr 

The input character buffer originating_addr can be supplied with a null terminated 

string of IA5 digits. This string represents the originating subscriber number. This 
string will be passed to the signalling system when the outgoing call is made. This 
provides for originating_addr to be specified on a per call basis.  

NOTE 

In the DASS signaling system, originating_addr may contain a null 
terminated ASCII string of extension number digits. 

 

dest_subaddr 

Maximum length MAXNUM using digits 0 to 9 – see Appendix H Using Subaddress 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 210 

Information for further details. 

dest_numbering_type 

Can contain a valid numbering type for the call and must be appropriate for the 
signalling system. Allowable values are:  

NT_UNKNOWN 

NT_INTERNATIONAL 

NT_NATIONAL 

NT_NETWORK_SPECIFIC 

NT_SUBSCRIBER_NUMBER 

NT_ABBREVIATED_NUMBER 

NOTE 

Some signaling systems may not have support for all these values. 

 

The default value is NT_UNKNOWN. 

 

NOTE 

Not applcable for an outgoing call 

 

dest_numbering_Plan 

Can contain a valid numbering plan for the call and must be appropriate for the 
signalling system. For example, allowable values may include: 

NT_UNKNOWN 

NT_ISDN 

NT_DATA 

NT_TELEX 

NT_NATIONAL_STANDARD 

NT_PRIVATE 

NOTE 

Some signaling systems may not have support for all these values.  

 

The default value is NT_UNKNOWN. 

orig_numbering_type 

Can contain a valid numbering type for the call and must be appropriate for the 
signalling system. Allowable values are: 

NT_UNKNOWN 

NT_INTERNATIONAL 

NT_NATIONAL 

NT_NETWORK_SPECIFIC 

NT_SUBSCRIBER_NUMBER 

NT_ABBREVIATED_NUMBER 

NOTE 

Some signaling systems may not have support for all these values. 

 

The default value is NT_UNKNOWN. 

orig_numbering_plan 

Can contain a valid numbering plan for the call and must be appropriate for the 
signalling system. For example, allowable values may include: 

NT_UNKNOWN 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 211 

NT_ISDN 

NT_DATA 

NT_TELEX 

NT_NATIONAL_STANDARD 

NT_PRIVATE 

NOTE 

Some signaling systems may not have support for all these values. 

 

The default value is NT_UNKNOWN. 

orig_numbering_presentation 

The orig_numbering_presentation field indicates the intention of the calling party for 

the presentation of the calling number (originating_address) to the called party.  

The four values are: 
PR_ALLOWED (Presentation Allowed) 

PR_RESTRICTED (Presentation Restricted) 

PR_NOTAVAILABLE (Number not available due to interworking) 

PR_RESERVED 

orig_numbering_screening 

The possible values for the orig_numbering_screening field are: 

SC_NOTSCREENED (User provided, not screened) 

SC_VERIFYPASS* (User provided, verified and passed) 

SC_VERIFYFAIL (User provided, verified and failed) 

SC_NETWORKPROVIDED* (network provided) 

more 

If the more field contains a non-zero value then this is an indication to the receiver that 

more facility data is available. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 212 

10.3 diversion_xparms - Diversion/redirect supplementary service 
It is possible to include call diversion information to say that a new call has been 
diverted from another number. This makes it possible to include information on what 
number the call was diverted from and how many times diversion has occurred. This 
feature is supported on the EuroISDN, QSIG, NI-2, AT&T, ISUP and H.323 signaling 
systems. 

To include diversion information, the feature_information field should be supplied 

with the value FEATURE_DIVERSION. 

typedef struct diversion_xparms  

{ 

  ACU_UCHAR  diverting_reason; 

  ACU_UCHAR  diverting_counter; 

  char   diverting_to_addr[MAXNUM]; 

  char   diverting_from_addr[MAXNUM]; 

  char   original_called_addr[MAXNUM]; 

  ACU_UCHAR  diverting_from_type; 

  ACU_UCHAR  diverting_from_plan; 

  ACU_UCHAR  diverting_from_presentation; 

  ACU_UCHAR  diverting_from_screening; 

  ACU_UCHAR  diverting_indicator;   /* ISUP only */ 

  ACU_UCHAR  original_diverting_reason;  /* ISUP/qsig/NI-2 only */ 

  ACU_UCHAR  diverting_to_type;    /* ISUP only */ 

  ACU_UCHAR  diverting_to_plan;    /* ISUP only */ 

  ACU_UCHAR  diverting_to_int_nw_indicator; /* ISUP only */ 

  ACU_UCHAR  original_called_type;   /* ISUP/NI-2 only */ 

  ACU_UCHAR  original_called_plan;   /* ISUP/NI-2 only */ 

  ACU_UCHAR  original_called_presentation; /* ISUP/qsig/NI-2 only */ 

  ACU_INT  operation;     /* qsig/H.323 only */ 

  ACU_INT  operation_type;    /* qsig/H.323 only */ 

  ACU_INT  error;         /* qsig/H.323 only */ 

  ACU_UCHAR  original_called_screening;  /* NI-2 only */ 

  ACU_UCHAR   diverting_to_presentation;   /* ISUP drivers only */ 

  ACU_UCHAR  notification_options;      /* ISUP drivers only */ 

  char   redirection_addr[MAXNUM];     /* H.323 only */ 

  DIVERTINGNR  diverting_number;              

  ORIGINALCALLEDNR original_called_number;        

} DIVERSION_XPARMS; 

Parameters 

The diversion_xparms structure must be used in the following way: 

diverting_reason 

For ISUP only, the diverting_reason field should be supplied with the raw protocol 

value for the Redirecting Reason parameter, which may vary between regions.  
Values assigned by ITU include: 

0 Unknown/Not available 

1 User Busy 

2 No Reply 

3 Unconditional 

For AT&T only, the diverting_reason field should be supplied with one of the 

following values: 

DIVERTING_BSY 

DIVERTING_RNR 

DIVERTING_UNKNOWN 

DIVERTING_NETWORK_BSY 

For other protocols including QSIG and H.323, the diverting_reason field should be 

supplied with one of the following values: 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 213 

DIVERTING_BSY 

DIVERTING_RNR 

DIVERTING_UNKNOWN 

DIVERTING_UNCONDITIONAL 

For other protocols excluding QSIG, the following parameters may also be valid: 

DIVERTING_CD 

DEFLECTION_RINGING 

DEFLECTION_IMM 

diverting_counter 

The diverting_counter field should be supplied with a value of 1 if this is the first 

diversion or 2 if this is the second diversion and so on.  

NOTE 

There may be a protocol dependant upper limit on this parameter. 

If multiple diversions have occurred, the original_called_addr should be supplied 

with the number of the original called party details (if available). 

diverting_to_addr 

Is the address towards which the call is being diverted.  

diverting_from_addr 

The diverting_from_addr should be supplied with the number of the party diverting 

the call. 

original_called_addr 

If multiple diversions have occurred, original_called_addr should contain the 

number of the original called party (if available).  

NOTE 

Not currently supported for H.323. 

 

diverting_from_plan 

Contains a valid numbering plan for the call and must be appropriate for the signalling 
system. For example, allowable values may include: 
 

NP_UNKNOWN 

NP_ISDN 

NP_DATA 

NP_TELEX 

NP_NATIONAL_STANDARD 

NP_PRIVATE 

NOTE 

Some signaling systems may not have support for all these values, for 
example, AT&T only supports NT_UNKNOWN and NT_ISDN 

 

The default value is NT_UNKNOWN. 

diverting_from_type 

Contains a valid numbering type for the call and must be appropriate for the signalling 
system. For example, allowable values may include: 

NT_UNKNOWN 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 214 

NT_INTERNATIONAL 

NT_NATIONAL 

NT_NETWORK_SPECIFIC 

NT_SUBSCRIBER_NUMBER 

NT_ABBREVIATED_NUMBER 

NOTE 

Some signaling systems may not have support for all values, for example, 
AT&T only supports NT_INTERNATIONAL and NT_NATIONAL. 

 

The default value is NT_UNKNOWN. 

diverting_from_presentation 

The presentation field indicates the intention of the calling party for the presentation 

of the calling number (originating_address) to the called party. The values are: 

PR_ALLOWED (Presentation Allowed) 

PR_RESTRICTED (Presentation Restricted) 

PR_NOTAVAILABLE (Number not available due to interworking) 

PR_RESERVED 

NOTE 

Some signaling systems may not have support for all values, for example, 
AT&T only supports PR_ALLOWED and PR_RESTRICTED. 

 

diverting_from_screening 

The possible values for the screening field are: 

SC_NOTSCREENED (User provided, not screened) 

SC_VERIFYPASS* (User provided, verified and passed) 

SC_VERIFYFAIL (User provided, verified and failed) 

SC_NETWORKPROVIDED* (network provided) 

diverting_indicator 

The diverting_indicator (redirection indicator) is used for ISUP to indicate a call 

was either re-routed or re-directed.  

0 no redirection (national use) 

1 call rerouted (national use) 

2 call rerouted, all redirection information presentation restricted 

(national use) 

3 call diverted 

4 call diverted, all redirection information presentation restricted 

5 call rerouted, redirection number presentation restricted (national use) 

6 call diversion, redirection number presentation restricted (national use) 

original_diverting_reason 

The original diversion (redirect) reason, when used for ISUP, indicates the original 
reason a call was either re-routed or re-directed, the values are:  

0 unknown/not available 

1 user busy (national use) 

2 no reply (national use) 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 215 

3 unconditional (national use) 

For other protocols including QSIG, the following values apply: 

DIVERTING_BSY 

DIVERTING_RNR 

DIVERTING_UNKNOWN 

DIVERTING_UNCONDITIONAL 

Some other protocols, excluding QSIG, may also use: 

DIVERTING_CD 

DEFLECTION_RINGING 

DEFLECTION_IMM 

diverting_to_type 

The diverting_to_type for ISUP is equivalent to Q 763 nature of address:  

Allowable values include: 

NOA_SUBSCRIBER_NUMBER 

NOA_NATIONAL_RESERVED 

NOA_NATIONAL 

NOA_INTERNATIONAL 

These are the values defined by Q.767 (International ISUP), although the driver will 
pass other values transparently. 

diverting_to_plan 

The diverting_to_plan for ISUP is equivalent to Q 763 numbering plan:  

Allowable values include: 

NP_ISDN 

NP_DATA 

NP_TELEX 

If other values are encountered, the drivers will pass the value transparently. 

diverting_to_int_nw_indicator 

The diverting_to_int_nw_indicator for ISUP when set to a non-zero value, 

indicates that routing to an internal network number is not allowed.  

original_called_type 

The original_called_type for ISUP is equivalent to Q 763 nature of address:  

1 subscriber number (national use) 

2 unknown (national use) 

3 national (significant) number 

4 international number 

5 network-specific number (national use) 

original_called_plan 

The original_called_plan for ISUP is equivalent to Q 763 numbering plan:  

1 ISDN (Telephony) numbering plan (Recommendation E.164) 

3 Data numbering plan (Recommendation X.121) (national use) 

4 Telex numbering plan (Recommendation F.69) (national use) 

original_called_presentation 

The original_called_presentation for ISUP is equivalent to Q 763 presentation 

restricted indicator.  Available values are:  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 216 

PR_ALLOWED (Presentation Allowed) 

PR_RESTRICTED (Presentation Restricted) 

PR_NOTAVAILABLE (Number not available due to interworking) 

PR_RESERVED 

Operation 

The operation field indicates which divert message is being transmitted.  

OP_ACTIVATE_DIVERSION 

OP_DEACTIVATE_DIVERSION 

OP_INTERROGATE_DIVERSION 

OP_CALL_REROUTE_REQ - network originating call reroute request 

OP_DIVERTING_LEG_INFO1 – call was diverted at gatekeeper 

OP_DIVERTING_LEG_INFO2 - call was diverted from another number 

OP_DIVERTING_LEG_INFO3 - call was diverted to another number 

operation_type 

The operation_type field indicates the type of the operation and can take one of the 

following values:  

INVOKE - A request for a service 

RETURN_RESULT - An acknowledgement of an INVOKE. The request was 

successful. 

RETURN_ERROR - An acknowledgement of an INVOKE. The request was 

unsuccessful.  

Error 

This option is currently not available, reserved for future use.  

NOTE 

Available for H.323. 

 

original_called_screening 

The possible values for the original_called_screening field are:  

SC_NOTSCREENED (User provided, not screened) 

SC_VERIFYPASS* (User provided, verified and passed) 

SC_VERIFYFAIL (User provided, verified and failed) 

SC_NETWORKPROVIDED* (network provided) 

diverting_to_presentation 

For ISUP, indicates the intention of the calling parties presentation of the calling 
number (originating_address) to the called party. The values are:  

PR_ALLOWED (Presentation Allowed) 

PR_RESTRICTED (Presentation Restricted) 

PR_NOTAVAILABLE (Number not available due to interworking) 

PR_RESERVED 

notification_option (outgoing calls only) 

For ISUP outgoing calls a subsequent exchange may divert the call, in which case 
the originator may be notified that the diversion has occurred.  The diverting 
exchange may sometimes supply a "Call diversion Information" parameter containing 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 217 

"notification options",  which define how much details the originating subscriber 
should be told about the diversion. 

The definition of parameter values may vary depending upon national variants.  
Values defined by ITU include: 

Unknown 

Presentation not allowed 

Presentation allowed with redirection number 

Presentation allowed without redirection number 

It is not possible to use this field to set notification options in messages generated by 
Aculab, but it will be set if it is encountered in received messages.  If a number of 
conflicting values are received in different messages during a single call sequence, 
only the most restrictive value will be presented at the API. 

redirection_addr (H.323 calls only) 

Contains the number of the diverted-to user.  Presentation is dependant upon the 
presentation restriction rules set by diverted-to user.  

diverting_number  

For diversion using ETS DIVERTING_LEG_INFO2, the diverting_number structure can 

be supplied with the appropriate protocol values as below:  

presented_number_unscreened 

For ETS only, the presented_number_unscreened  field should be supplied with one of 

the following values: 
 

              0  ets_196_presentation_allowed_number              

              1  ets_196_presentation_restricted                   

              2  ets_196_number_not_available_due_to_interworking  

              3  ets_196_presentation_restricted_number           

party_number 

For ETS only, the party_number field should be supplied with one of the following 

values: 
 

              0  ets_196_unknown_party_number            

              1  ets_196_public_party_number             

              2  ets_196_nsap_encoded_number             

              3  ets_196_data_party_number               

              4  ets_196_telex_party_number              

              5  ets_196_private_party_number            

              8  ets_196_national_standard_party_number 

public_type_of_number 

For ETS only, the public_type_of_number field should be supplied with one of the 

following values: 

 

             0  ets_196_public_type_of_num_unknown                  

             1  ets_196_public_type_of_num_international_number     

             2  ets_196_public_type_of_num_national_number          

             3  ets_196_public_type_of_num_network_specific_number  

             4  ets_196_public_type_of_num_subscriber_number        

             6  ets_196_public_type_of_num_abbreviated_number       

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 218 

private_type_of_number 

For ETS only, the private_type_of_number field should be supplied with one of the 

following values: 

            0  ets_196_private_type_of_num_unknown                 

            1  ets_196_private_type_of_num_level2_regional_number  

            2  ets_196_private_type_of_num_level1_regional_number  

            3  ets_196_private_type_of_num_ptn_specific_number     

            4  ets_196_private_type_of_num_local_number            

            6  ets_196_private_type_of_num_abbreviated_number      

 

original_called_number  

For diversion using ETS DIVERTING_LEG_INFO2, the original_called_number 
structure can be supplied with the appropriate protocol values as below: 

      

presented_number_unscreened 

For ETS only, the  presented_number_unscreened field should be supplied with 

one of the following values: 

 

              0  ets_196_presentation_allowed_number              

              1  ets_196_presentation_restricted                   

              2  ets_196_number_not_available_due_to_interworking  

              3  ets_196_presentation_restricted_number           

 

party_number 

For ETS only, the party_number field should be supplied with one of the following 

values: 

 

              0  ets_196_unknown_party_number            

              1  ets_196_public_party_number             

              2  ets_196_nsap_encoded_number             

              3  ets_196_data_party_number               

              4  ets_196_telex_party_number              

              5  ets_196_private_party_number            

              8  ets_196_national_standard_party_number 

 

public_type_of_number 

For ETS only, the public_type_of_number  field should be supplied with one of the 

following values: 

 

             0  ets_196_public_type_of_num_unknown                  

             1  ets_196_public_type_of_num_international_number     

             2  ets_196_public_type_of_num_national_number          

             3  ets_196_public_type_of_num_network_specific_number  

             4  ets_196_public_type_of_num_subscriber_number        

             6  ets_196_public_type_of_num_abbreviated_number       

 

private_type_of_number 

For ETS only, the private_type_of_number  field should be supplied with one of the 

following values: 

 

            0  ets_196_private_type_of_num_unknown                 

            1  ets_196_private_type_of_num_level2_regional_number  

            2  ets_196_private_type_of_num_level1_regional_number  

            3  ets_196_private_type_of_num_ptn_specific_number     

            4  ets_196_private_type_of_num_local_number            

            6  ets_196_private_type_of_num_abbreviated_number      



  

MAN 1781 Revison 6.8.7 PUBLIC Page 219 

 

Special diversion/reroute function 

For QSIG only there is feature for responding to call reroute requests from the 
network. When the network indicates an EV_EXT_DIVERSION event, 

call_feature_details() will allow an application to see the call reroute request. To 

respond to a network request for a call reroute see call_feature_send(). 

feature_type should be set to FEATURE_DIVERSION before calling the function. 

If there is diversion information then operation will be set to either: 

OP_DIVERTING_LEG_INFO2 for the previously supported QSIG diversion information. 

Reception of  this message says that the call was diverted from another number and 
will show details of where the call was diverted from when available (in 
diverting_from_addr). 

Or 

OP_CALL_REROUTE_REQ indicating the receipt from the network of a call reroute request. 

This is a request for the call to be made instead to a different destination address.  

diverting_to_addr will show the new number for the requested reroute. 

diverting_from_addr will indicate the number that the call is being rerouted from. 

In both cases (OP_DIVERTING_LEG_INFO2 and OP_CALL_REROUTE_REQ) the 

diverting_reason will show the reason for diverting and will be one of: 

DIVERTING_BSY 

DIVERTING_RNR 

DIVERTING_UNKNOWN 

DIVERTING_UNCONDITIONAL 

diverting_counter will show how many times the call has been diverted, which will 

be 1 or the number of times the call has been diverted if the call has been diverted 
more than once. 

operation_type will be set to the value of INVOKE. 

Return values 

On successful completion a value of zero is returned. Otherwise a negative value will 
be returned indicating the type of error. 

NOTE 

For AT&T the valid fields to use are diverting_from_type, 
diverting_from_plan, diverting_from_presentation, 
diverting_from_screening, diverting_reason and diverting_from_addr. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 220 

10.4 feature_hold_xparms - Structure for Hold\Retrieve(Reconnect) Information  
This field can only be used during the Active stage of a call and should not be used 
for making an outgoing call. 

Synopsis 
typedef struct feature_hold_xparms  

{ 

  ACU_INT  command; 

  ACU_INT  cause; 

  union 

  { 

    struct 

    { 

      ACU_INT  ts; 

      ACU_INT  raw; 

      DISPLAY  display; 

    } sig_q931; 

    struct 

    { 

      ACU_INT        near_end_hold_status; 

      ACU_INT        remote_hold_status; 

      ACU_INT        media_hold_status; 

    } sig_h323; 

  } unique_xparms; 

} FEATURE_HOLD_XPARMS; 

Parameters 
Command 

For feature_hold_xparms, the command field must contain one of the following values 

to transmit an appropriate response to the hold or reconnect request.  

HOLD_ACKNOWLEDGE_CMD 

HOLD_REJECT_CMD 

RECONNECT_ACKNOWLEDGE_CMD 

RECONNECT_REJECT_CMD 

A union contains protocol specific information that can be transmitted when sending 
one of the above responses. 

cause 

This field is used when rejecting a hold request or a reconnect request, and contains 
the generic reason for the rejection of  the incoming or outgoing call going to the 
EV_IDLE or EV_REMOTE_DISCONNECT state and will be one of the standard set of LC_xxxx 

clearing causes.  

See Appendix E for further details on clear causes. 

ts 

Is used to specify the timeslot for the call to be held or reconnected.  Normally used 
for ETS300.  

raw 

This field contains the protocol specific cause for rejecting a hold or a reconnect 
request. See Appendix J for details on raw formats.  

display 

The display field can be used to transmit information that may be displayed by the 
user. (MAXDISPLAY = 34)  

display example: 

display.ie[0] = 0x04 (four bytes follow) 

display.ie[1] = 0x41 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 221 

display.ie[2] = 0x42 

display.ie[3] = 0x43 

display.ie[4] = 0x44 

This supplies IA5 information “ABCD”. 

near_end_hold_status 

Is used to specify the current status of a near end call hold.  If set to non zero then a 
near end hold is in progress.  

remote_hold_status  

Is used to specify the current status of a remote hold.  If set to non zero then a 
remote hold is in progress.  

media_hold_status  

Is used to specify the current status of a media hold.  If set to non zero then a media 
hold is in progress.  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 222 

10.5 feature_transfer_xparms - Call Transfer Information 
This field can only be used during the Active stage of a call and should not be used 
for making an outgoing call. 

Synopsis 
typedef struct feature_transfer_xparms  

{ 

  char    control; 

  union 

  { 

    struct 

    { 

      ACU_INT  operation; 

      ACU_INT  operation_type; 

      ACU_INT  error; 

      union 

      { 

        struct 

        { 

          ACU_INT LinkID; 

        } ets; 

      } specific; 

    } sig_q931; 

    struct 

    { 

      ACU_INT         failure_code; 

      ACU_CODEC       codecs[MAXCODECS]; 

    } sig_sip; 

    struct 

    { 

      ACU_INT         operation_type; 

      ACU_CHAR        link_id[MAXADDR]; 

      ACU_CHAR        destination_addr[MAXADDR]; 

      ACU_CHAR        destination_alias[MAXADDR]; 

      ACU_CHAR        originating_addr[MAXADDR]; 

      ACU_CHAR        originating_alias[MAXADDR]; 

      ACU_INT         reason; 

      ACU_INT         operation; 

    } sig_h323; 

  } unique_xparms; 

} FEATURE_TRANSFER_XPARMS; 

Parameters 
control 

NOTE 

Only applicable to ETS300, QSIG and H.323 

 

Used to control how the information is used, for example, CONTROL_NEXT_CC_MESSAGE 

includes specified parameters from this call in the next message. See Appendix I.4 
for a typical example. The possible values are: 

CONTROL_DEFAULT 

Facility information element is sent immediately by the current call control function 

CONTROL_NEXT_CC_MESSAGE 

Feature information element is sent in the next call control message that is called 
(e.g. if call_disconnect() is called, it will be attached to the disconnect message() 

CONTROL_DEFERRED  

Used with the call_feature_send() function, used to delay sending of the facility 

message until further feature information elements have been added via subsequent 
call_feature_send() function calls. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 223 

CONTROL_DEFERRED_SETUP 

Used with the call_feature_openout() function, used to delay sending of the setup 

message until further feature information elements have been added via subsequent 
call_feature_openout() function calls. 

CONTROL_EXTRA_INFO 

Used with the call_feature_send() function. Can be used multiple times after 

CONTROL_DEFERRED to add further feature information elements to the facility message. 

CONTROL_EXTRA_INFO_SETUP 

Used with the call_feature_send() function. Can be used multiple times after 

CONTROL_DEFERRED_SETUP to add further feature information elements to the setup 

message. 

CONTROL_LAST_INFO 

Used with the call_feature_send() function. Used to indicate this is the last feature 

information element to be added to the facility message 

CONTROL_LAST_INFO_SETUP  

Used with the call_feature_send() function. Used to indicate this is the last feature 

information element to be added to the setup message 

Q931 specific information 
Operation 

The operation field indicates which transfer message is being transmitted.  

OP_EXPLICIT_ECT_EXECUTE 

OP_ECT_LINK_ID_REQUEST 

operation_type 

The operation_type field indicates the type of the operation and can take one of the 
following values:  

INVOKE - A request for a service 

RETURN_RESULT - An acknowledgement of an INVOKE. The request was 

successful. 

RETURN_ERROR - An acknowledgement of an INVOKE. The request was 

unsuccessful. 

Error 

The error field should be used to indicate the reason when a RETURN_ERROR 
operation type is used. Values include:  

FE_NOT_SUBSCRIBED - When service is not subscribed to 

FE_NOT_AVAILABLE - Either a looping condition has been identified or internal 

network restrictions mean that the request cannot be accepted 

FE_INVALID_CALL_STATE - Either the call is not in the active state or call is not in 

Held state 

FE_SS_INTERACTION_NOT_ALLOWED - Another supplementary service has been 

activated and interaction is not permitted in this instance 

linked 

Link ID is a value assigned to a call by the network side. The value is assigned when 
the call is involved in a transfer.  

SIP specific information 
failure_code –  

If the application wishes to grant this transfer, it should leave this code as zero. 
Otherwise to decline the transfer it set this code to be valid SIP error code e.g. 403 – 
forbidden.    



  

MAN 1781 Revison 6.8.7 PUBLIC Page 224 

codecs 

The application should leave this zeroed if wishes to I) use default codecs if it is the 
being transferred party or ii) use the codecs offered if it is the transferred-to party. 
Otherwise setting this field will effect the codecs used in the resulting transferred call. 

H.323 specific information 

operation 

The operation field indicates which transfer message is being transmitted. Valid 
values are 

OP_EXPLICIT_ECT_EXECUTE 

OP_ECT_EXECUTE 

OP_ECT_LINK_ID_REQUEST 

OP_ECT_SETUP 

OP_ECT_ABANDON 

operation_type 

The operation_type field indicates the type of the operation and can take one of the 
following values: 

INVOKE - A request for a service 

RETURN_RESULT - An acknowledgement of an INVOKE. The request was 

successful. 

RETURN_ERROR - An acknowledgement of an INVOKE. The request was 

unsuccessful. 

link_id 

The Link ID is supplied by the transferred-to party and identifies the current call 
transfer. The transferred party presents this number to the transferred-to party when 
making the transferred call. 

destination_addr 

The address to which the call is being transferred. 

destination_alias 

The alias of the endpoint to which the call is being transferred. 

originating_addr 

The address of the endpoint instigating the transfer. 

originating alias 

The alias of the endpoint instigating the transfer. 

All other fields are reserved for future expansion. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 225 

10.6 raw_data_struct - Raw Data information 
To include raw data information the feature_information field should be supplied 

with the value FEATURE_RAW_DATA. 

Synopsis 
typedef struct raw_data_struct  

{ 

        ACU_INT        length; 

        ACU_UCHAR      data[MAXRAWDATA]; 

        ACU_UCHAR      more; 

        ACU_INT        nsf_length; 

        ACU_UCHAR      nsf_data[MAXNETSPECIFICFACIL]; 

} RAW_DATA_STRUCT; 

The raw_data_struct structure must be used in the following way to transmit raw data 

information in call_feature_openout(), detail or send: 

Parameters 
Length 

This is the length in bytes of the data being supplied in the data field. The max value 

is subject to the current data function In most instances the current maximum is 128 
bytes.  

Data 

The data field should be supplied with raw octets of an application specific 

information element that is required in the setup message (See appendix I.1).  The 
length of this information should be supplied in the length field.  

More 

If the more field contains a non-zero value then this is an indication to the receiver that 

more data will follow belonging to the same block.  

Nsf_length; 

The nsf_length field should be supplied with the length of data needed to specify  

Network Specific Facilities.  

Nsf_data; 

The nsf_data field should be supplied with raw octets of Network Specific Facilities  

Examples for non NSF and protocol specific information is in Appendix J 

Example for NSF 

Use call_feature_send when a call is in the connected state to send Network Specific 
Facilities (NSF) and call_feature_details to get NSF feature details. 

memset(&feature, 0, sizeof(raw_data_struct)); 

feature.raw_data.nsf_data[0] = 0x00; 

feature.raw_data.nsf_data[1] = 0x49; 

feature.raw_data.nsf_data[2] = 0x0E; 

feature.raw_data.nsf_data[3] = 0xFF; 

feature.raw_data.nsf_length = 4; 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 226 

10.7 mlpp_xparms (ETS300 and QSIG only) 
Multilevel precedence pre-emption is used to request or invoke facilities in preference 
to calls with lower precedence levels. ITU-T recommendation Q.955 refers. 

Synopsis 
typedef struct mlpp_xparms  

{ 

  char    control; 

  ACU_INT   operation; 

  ACU_INT   operation_type; 

  ACU_INT   error; 

  ACU_INT   Prec_level; 

  ACU_INT   LFB_Indictn; 

  char    MLPP_Svc_Domn[5]; 

  ACU_INT   StatusRequest; 

  ACU_INT   Preempt; 

} MLPP_XPARMS; 

Parameters 
operation 

For call_feature_openout(), the operation must be set to OP_MLPP_CALL_REQUEST 

For call_feature_send(), the operation may be set to: 

OP_MLPP_CALL_REQUEST to send MLPP call request supplementary services  

OP_MLPP_PREEMTION to send MLPP pre-emption supplementary services 

For call_feature_details(), either OP_MLPP_CALL_REQUEST or OP_MLPP_PREEMTION 

may apply. 

operation_type 

For call_feature_openout(), the operation type must be set to INVOKE  

For call_feature_send(), the operation type may be: 

RETURN_RESULT or RETURN_ERROR when sending MLPP call request supplementary  

INVOKE or RETURN_ERROR when sending MLPP pre-emption supplementary  

For call_feature_details(), either INVOKE, RETURN_RESULT or RETURN_ERROR may 

apply. 

error 

For call_feature_send(), when sending MLPP call request supplementary services, 

and for call_feature_details(), the following error messages may apply: 

MLPP_Error_userNotSubscribed    0 

MLPP_Error_rejectedByNetwork    1 

MLPP_Error_unauthorizedPrecedenceLevel  44 

prec_level 

For call_feature_openout(), the precedence level may be: 

MLPP_Prec_level_flashOverride   0 

MLPP_Prec_level_flash     1 

MLPP_Prec_level_immediate    2 

MLPP_Prec_level_priority    3 

MLPP_Prec_level_routine    4 

LFB_Indictn 

For call_feature_openout(), LFB indication may be: 

MLPP_LFB_Indictn_lfbAllowed   0 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 227 

MLPP_LFB_Indictn_lfbNotAllowed   1 

MLPP_LFB_Indictn_pathReservd   2 

MLPP_Svc_Domn[5] 

For call_feature_openout(), MLPP service domain must be filled out with 5 octets.  

The first two octets provide the International ID; the next three octets provide the 
MLPP Domain identification. 

NOTE 

LFB_Indictn and MLPP_Svc_Domn do not need to be assigned when the 
initial setup message is sent. 

 

StatusRequest 

For call_feature_details() and call_feature_send(), when sending MLPP call 

request supplementatry services when operation_type is set to RETURN_RESULT, 

status request may be:  

MLPP_StatusRequest_successCalledUserMLPPSubscriber  1 

MLPP_StatusRequest_successCalledUserNotMLPPSubscriber 2 

MLPP_StatusRequest_failureCaseA      3 

MLPP_StatusRequest_failureCaseB      4 

Preempt 

For call_feature_send() and call_feature details, when sending MLPP pre-

emption supplementary services when operation is set to OP_MLPP_CALL_REQUEST, 

preempt may be: 

MLPP_preempt_circuitReservedForReuse    1 

MLPP_preempt_circuitNotReservedForReuse    2 

All other fields are reserved for future expansion. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 228 

10.8 Non_standard_data_xparms 

Synopsis 
typedef struct non_standard_data_xparms  

{ 

  ACU_INT  id_type; 

  ACU_INT  length; 

  ACU_CHAR data[MAXRAWDATA]; 

  union  

  { 

    struct  

    { 

      ACU_USHORT  cc; 

      ACU_USHORT  ext; 

      ACU_USHORT  code; 

    } h221_id; 

    struct  

    { 

      ACU_USHORT  length; 

      ACU_ULONG   id[MAXOID]; 

    } object_id; 

  } id; 

} NON_STANDARD_DATA_XPARMS; 

Non standard data specific information 

The non_standard_data_xparms structure must be used in the following way to provide 

H.225 information in call_feature_openout(), detail or send: 

Parameters 
id_type 

Should be set to one of the following values: 

NON_STANDARD_ID_TYPE_H221 if an H.221 identifier is to be used 

NON_STANDARD_ID_TYPE_OBJECT if an object ID is to be used 

length 

This is the length in bytes of the data being supplied in the data field.  

data 

The data parameter is used to include additional protocol dependant or application 

specific raw data information. 

h221_id  

Should contain the H.221 identifier details when id_type is set to 
NON_STANDARD_ID_TYPE_H221. 

The H.221 identifier includes the elements: 

cc – T.35 country code 

ext – T35 extension (assigned nationally) 

code – manufacturer code (assigned nationally) 

object_id 

Should contain the object ID details when id_type is set to 
NON_STANDARD_ID_TYPE_OBJECT. 

The object ID includes the elements: 

   length – the length of the data 

   id – the data to be set 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 229 

10.9 raw_msg_xparms – Send / Receive of raw messages / parameters  

NOTE 

ISUP 6.5.0 and later only 

 

This structure allows an application to receive ISUP messages in a special Type, 
Length, Value format. The structure can also be used to insert/alter/remove ISUP 
parameters in outbound messages, or even send an entire ISUP message for 
message types not directly supported by Aculab ISUP. 

The exact message format transmitted to the network depends upon the ISUP variant 
selected in the SS7 stack configuration file, and any codec extensions in use.    

The use of Type, Length, Value formats in raw_msg_xparms allows an application 

developer to control the data content of messages, without the need to manage ISUP 
message pointers or determine which parameters are Fixed, Variable or Optional for 
a given ISUP variant. 

To send ISUP raw message / parameter information via call_feature_openout() (or 

call_feature_send()), the feature_information (or feature_type) field should be 

supplied with the value FEATURE_RAW_MSG. 

To retrieve raw messages the feature_type field should be supplied with the value 

FEATURE_RAW_MSG before calling call_feature_details().  

Synopsis 
typedef struct raw_msg_xparms 

{ 

  ACU_TOKEN    raw_msg_seq; 

  ACU_USHORT   length; 

  ACU_UCHAR    data[MAXRAWMSGDATA]; 

} RAW_MSG_XPARMS; 

Parameters 

raw_msg_seq (only valid after call_feature_details()returns) 

This field contains a sequence number that can be paired with the value provided by 
the field of the same name in struct state_xparms.   If a call control event occurs as 

a result of a received network message, an application can use this field to match the 
call control event with the raw message retrieved with call_feature_details().   The 

first received message for a call is allocated a sequence value of one, with each 
subsequent received message being given a sequence number one greater than the 
previous value. 

length 

This is the length in bytes of the data being supplied in the data field. 

data 

This field contains either message or parameter information.   The format of this field 
depends upon the function being used and the value supplied in the message_control 

field of struct feature_detail_xparms and struct feature_out_xparms. 

One or more parameters are encoded as sequences of bytes in Type, Length, Value 
format.   Messages consist of a single message type byte, followed by zero or more 
parameters. 

Values for message type bytes are derived from Table 4/Q.763 or equivalent.   
Parameter type bytes are derived from Table 5/Q.763 or equivalent. 

To alter the parameters sent in an existing message, use the value 
CONTROL_NEXT_CC_MESSAGE in the message_control field, and send the required 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 230 

parameters as sequences of bytes in Type, Length, Value format.   To remove a 
parameter, specify a Length value of zero and omit the Value field.    

NOTE 

If a mandatory parameter is removed, it must be replaced by a subsequent 
parameter for the ISUP message to remain valid. 

 

The data returned by call_feature_details() always consists of an entire message 

received from the network; i.e. a single message type byte, followed by zero or more 
parameters in Type, Length, Value format. 

The data supplied in call_feature_openout() (or call_feature_send()) consists of 

an entire raw message when the message_control field of struct feature_out_xparms 

(or  struct feature_detail_xparms) is set to one of: 

CONTROL_DEFAULT 

CONTROL_DEFERRED_MESSAGE 

 

NOTE 

If an entire raw message is sent in call_feature_openout(), it is sent 
instead of an IAM. 

 

The data supplied in call_feature_openout() (or call_feature_send()) consists of a 

series of parameters when the message_control field of struct feature_out_xparms 

(or  struct feature_detail_xparms) is set to one of: 

CONTROL_NEXT_CC_MESSAGE 

CONTROL_DEFERRED 

CONTROL_EXTRA_INFO 

CONTROL_LAST_INFO 

 

NOTE 

If the message structure selected by the current ISUP variant (and any 
ISUP codec extensions) prohibits the use of a parameter, it will be 
dropped by ISUP.   If a mandatory parameter is missing from a message, 
the message will not be transmitted. 

 

Example 1 

Insert two Generic Number parameters (type 0xc0), one of length 6 bytes, the other 
of length 7 bytes.   The data to be sent consists of a series of parameters, so no 
message type octet is specified.   The parameters must be applied to the next call 
control message, so a message control value of CONTROL_NEXT_CC_MESSAGE will be 

used. 

Set raw_msg.length to: 17 

Set raw_msg.data to: 0xc0,0x06,0x06,0x84,0x00,0x31,0x75,0x09,0xc0,0x07,0x05, 
0x04,0x00,0x42,0x86,0x31,0x88 

Set feature_out_xparms.message_control (or  feature_detail_xparms.message_ 

control)  to: CONTROL_NEXT_CC_MESSAGE 

Example 2 

Remove a Calling Party Number (type 0x0a) from an IAM, and replace the Called 
Party Number (type 0x04) with the digits “666”. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 231 

The data to be sent consists of a series of parameters, so no message type octet is 
specified.   The length for the Calling Party Number is sent as zero, to remove the 
parameter.   The parameters must be applied to the next call control message, so a 
message control value of CONTROL_NEXT_CC_MESSAGE will be used. 

Set raw_msg.length to: 8 

Set raw_msg.data to: 0x0a,0x00,0x04,0x04,0x84,0x00,0x66,0x06 

Set feature_out_xparms.message_control to: CONTROL_NEXT_CC_MESSAGE 

Example 3 

Send a Confusion (CFN) message (type 0x2f), including Cause Indicators (type 0x12) 
of length 3 octets.   The cause value in this example is #103 (Parameter non-existent 

or not implemented, passed on); the cause diagnostics refer to the Calling Party’s 
Category (type 0x09).    The data to be sent consists of an entire message to be sent 
immediately, so the message control value CONTROL_DEFAULT will be used. 

Set raw_msg.length to: 6 

Set raw_msg.data to: 0x2f,0x12,0x03,0x80,0xe7,0x09 

Set feature_detail_xparms.message_control to: CONTROL_DEFAULT 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 232 

10.10 call_waiting_xparms – Send and receive call waiting information 
This function is used to indicate that the called number is busy and that the called 
party knows you are waiting. 

NOTE 

H.323 only 

 

Synopsis 
typedef struct call_waiting_xparms  

{ 

  ACU_USHORT            waiting_calls; 

  union 

  { 

    UNIQUEX_IPTEL  sig_iptel; 

  } ACU_PACK_DIRECTIVE unique_xparms; 

} ACU_PACK_DIRECTIVE CALL_WAITING_XPARMS; 

 

This function can be used to send an ALERTING message containing embedded call 

waiting information, as defined in H.450.6 

On reception of a call waiting message the extended event 
EV_EXT_CALL_WAITING is generated.  The number of waiting calls can then be 
queried using call_feature_details. 

Parameters 
waiting_calls 

This is the number of waiting calls. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 233 

10.11 restart_channels_xparms  
The channel restart feature can be used to send an ISDN restart message on a 
specified port.   

Synopsis 
typedef struct restart_channels_xparms  

{ 

  union 

  { 

    struct 

    { 

      ACU_UINT  restart_class; 

      ACU_INT ts;  /* included for later use */ 

    } sig_q931; 

  } unique_xparms; 

} RESTART_CHANNELS_XPARMS; 

 

This feature is supported for NI-2 signalling networks. The net value in the 
restart_channels_xparms passed to call_feature_send is used to specify on which 

port the restart message is to be sent. 

Parameters 
Class 

The values this can be set to are: 

RESTART_CLASS_SINGLE_INTERFACE 

RESTART_CLASS_ALL_INTERFACES 

The class parameter is used to specify whether the restart is for all channels on a port 
or all channels on an interface. For an NFAS configuration there can be more than 
one port grouped together in the interface. 

NOTE 

This feature is generally meant to be used only when  a normal call release 
(using call_disconnect/call_release) has failed. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 234 

10.12 addressed_non_standard_data_xparms – Send/receive connectionless 
non-standard data 
This structure is used to send connectionless non-standard data on H.323 ports. 

Synopsis 
typedef struct addressed_non_standard_data_xparms  

{  

  ACU_USHORT     sequence_number; 

  ACU_CHAR     remote_address[ACU_MAX_IP_ADDRESS]; 

  NON_STANDARD_DATA_XPARMS  data; 

} ACU_PACK_DIRECTIVE ADDRESSED_NON_STANDARD_DATA_XPARMS; 

 

Three types of non-standard message are currently supported: 

Message Feature type 

Connectionless FACILITY FEATURE_CONNECTIONLESS_FACILITY 

H.225 RAS non-standard 
message 

FEATURE_NSM_RAS 

H.225 RAS XRS FEATURE_XRS 

 
Reception of these message types must be enabled using 
call_enable_connectionless. In all cases an ACU_CALL_EVT_CONNECTIONLESS will be 

generated on the port when data is available to be read, and the data can then be 
queried using call_get_connectionless(). 

Parameters 
sequence_number 

This is the sequence number of the message for RAS NSM and XRS messages. If 
set to zero a sequence number will be chosen by the driver for sent messages; this is 
recommended for NSM RAS messages. 

remote_address 

The remote system to which the message should be sent or from which the message 
was received. 

data 

The contents of the message. See section non_standard_data_xparms for details. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 235 

10.13 feature_activation_xparms – Send/receive a Feature Activation IE 
When a call is in the connected state, this structure maybe used by 
call_feature_send()/call_feature_details() to send/receive a Feature Activation 

information element (IE) in a call control message.  

Synopsis 
typedef struct feature_activation_xparms  

{ 

  union 

  { 

    struct 

    { 

      ACU_UCHAR  ie[MAXFEATUREACTIVATION] 

      ACU_UCHAR;  message_type; 

    } sig_q931; 

  } ACU_PACK_DIRECTIVE unique_xparms; 

} ACU_PACK_DIRECTIVE FEATURE_ACTIVATION_XPARMS; 

Parameters 
ie 

Contains the length and contents of the Feature Activation information element. 

ie[0]      number of bytes following 

ie[1 to MAXFEATUREACTIVATION-1]  protocol specific information 

message_type 

Indicates the call control message that the Feature Activation information element 
should be sent in. 

NOTE 

This feature is only supported by the ETS300 protocol and enabled using 
the –cFA firmware configuration switch. Please see the firmware release 

notes for more details. Requires v6.5.9 call drivers (or newer) and v4.7.20 
ETS300 firmware (or newer). 

 

NOTE 

The message_type field has been added for future compatibility. 

Currently the only supported type is Q931_INFORMATION. 

 

 

NOTE 

When calling call_feature_send() it is not possible to defer the 

sending of a Feature Activation information element into other call control 
messages. For the reason, feature_detail_xparms.message_control 

must be set to CONTROL_DEFAULT. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 236 

10.14 information_request_xparms - Send/receive an Information Request IE 
When a call is in the connected state, this structure maybe used by 
call_feature_send()/call_feature_details() to send/ receive an Information 

Request information element (IE) in a call control message. 

Synopsis 
typedef struct information_request_xparms  

{ 

  union 

  { 

    struct 

    { 

      ACU_UCHAR  ie[MAXINFORMATIONREQUEST] 

      ACU_UCHAR;  message_type; 

    } sig_q931; 

  } ACU_PACK_DIRECTIVE unique_xparms; 

} ACU_PACK_DIRECTIVE INFORMATION_REQUEST_XPARMS; 

Parameters 
ie 

Contains the length and contents of the Information Request information element. 

ie[0]      number of bytes following 

ie[1 to MAXINFORMATIONREQUEST-1]  protocol specific information 

message_type 

Indicates the call control message that the Information Request information element 
should be sent in. 

NOTE 

This feature is only supported by the ETS300 protocol and enabled using 
the –cFA firmware configuration switch. Please see the firmware release 

notes for more details. Requires v6.5.9 call drivers (or newer) and v4.7.20 
ETS300 firmware (or newer). 

 

NOTE 

The message_type field has been added for future compatibility. 

Currently the only supported type is Q931_INFORMATION. 

 

NOTE 

When calling call_feature_send() it is not possible to defer the sending 

of an Information Request information element into other call control 
messages. For the reason, feature_detail_xparms.message_control 

must be set to CONTROL_DEFAULT. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 237 

10.15 name_presentation_xparms - Send/receive SS-CNIP and SS-CONP  
The Calling and Connected Name Presentation supplementary service (SS-CNIP and 
SS-CONP) is outlined in the ETS300 238 and ECMA-164 specifications. The 
name_presentation_xparms structure allows the Calling, Called, Connected and Busy 
Name Presentation operations to be conveyed in various call control messages. 

To send the Calling Name Presentation operation in a SETUP message: 

The call_feature_openout() function (with message_control set to 

CONTROL_DEFAULT or CONTROL_DEFERRED_SETUP) or the call_feature_send() 

function (with message_control set to CONTROL_EXTRA_INFO_SETUP or 

CONTROL_LAST_INFO_SETUP) is used. 

To send the Called, Connected or Busy Name Presentation operation in either an 
ALERTING, CONNECT or DISCONNECT message: 

The call_feature_send() function (with message_control set to 

CONTROL_NEXT_CC_MESSAGE) is used, followed by a call to the API function that will 

trigger the appropriate protocol message (I.e. call_incoming_ringing() for an 
ALERTING message, call_accept() for a CONNECT message or call_disconnect() 
for a DISCONNECT message). 

To retrieve the Calling, Called, Connected or Busy Name Presentation operation 
received in a SETUP, ALERTING, CONNECT or DISCONNECT message: 

The call_details() function is called after the API issues the 

EV_INCOMING_CALL_DET, EV_OUTGOING_RINGING, EV_CALL_CONNECTED or 

EV_REMOTE_DISCONNECT event. The result from call_details() will have its 

feature_information element set to FEATURE_NAME_PRESENTATION if a Name 

Presentation operation was received. The call_feature_details() with 

feature_type set to FEATURE_NAME_PRESENTATION should then be called to retrieve a 

populated name_presentation_xparms structure. 

Synopsis 
typedef struct name_presentation_xparms 

{  

ACU_UCHAR operation; 

ACU_UCHAR type; 

ACU_UCHAR data_length; 

ACU_UCHAR data[MAX_NAME_PRESENTATION_DATA]; 

ACU_UCHAR character_set; 

} ACU_PACK_DIRECTIVE NAME_PRESENTATION_XPARMS; 

Parameters 
operation 

Indicates whether the Name Operation is Calling, Called, Connected or Busy. The 
following values are applicable: 
 

OP_NAME_PRESENTATION_CALLING 

OP_NAME_PRESENTATION_CALLED 

OP_NAME_PRESENTATION_CONNECTED 

OP_NAME_PRESENTATION_BUSY 
 

type 

Indicates how the Name Presentation operation is constructed. The following values 
are applicable: 
 

NAME_PRESENTATION_TYPE_ALLOWED_SIMPLE 

NAME_PRESENTATION_TYPE_ALLOWED_EXTENDED 

NAME_PRESENTATION_TYPE_RESTRICTED_SIMPLE 

NAME_PRESENTATION_TYPE_RESTRICTED_EXTENDED 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 238 

NAME_PRESENTATION_TYPE_NAME_NOT_AVAILABLE 

NAME_PRESENTATION_TYPE_RESTRICTED_NULL 
 

data_length 

This element indicates the amount of octets stored in the data array. For 

NAME_PRESENTATION_TYPE_NAME_NOT_AVAILABLE and 

NAME_PRESENTATION_TYPE_RESTRICTED_NULL types, data_length is zero. For all 

other types, data_length maybe any value from 1 to 50 inclusive. 

data 

This array contains a string of octets relating the name of the Calling, Called, 
Connected or Busy party. This array is not NULL terminated. data_length indicates 

the amount of octets stored. 

character_set 

Only applicable when type is set to NAME_PRESENTATION_TYPE_ALLOWED_EXTENDED 

or NAME_PRESENTATION_TYPE_RESTRICTED_EXTENDED. It can take any value from 0 

to 255 inclusive. Typically, the character_set will be set to 1, indicating the octets in 

the data use the iso8859-1 character set. 
 

NOTE 

This feature is only supported by QSIG  and is enabled using the –cFNP 

firmware configuration switch. Requires call drivers v6.5.42 (or newer) and 
QSIG firmware v1.9.22 (or newer). 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 239 

11 Function usage 
The following section shows how the functions provided may be used to make and 
monitor calls and the requirements of an application using those functions. 

11.1 Event driven applications 
Using the V6 driver, all call control is event driven.  An application will only receive 
events for calls that it opened.  The existing models of "thread per call" and "single 
call event thread" can be used in V6.  Additionally, it is possible to use event queues 
to run any arbitrary group of calls in a single thread. 

11.2 Call control using events 

Wait for incoming call 

This diagram shows how an incoming call is set up using the event model. 

 

call_openin

call_event handle == 0

EV_CALL_CONNECTEDEV_WAIT_FOR_INCOMING

EV_INCOMING_CALL_DETEV_DETAILS EV_IDLE

call_details call release

call_accept call_disconnect

From APPS

 

 

The application calls the call_openin() API function. The driver initiates the wait for 

incoming call and returns control to the application with the call handle. The 
application is now free to issue new commands to the device driver. 

To ascertain the progress of a call the application should call the call_event() 

function. The device driver will return the state of the call and a call handle on which 
the event occurred. 

The arrival of an incoming call is signalled by the event EV_INCOMING_CALL_DET, 

whereupon the application issues the call_details() function that returns 

information about the incoming call. The application must now decide whether to 
accept (call_accept()) or disconnect (call_disconnect()) the incoming call. If the 

call is accepted by the application the driver connects the call and the 
EV_CALL_CONNECTED event will be generated. 

If the call is disconnected, the driver disconnects the call and the EV_IDLE event will 

be emitted. The application must release the handle (call_release()) when the 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 240 

EV_IDLE state is received. 

If the driver receives additional call details, the EV_DETAILS event will be generated. 

Initiate outgoing call 

This diagram shows how an outgoing call is set up using the event model. 

 

call_event

EV_CALL_CONNECTED

EV_WAIT_FOR_OUTGOING

EV_OUTGOING_RINGING

EV_DETAILS

EV_IDLE

call_details

call release

call_openoutcall_disconnect

From APPS

 

 

The application calls the call_openout() API function. The device driver initiates the 

outgoing call and returns control to the application. The application is now free to 
issue new commands to the device driver. 

To ascertain the progress of a call the application calls the call_event() function. 

The device driver will return the state of the call and a call handle on which the event 
occurred. The EV_OUTGOING_RINGING event will occur when the call has terminated on 

a subscriber. 

This event may not occur depending upon the signalling system and the response 
time of the called party. The connection of an outgoing call is signalled by the event; 
EV_CALL_CONNECTED, whereupon the application may optionally invoke the function 

call_details() if the ts field of outdetails was set to -1, so that the timeslot on which 

the outgoing call was made can be ascertained. 

The application must release the handle (by calling call_release()) when the 

EV_IDLE state is received. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 241 

11.3 Exception handling 
As a rule whenever making calls using the Aculab API, the return codes should 
always be checked.  

Certain conditions can arise, through passing incorrect parameters, unavailable 
timeslots, network problems, operating systems issues, etc, that will be indicated by 
function return codes.  

A list of return codes is found in Appendix A. It is good practice to handle all possible 
exceptions, also it has proved useful to have some sort of logging or indication to the 
user during an exception condition. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 242 

11.4 Event queues 
Creating multiple queues allows an application to arbitrarily divide up events to suit 
the chosen application model. acu_allocate_event_queue() is used to  create a new 

event queue ready to receive events from call handles, port notifications, and global 

notifications.   

Resources are associated with an event queue using a variety of functions.  Calls can 
be associated with a queue at creation using the queue_id parameter, for example, in 

call_openout() or call_openin().  Similarly, port and global notification events can 

be associated with a queue_id using the appropriate set_*_notification_queue() 

call. You can also use the notification_queue parameter, for example, as used in 

acu_open_card(). Please refer to the full description for acu_allocate_event_queue() 

in the resource API guide or the appropriate call function for further details. 

NOTE 

There is no need to create an event queue per call handle. Unless 
otherwise specified, each call handle is associated with the default call 
event queue for the relevant port. This in turn, unless otherwise specified, 
will be the global call event queue. Default event queues are also 
automatically set up for port and global notifications. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 243 

12 Supplementary services library  

ETS supplementary services 

ETS supplementary services are provided through either DLL & LIB files (Windows) 
or shared objects (Linux). Functions are provided that build ASN.1 supplementary 
service octet strings. These octet strings can be passed to call control functions that 
support FEATURE_FACILITY, (e.g. call_feature_openout(), call_feature_send()). 

ETS MWI (message waiting indication) 

Definitions 

Controlling User  

The user that can activate and deactivate the mwi. Also known as the voice mailbox. 

Receiving User  

The user that the message-waiting indicator is intended for. 

Overview 

MWI is activated and deactivated by the Controlling User (typically the voice mailbox).  
The Activate and Deactivate messages are sent to the Receiving User (the user for 
whom the messages are waiting). Once the Receiving Users network receives an 
Activate or Deactivate message, it sends an Indicate message to the Receiving 
User's userside to inform it if messages are available or not. 

These MWI messages should be attached to the call control message of a virtual call 
(see Appendix G:) 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 244 

12.1 ets_mwi_activate() - make mwi activate message 
The message generated by this function call should be sent from the controlling user 
to the network to indicate that a message is available. 

Synopsis 
int ets_mwi_activate(struct ets_mwi_xparms *mwip); 

 

typedef struct ets_mwi_xparms 

{ 

  int      length; 

  unsigned char   data[225]; 

  struct ETS_PartyNumber receivingUserNr; 

  struct ETS_PartyNumber controllingUserNr; 

  int      numberOfMessages; 

} ETS_MWI_XPARMS;  

Input Parameters 

ets_mwi_activate() takes a pointer, mwip, to a structure, ets_mwi_xparms.  The 

structure must be initialised in the following way before invoking the function. 

receivinguserNr (see ETS_PartyNumber structure 12.4) 

This is the number of the user that will receive the message waiting indication (See 
ETS_PartyNumber for further details). 

controllingUserNr  

This field is not used in ets_mwi_activate. 

numberOfMessages - (optional, see ETS_PartyNumber structure 12.4)  

The number of messages available for the receiving user. 

Return Value 

On successful completion, a value of zero is returned. Otherwise, a negative value 
will be returned indicating a parameter error. 

length  

Will contain the number of octets contained in the field data 

data  

Will contain octets that form the mwi message created. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 245 

12.2 ets_mwi_deactivate() - make mwi deactivate message 
The message generated by this function call should be sent from the controlling user 
to the network to remove the message waiting indication. 

Synopsis 

int ets_mwi_deactivate(struct ets_mwi_xparms *mwip); 

 

typedef struct ets_mwi_xparms 

{ 

  int     length; 

  unsigned char   data[225]; 

  struct ETS_PartyNumber receivingUserNr; 

  struct ETS_PartyNumber controllingUserNr; 

  int     numberOfMessages; 

} ETS_MWI_XPARMS;  

Input Parameters 

ets_mwi_deactivate() takes a pointer, mwip, to a structure, ets_mwi_xparms.  The 

structure must be initialised in the following way before invoking the function. 

receivinguserNr (see ETS_PartyNumber structure 12.4)  

This is the number of the user that will have their message waiting indication 
deactivated (See ETS_PartyNumber for further details). 

controllingUserNr - (optional, see ETS_PartyNumber structure 12.4)  

This is the number of the controlling user from which the mwi deactivation is 
requested. 

numberOfMessages 

This field is not used in ets_mwi_deactivate. 

Return Value 

On successful completion, a value of zero is returned. Otherwise, a negative value 
will be returned indicating a parameter error. 

length  

Will contain the number of octets contained in the data field. 

data  

Will contain octets that form the mwi message created. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 246 

12.3 ets_mwi_indicate() - make mwi indicate message 
The message generated by this function call should be sent from the receiving users 
network to the receiving user, to inform of the messages waiting. 

Synopsis 
int ets_mwi_indicate(struct ets_mwi_xparms *mwip); 

 

typedef struct ets_mwi_xparms 

{ 

  int     length; 

  unsigned char   data[225]; 

  struct ETS_PartyNumber receivingUserNr; 

  struct ETS_PartyNumber controllingUserNr; 

  int     numberOfMessages; 

} ETS_MWI_XPARMS;  

Input Parameters 

ets_mwi_indicate() takes a pointer, mwip, to a structure, ets_mwi_xparms.  The 

structure must be initialised in the following way before invoking the function. 

receivingUserNr 

This field is not used in ets_mwi_indicate. 

controllingUserNr - (optional, see ETS_PartyNumber structure 12.4)  

This is the number of the controlling user. 

numberOfMessages (optional)  

The number of messages available for the receiving user. 

Return Value 

On successful completion, a value of zero is returned. Otherwise, a negative  

value will be returned indicating a parameter error. 

length  

Will contain the number of octets contained in the data field. 

data  

Will contain octets that form the mwi message created. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 247 

12.4 ETS_PartyNumber 
This section describes how to fill out the ETS_PartyNumber structure.  This structure is 

used in conjunction with the ets_mwi_xparms structure. 

typedef struct ETS_PartyNumber 

{ 

  char  num[20]; 

  int  type; 

  int  sub_type; 

} ETS_PARTYNUMBER; 

 

num  

Should contain a null terminated string, which is equal to the required partynumber. 

type  

Should contain one of the following values which indicates the type of number: 

type_UnknownPartyNumber  0 

type_PublicPartyNumber   1 * 

type_DataPartyNumber   2 

type_TelexPartyNumber   3 

type_PrivatePartyNumber  4 * 

type_NationalStandardPartyNumber 5 

 

sub_type  

* is only applicable when the type selected is private or public party, as follows: 

type_PublicPartyNumber - the following sub types can be selected: 

sub_type_unknown    0 

sub_type_InternationalNumber 1 

sub_type_NationalNumber  2 

sub_type_NetworkSpecificNumber 3 

sub_type_SubscriberNumber  4 

sub_type_AbbreviatedNumber  6 

 

type_PrivatePartyNumberthe - following sub types can be selected: 

sub_type_unknown    0 

sub_type_level2RegionalNuber 1 

sub_type_level1RegionalNuber 2 

sub_type_pTNSpecificNumber  3 

sub_type_localNumber   4 

sub_type_AbbreviatedNumber  6 

If any other type is selected, sub_type is ignored. 

QSIG supplementary services  

QSIG supplementary services are provided through either DLL & LIB files (Windows) 
or shared objects (Linux). Functions are provided that build ASN1 supplementary 
service octet strings.  These octet strings can be passed to call control functions that 
support FEATURE_FACILITY. (e.g. call_feature_openout(), call_feature_send() ) 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 248 

Qsig MWI (message waiting indication) 

Definitions 

Message Centre - The unit that can activate and deactivate the MWI depending on 

messages stored upon it. 

Served User - The user whom has messages waiting for them, and therefore receives 

the activate or deactivate message. 

OverView 

MWI is activated and deactivated by the message centre.  These messages are sent 
to the served user (the user for whom the messages are waiting).  These messages 
are sent via connectionless call control message (see call_send_connectionless()) 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 249 

12.5 qsig_mwi_activate() - make MWI Activate message 
The message generated by this function call should sent be from the controlling user 
to the served user to indicate that a message is available. 

Synopsis 
int qsig_mwi_activate(struct qsig_mwi_xparms *mwip); 

 

typedef struct qsig_mwi_xparms 

{ 

  int   length; 

  unsigned char data[225]; 

  char   servedUserNr[20]; 

  char   originatingNr[20]; 

} QSIG_MWI_XPARMS;  

Input Parameters 

qsig_mwi_activate() takes a pointer, mwip, to a structure, qsig_mwi_xparms.  The 

structure must be initialised in the following way before invoking the function. 

servedUserNr - This is the number of the user that will receive the message waiting 

indication.  

originatingNr - (optional) the number of the user that's has left the message.  

Return Value 

On successful completion a value of zero is returned.  Otherwise, a negative value 
will be returned indicating a parameter error. 

length - will contain the number of octets contained in the field data 

data - will contain octets that form the MWI message created.  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 250 

12.6 qsig_mwi_deactivate() - make MWI Deactivate message 
The message generated by this function call should sent from the controlling user to 
the network to remove the message waiting indication. 

Synopsis 
int qsig_mwi_deactivate(struct qsig_mwi_xparms *mwip); 

 

typedef struct qsig_mwi_xparms 

{ 

  int   length; 

  unsigned char data[225]; 

  char   servedUserNr[20]; 

  char   originatingNr[20]; 

} QSIG_MWI_XPARMS;  

Input Parameters 

qsig_mwi_deactivate() takes a pointer, mwip, to a structure, qsig_mwi_xparms.  The 

structure must be initialised in the following way before invoking the function. 

servedUserNr - This is the number of the user that will receive the message waiting 

indication.  

originatingNr 

This field is not used in qsig_mwi_deactivate(). 

Return Value 

On successful completion a value of zero is returned.  Otherwise, a negative value 
will be returned indicating a parameter error. 

length - will contain the number of octets contained in the field data 

data - will contain octets that form the MWI message created.  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 251 

Appendix A: Error codes 
The following lists the error codes returned by the Aculab APIs. Some errors are 
internal to the driver occurring only during initialisation and will never be seen by an 
application. 

 Error Description 
 0 ERR_NO_ERROR There was no error 

-2 ERR_HANDLE The handle supplied is invalid or closed, or 
there are no more handles available. 

-3 ERR_COMMAND The command specified is invalid or was not 
expected. 

-4 ERR_NET The network outlet number specified is invalid. 

-5 ERR_PARM Inconsistency in the call parameter/illegal 
parameter 

-6 ERR_RESPONSE Application Failed to respond within response 
time. 

-7 ERR_NOCALLIP call_details() was issued with no call in 
progress. 

-8 ERR_TSBAR The specified timeslot is barred from use or an 
illegal timeslot number was specified. 

-9 ERR_TSBUSY The specified timeslot is already in use or 
there are no free timeslots. 

-10 ERR_CFAIL Command Failed. An error was detected 
during the execution of the current command. 

-11 ERR_SERVICE The specified service octet or associated 
additional information octet is unsupported or 
is invalid. 

-12 ERR_BUFF_FAIL The driver has run out of data buffer 
resources. This error should never be seen 
during normal operation. 

-13 ERR_DNLD_ZAP Failed waiting for board bootsrap code to 
respond.  Check that firmware is appropriate 
for the hardware. 

-14 ERR_DNLD_NOCMD The command you have attempted could not 
be executed as there is no signalling system 
firmware executing on the given network port. 

-15 ERR_DNLD_NODNLD A firmware download was attempted but the 
signalling system firmware was already 
installed and running. 

-16 ERR_DNLD_GEN A general error occurred during the 
downloading of the signalling system 
firmware. This error should not be seen during 
normal operations. 

-17 ERR_DNLD_NOSIG The signalling system firmware was 
downloaded successfully but failed to execute 
after a start command. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 252 

 Error Description 
-18 ERR_DNLD_NOEXEC The signalling system firmware was 

downloaded successfully but failed to execute 
after a start command. 

-19 ERR_DNLD_NOCARD No card is present in the system. 

-20 ERR_DNLD_SYSTAT The signalling system firmware that was 
downloaded successfully detected an error 
after a start command. For CAS protocols this 
may be due to a DSP not being fitted to the 
Aculab card. 

Make sure that each card is provided with a 
suitable clock signal. 

-21 ERR_DNLD_BADTLS The device driver does not support the 
downloaded signalling system, possibly due to 
downloading E1 firmware to a T1 port. 

-22 ERR_DNLD_POST Board failed power on self-test. 

-23 ERR_DNLD_SW Switch setup error. 

-24 ERR_DNLD_MEM The call control library could not allocate 
enough memory from the operating system to 
start the download procedure. 

-25 ERR_DNLD_FILE The file presented for firmware downloading 
could not be found by the operating system. 

-26 ERR_DNLD_TYPE The file presented for firmware downloading is 
not considered to be suitable for downloading 
to the Aculab card. 

-27 ERR_LIB_INCOMPAT Call driver doesn’t support the version of 
library API call attempted. 

-28 ERR_DRV_INCOMPAT API call attempted with an incompatible driver 
(pre v4.0 call drivers). 

-29 ERR_DRV_CALLINIT Another process attempted to call 'call_init' 
while other processing are accessing the 
driver. 

-30 ERR_TS_BLOCKED Timeslot blocked 

-31 ERR_NO_SYS_RES Out of OS resources  

-32 ERR_PORT_BLOCKED Port blocked 

-40 ERR_INVALID_ADDR Tried to access invalid address  

-41 ERR_INVALID_PORT Tried to access invalid port 

-42 ERR_MANAGEMENT_RPC Failed to startup Management RPC session  

-43 ERR_SESSION_RPC Failed to startup Session RPC session 

-44 ERR_NO_SERVICE The service did not respond 

-45 ERR_NO_BOARD The board did not respond 

-46 ERR_BOARD_UNLOADED The board has not been downloaded 

-47 ERR_BOARD_VERSION Board software incompatible with host 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 253 

 Error Description 

software 

-48 ERR_DNLD_CRCERRORS CRC error detected in board firmware during 
download 

-50 ERR_MAX_APP_LIMIT Tried to start more than the supported number 
of applications 

-51 ERR_INVALID_FW_PARM Unrecognised firmware switch 

-52 ERR_UNSUPPORTED Unsupported operation attempted   

-53 ERR_NOT_IMPLEMENTED Function isn't implemented yet 

-54 ERR_NO_PLUGINS Call library found no plugins for 
communicating with drivers 

-55 ERR_DUPLICATE_PLUGINS_FOUND Call library found multiple plugins with the 
same id 

-56 ERR_NO_PORTS The call library was unable to find any ports on 
this card 

-57 ERR_DNLD_ALREADY_IN_USE The port is in use by another host 

-58 ERR_DNLD_NOT_RESPONDING The port is not responding 

-59 ERR_NO_FREE_CHANNELS There are no free channels on this port 

-501 ERR_FAIL An error occurred for which there is no better 
error code 

-502 ERR_NO_MEMORY Operation failed because insufficient memory 
was allocated 

-503 ERR_CARD_NOT_FOUND Specified card could not be found 

-505 ERR_INVALID_RESOURCE An invalid resource was specified 

-506 ERR_ALREADY_OPEN Application attempted to open a resource 
that's already open 

-507 ERR_SERVER_NOT_RESPONDING The server is not responding 

-508 ERR_CARD_EJECT_PENDING The operation has failed because the card is 
waiting to be ejected 

-509 ERR_TIMEOUT The operation timed out 

-510 ERR_STILL_IN_USE The resource could not be closed as it is still 
in use 

-511 ERR_INVALID_CARD An invalid card id was specified 

-512 ERR_INVALID_CONFIG A configuration problem occurred 

-513 ERR_BUFF_SIZE The buffer provided is not big enough 

-514 ERR_RESOURCE_RELEASED The resource has been released 

-515 ERR_ALREADY_EXISTS This resource already exists 

-516 ERR_LIBRARY_NOT_LOADED A required library is not loaded or doesn't 
contain the required function 

-517 ERR_ENVIRONMENT_NOT_SET A required environment variable doesn't exist 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 254 

 Error Description 
-518 ERR_FILE_ACCESS File I/O failed 

-519 ERR_BOARD_COMM_FAILURE Communication with board failed 

-520 ERR_FILE_FORMAT Unable to parse file 

-521 ERR_BOOTLOADER_FAILED The firmware bootloader failed 

-522 ERR_INTERRUPTED The operating system has interrupted a 
system function 

-523 ERR_FUNCTION_NOT_FOUND The specified function is not available 

-524 ERR_SERVICE_DEPENDENCY_FAILE

D 
A dependency of the specified service has 
failed 

-525 ERR_SERVICE_UNKNOWN An unknown service was specified 

-526 ERR_SERVICE_RUNNING The specified service is running 

-527 ERR_SERVICE_NOT_RUNNING The specified service is not running 

-528 ERR_SERVICE_EXISTS The specified service already exists 

-529 ERR_SERVICE_START_FAILED The specified service failed to start 

-530 ERR_SERVICE_STOP_FAILED The specified service failed to stop 

-531 ERR_FILE_NOT_FOUND The specified file could not be found 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 255 

Appendix B: Service Octets 
This appendix describes the standardised set of service octets and additional 
information octets known to the device drivers. 

The values are based on the set of service octets and additional information 
incorporated for use in: ETS300, TNA, FETEX150 and other Q931 protocols. Any 
new signalling systems can use the following values and any mapping of these 
values to actual requirements will take place within the device driver. If more control 
is required the Bearer, Low Layer and High Layer information elements can be used 
instead. 

Below is a table of the complete list of service octets and additional information 
octets. This table does not imply support by the device driver or the signalling 
system.  The table is arranged; service octet with the indented values being the 
additional information octets associated with the service octet.  

TELEPHONY   service octet - telephony  

ISDN_3K1   3.1khz telephony  

ANALOGUE   analogue  

ISDN_7K   7Khz telephony  
 

ABSERVICE   service octet - a/b services  

FAXGP2    group fax 2  

FAXGP3    group fax 3  
 

X21SERVICE   service octet - X.21 Services  

UC4    UC 4  

UC5    UC 5  

UC6    UC 6  

UC19    UC 19  
  

FAXGP4    service octet - Fax Group 4  

VIDEO64K   service octet - 64Kbits Videotext  

DATA64K   service octet - 64Kbits data  

X25SERVICE   service octet - X.25 Services  

UC8    UC 8 

UC9    UC 9 

UC10    UC 10 

UC11    UC 11 

UC13    UC 13  

UC19K2    19.2k  

 

TELTEXT64   service octet - Teletext 64  

MIXEDMODE   service octet - Mixed Mode  

TELEACTION   service octet - Teleaction  

GRAPHIC   service octet - Graphic Telephone  

VIDEOTEXT   service octet - Videotext  

VIDEOPHONE   service octet - Videophone  

SOUND_3K1   3.1khz sound  

SOUND_7K   7Khz sound  

IMAGE    image  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 256 

Appendix C: DASS service indicator codes (SIC) 
The SIC is one or two octets in length. If bit 8 is set to 0 the SIC is one octet in length; 
if set to 1 a second octet follows. 

The first octet (sic1) contains routing information, as follows:- 

Fixed Combinations 

Bits 

8 765  4321  

0 000 speech 0000 A-Law 64 kbit/s (telephony) 

0 001 speech 0000 A-Law 64 kbit/s (category 2) 

0 001 speech 0010 A-Law 64 kbit/s PCM (category 1) 

1 001 speech 1000 3.1 kHz audio at 9.6 kbit/s 

1 001 speech 1001 3.1 kHz audio at 8 kbit/s 

1 001 speech 1010 3.1 kHz audio at 7.2 kbit/s 

1 001 speech 1011 3.1 kHz audio at 4.8 kbit/s 

1 001 speech 1100 3.1 kHz audio at 3.6 kbit/s 

1 001 speech 1101 3.1 kHz audio at 2.4 kbit/s 

1 001 speech 1110 3.1 kHz audio at 1.2 kbit/s 

1 001 speech 1111 3.1 kHz audio at 0.6 kbit/s 

1 011 data 0000 300 bit/s 

1 011 data 0001 200 bit/s 

1 011 data 0010 150 bit/s 

1 011 data 0011 134.5 bit/s 

1 011 data 0100 110 bit/s 

1 011 data 0101 100 bit/s 

1 011 data 0110 75 bit/s 

1 011 data 0111 50 bit/s 

1 011 data 1000 75/1200 bit/s (calling->called) 

1 011 data 1001 1200/75 bit/s (calling->called) 

1 011 data 0000 384 kbit/s 

0 010 data 0001 48 kbit/s 6+2 rate adaption 

0 010 data 0010 9.6 kbit/s 6+2 rate adaption 

0 010 data 0100 4.8 kbit/s 6+2 rate adaption 

0 010 data 0101 2.4 kbit/s 6+2 rate adaption 

0 010 data 1000 64 kbit/s 

0 010 data 1011 8 kbit/s in bit 1 

0 010 data 1100 4.8 kbit/s 5-octet frame in bit 1 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 257 

Bits 

8 765  4321  

0 010 data 1101 2.4 kbit/s ½ 5-oct frame in bit 1 

0 010 data 1110 8 kbit/s multi-sampled 

1 010 data 1111 64 kbit/s multi-sampled 

 

Plus any of these Bits  With any of these Bits 

8 765   4321  

1 010 Data  0000 64 kbit/s 

1 100 Teletex  0001 56 kbit/s 

1 101 Videotex  0010 48 kbit/s 

1 110 Facsimile  0011 32 kbit/s 

1 111 SSTV  0100 19.2 kbit/s 

    0101 16 kbit/s 

    0110 14.4 kbit/s 

    0111 12 kbit/s 

    1000 9.6 kbit/s 

    1001 8 kbit/s 

    1010 7.2 kbit/s 

    1011 4.8 kbit/s 

    1100 3.6 kbit/s 

    1101 2.4 kbit/s 

    1110 1.2 kbit/s 

    1111 600 bit/s 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 258 

Second Octet 

8 7 6 5 4 321

0 0 0 0 0 000 Multisampled Asynchronous

0 0/1 100 Synchronous

Byte Timing 0 not provided

1 provided

Data Format 0 asynchronous or unformatted

1 X.24 packet mode

Network independent clock

0 clock locked to transmission

1 bits E4/E5/E6 indicate phase

0 0/1 101 Asynchronous with 1 stop

110 Asynchronous with 1.5 stop bits

111 Asynchronous with 2 stop bits

Data Format 00 is unspecified no.

01 is 5 data bits

10 is 7 data bits

11 is 8 data bits

Flow Control

0 is TA does not have capability

1 is TA has ESRA capability

 

Bit 4 indicates duplex mode:  
 

0 - full duplex 

1 - half duplex 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 259 

Appendix D: DPNSS service indicator codes (SIC) 
The SIC is one or two octets in length. If bit 8 is set to 0 the SIC is one octet in length; 
if set to 1 a second octet follows. 

SIC 1 (the first SIC octet) contains routing information, as follows:- 

Bits 

8765  4321  

0 000 invalid  64 kbit/s PCM G. 711 A-Law or analogue 

0 001 speech 0000 32 kbit/s ADPCM G. 721  

0 010 speech 0000 64 kbit/s PCM G. 711 u-Law or analogue 

1 010 data 0000 64 kbit/s  

1 010 data 0001 56 kbit/s  

1 010 data 0010 48 kbit/s  

1 010 data 0011 32 kbit/s  

1 010 data 0100 19.2 kbit/s 

1 010 data 0101 16 Kbit/s  

1 010 data 0110 14.4 kbit/s 

1 010 data 0111 12 kbit/s  

1 010 data 1000 9.6kbit/s  

1 010 data 1001 8 kbit/s  

1 010 data 1010 7.2 kbit/s  

1 010 data 1011 4.8 kbit/s  

1 010 data 1100 3.6 kbit/s  

1 010 data 1101 2.4 kbit/s  

1 010 data 1110 1.2 kbit/s  

1 010 data 1111 0.6 kbit/s  

1 011 data 0000 300 bit/s  

1 011 data 0001 200 bit/s 

1 011 data 0010 150 bit/s 

1 011 data 0011 invalid 

1 011 data 0100 110 bit/s 

1 011 data 0101 invalid 

1 011 data 0110 75 bit/s 

1 011 data 0111 50 bit/s 

1 011 data 1000 75 bit/s calling to called & 1200 bit/s called to calling 

1 011 data 1001 1200 bit/s calling to called & 75 bit/s called to calling 

0 100 

0 101 

  Codes 100 – 111 are used when interworking with DASS2. 
If a PBX receives one of these codes, it will treat the call as 
if code 010 has been received and repeat the SIC 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 260 

Bits 

8765  4321  

0 110 

0 111 

unchanged 

Octet 2: 

8 7 6 5 4 3 2 1

0 0 0 Invalid (Note 1)

0 0 1 Invalid (Note 1)

0 1 0 Invalid (Note 1)

0 1 1 Synchronous V. 110

1 0 0 Synchronous X. 30

1 0 1 Asynchronous, 1 stop bit

1 1 0 Asynchronous, 1½ stop bits
1 1 1 Asynchronous, 2 stop bits

Data Mode

0 = Full Duplex (Note 2)0 = Full Duplex FDX 1= Half Duplex

HDXDetails of Data

For Synchronous see Table 1

Extension Bit  0 = No more Octets

0 = No further octets
 

 

NOTE 

Codes 000, 001 and 010 may be used on the Public Network for 
asynchronous data rate adaptation not complying with ERSA (“ECMA 
Standard Rate Adaptation”). 

 

NOTE 

The terms Full Duplex and Half Duplex are used as in CCITT 
Recommendations X.30 and V.110. 

 

 Details of Data for Synchronous 

7 6 5 

Byte Timing (Note 4) 

0 = Not Provided 

1 = Provided 

Data Format 

0 = Anonymous or Unformatted 

1 = X.25 Packet Mode (Note 4) 

Network Independent Clock 

0 = Clock Locked to Transmission 

1 = Bits E4/E5/E6 indicate phase 
 

 
 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 261 

NOTE 

This bit is used to indicate whether the originating end is byte aligned to 
the X.30 frame (typically a character orientated device). If 1, the originating 
end is byte timed and requires to communicate to a byte timed device. If 0, 
the originating end is not byte timed (this will apply for V series interfaces, 
X.21 bis interfaces, and X.21 interfaces that do not have byte timing 
implemented). If byte timing is provided, the E7 bit in the X.30 frame is 
used for multiframe synchronisation at 600 bit/s and 1200 bit/s. If byte 
timing is not provided, the multiframes need not start on true character 
boundaries. 

 

NOTE 

X.25 Packet Mode signifies that data packets plus flags are present in the 
data bits of the X.30 frames. 

 

 Details of Data for Asynchronous 

7 6 5 

Data Format 

00 = Unspecified 

01 = 5 data bits 

10 = 7 data bits 

11 = 8 data bits 

Flow Control 

0 = TA does not have ERSA capability 

1 = TA has ERSA capability  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 262 

Appendix E: Standard clearing causes 
This appendix describes the standardised set of clearing causes supported by the 
device drivers and available to the application. 

Generic clearing causes 

The values are based on a set of common clearing causes found in most signalling 
systems and have been incorporated for use in the call driver. Any new signalling 
systems and device drivers will also use the standard clearing causes and any 
mapping of these values to actual requirements will take place within the device 
driver. In addition, the list of clearing causes may be extended as requirements 
dictate. 

Below is a complete list of generic clearing causes.  

LC_NORMAL 

LC_NUMBER_BUSY  

LC_NO_ANSWER 

LC_NUMBER_UNOBTAINABLE 

LC_NUMBER_CHANGED 

LC_OUT_OF_ORDER 

LC_INCOMING_CALLS_BARRED 

LC_CALL_REJECTED 

LC_CALL_FAILED 

LC_CHANNEL_BUSY 

LC_NO_CHANNELS 

LC_CONGESTION 

LC_TCP_CONNECT_FAILED    

LC_SSL_ERROR      

LC_SSL_PEER_CERT_NOT_TRUSTED  

LC_SSL_PEER_CERT_INVALID  

 

Below are examples of protocol specific, or raw, cause values which helps to show 
the mapping between these and the generic values above. 

Please refer to the appropriate specification for a complete list of protocol specific 
cause values. 

NOTE 

This table DOES NOT imply support by every signaling system. 

 

Raw Causes (Q931) 

1 Unassigned unallocated number  

6 Channel unacceptable  

16 Normal Call Clearing  

17 User Busy  

18 No User Responding  

19 No answer from user (user alerted) 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 263 

21 Call Rejected  

22 Number Changed  

27 Destination out of Service  

28 Invalid Number Format  

29 Facility rejected.  

30 Response to Status Enquiry  

31 Normal Unspecified  

34 No Circuit/Channel Available  

38 Network Out of Order  

41 Temporary Failure  

42 Switching Equipment Congested  

43 Access information discarded  

44 Requested Channel not Available  

47 Resource not available  

50 Requested facility not subscribed.  

57 Bearer Capability not Authorised  

58 Bearer Capability not Available  

63 Service no Available  

65 Bearer Service not Implemented  

66 Channel Type not Implemented  

69 Requested facility not implemented  

70 Restricted Digital Information Only  

79 Service not Implemented  

81 Invalid Call Reference Value  

82 Identified Channel does not Exist  

88 Incompatible Destination  

95 Invalid Message Specified  

96 Mandatory Information Element Missing  

97 Message Type non Existent  

98 Message Type not Compatible with Call State or not Implemented 

99 Information Element non Existent or not Implemented  

100 Information Element Content Error  

101 Message Type not Compatible with Call State  

102 Recovery on Timer Expiry  

111 Protocol Error  

127 Interworking Unspecified  

Raw to generic cause mapping (Q931) 

This shows how raw clearing causes are mapped to generic clearing causes 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 264 

16 LC_NORMAL 

1 LC_NUMBER_UNOBTAINABLE 

22 LC_NUMBER_CHANGED; 

38 LC_OUT_OF_ORDER; 

18 & 19 LC_NO_ANSWER; 

17 LC_NUMBER_BUSY; 

21 LC_CALL_REJECTED; 

44 LC_CHANNEL_BUSY; 

34 LC_NO_CHANNELS; 

42 LC_CONGESTION; 

default LC_CALL_FAILED; 

 

NOTE 

All values shown for Q931 clearing causes are in decimal. 

 

Raw causes (DASS2\DPNSS) 

0 Number Unobtainable 

1 Address Incomplete 

2 Network Termination 

3 Service Unavaliable 

4 Subscriber Incompatible 

5 Subscriber Changed Number 

6 Invalid Request for S.Service 

7 Congestion 

8 Sub Engaged 

9 Subscriber out of service 

10 Incoming Calls Barred 

11 Outgoing Calls Barred 

18 Remote procedure error 

19 Service Incompatible 

20 Acknowledgement 

21 Signal Not Understood 

22 Signal Not Valid 

23 Service Temporarily Unavailable 

24 Facility Not Registered 

25 Reject 

26 Message Not Understood 

27 Signalling System Incompatible 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 265 

28 Route Out of Service 

29 Transferred 

30 NAE Error 

31 No Replay from Subscriber 

32 Service Termination 

35 Channel Out of Service 

36 Priority Forced Release 

41 Access Barred 

45 DTE Controlled not ready 

46 DTE Uncontrolled not ready 

48 Subscriber Call Termination 

50 ET Isolated 

51 Local Procedure Error 

Raw to generic cause mapping (DASS2\DPNSS) 

This shows how raw clearing causes are mapped to generic clearing causes 

48  LC_NORMAL 

0  LC_NUMBER_UNOBTAINABLE 

5  LC_NUMBER_CHANGED; 

9  LC_OUT_OF_ORDER; 

31  LC_NO_ANSWER; 

8  LC_NUMBER_BUSY; 

25  LC_CALL_REJECTED; 

10  LC_INCOMING_CALLS_BARRED; 

7  LC_CONGESTION; 

default LC_CALL_FAILED; 
 

NOTE 

All values shown for DASS\DPNSS clearing causes are in decimal 

 

Raw causes (ISUP) 

0x01 Unallocated (unassigned) number 

0x02 No route to transit network  

0x03 No route to destination  

0x04 Send special information tone  

0x05 Misdialled truck prefix  

0x10 Normal call clearing  

0x11 User busy  

0x12 No user responding  

0x13 No answer from user  

0x15 Call rejected  

0x16 Number changed  

0x1B Destination out of order  

0x1C Address incomplete  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 266 

0x1D Facility rejected  

0x1F Normal unspecified  

0x22 No circuit available  

0x26 Network out of order  

0x29 Temporary failure  

0x2A Switching equipment congestion  

0x2C Requested channel not available  

0x2F Resource unavailable, unspecified 

0x32 Requested facility not subscribed  

0x37 Incoming calls barred within CUG  

0x39 Bearer capability not authorized  

0x3A Bearer capability not presently available  

0x3F Service not available, unspecified 

0x41 Bearer capability not implemented  

0x45 requested facility not implemented  

0x46 Only restricted digital information bearer capability is available  

0x4F Service not implemented  

0x57 Called user not member of CUG  

0x58 Incompatible destination  

0x5B Invalid transit network selection  

0x5F Invalid message unspecified 

0x61 Message type nonexistent or not implemented 

0x63 Parameter nonexistent or not implemented discarded 

0x66 Recovery on timer expiry 

0x67 Parameter nonexistent or not implemented passed on 

0x6f Protocol error, unspecified 

0x7f Interworking, unspecified 

Raw to generic cause mapping (ISUP) 

This shows how raw clearing causes are mapped to generic clearing causes 

0x10\0x1F  LC_NORMAL 

0x01   LC_NUMBER_UNOBTAINABLE 

0x16   LC_NUMBER_CHANGED 

0x1B   LC_OUT_OF_ORDER 

0x12\0x13  LC_NO_ANSWER 

0x11   LC_NUMBER_BUSY; 

0x15   LC_CALL_REJECTED; 

0x2C   LC_CHANNEL_BUSY; 

0x22   LC_NO_CHANNELS; 

0x2A   LC_CONGESTION; 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 267 

 

NOTE 

All values shown for ISUP clearing causes are in hexadecimal. 

 

Raw Causes (H.323) 

H.323 may return either an H.225 Release Complete Reason or a Q.931 Clearing 
Cause.  The raw_type parameter in the H.323 unique xparms identifies which it is 

(H225_RCR or Q931_CAUSE).  Additionally there is a helper function in the IP 
Telephony library called ipt_translate_h225rcr that converts H.225 Release 

Complete Reasons to their nearest Q.931 Clearing Cause equivalent (as defined in 
the H.323 standard) 

H225_RCR 

1 bandwidth was taken away or ARQ denied 

2 Gatekeeper resources have been exhausted 

3 a transport path to the destination was not found 

4 the call was rejected at the destination 

5 invalid revision 

6 rejection by the called party's Gatekeeper 

7 the Gatekeeper was unreachable 

8 Indicates a lack of Gateway resources 

9 Indicates an address with an invalid format 

10 call is dropping due to LAN crowding 

11 Busy 

12 the call is being dropped for an undefined reason 

13 the call is being dropped due to a facility call deflection 

14 the call is being dropped due to a security denial 

15 the called party is not registered 

16 the caller is not registered 

Q931_CAUSE 

0x01 unallocated (unassigned) number 

0x03 a route to the specified destination was not found 

0x10 normal call clearing 

0x11 the user is busy 

0x12 No user responding 

0x13 alerting was successful but there was no answer 

0x15 call was rejected 

0x1C a number with an invalid format was used 

0x3D the requested facilities were rejected 

0x1E indicates a normal response to a status enquiry 

0x1F a normal but unspecified cause 

0x22 no circuit or channel was available 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 268 

0x29 temporary failure 

0x2A switching equipment congestion 

0x2F the requested resource was unavailable 

0x42 Channel type not implemented 

0x58 an imcompatible destination was specified 

0x60 a mandatory information element was missing in the message 

0x61 the message type field was non-existent or the specified message 
was not implemented. 

0x63 an information element was non-existent 

0x64 information element contained invalid content 

0x65 the message was not compatible with the call state 

0x66 recovery on timer expirey 

 

Raw to generic cause mapping (H.323) 

This shows how raw clearing causes are mapped to generic clearing causes 

H225_RCR 

12   LC_NORMAL 

3\15   LC_NUMBER_UNOBTAINABLE 

11   LC_NUMBER_BUSY 

4\6\14  LC_CALL_REJECTED 

1\2\8\10  LC_CONGESTION 

5\7\9\13\16 LC_CALL_FAILED 

 

Q931_CAUSE 
 

0x10\0x1F  LC_NORMAL 

0x01\0x03  LC_NUMBER_UNOBTAINABLE 

0x12\0x13  LC_NO_ANSWER 

0x11   LC_NUMBER_BUSY 

0x15   LC_CALL_REJECTED 

0x22   LC_NO_CHANNELS 

0x2A   LC_CONGESTION 

default  LC_CALL_FAILED 

Raw causes (IP Telephony - SIP) 

300  multiple choices     

301  moved permanently     

302  moved temporarily     

303  see other      

305  use proxy      

380  alternative service     

400  bad request      



  

MAN 1781 Revison 6.8.7 PUBLIC Page 269 

401  unauthorized     

402  payment required            

403  forbidden                    

404  not found                    

405  method not allowed 

406  not acceptable            

407  proxy authentication required   

408  request timeout            

409  conflict                    

410  gone                    

411  length required            

413  request message body too large   

414  request uri too large    

415  unsupported media type    

420  bad extension            

421  extension required         

422  session timer small        

480  temporarily not available    

481  call leg or transaction does not exist  

482  loop detected            

483  too many hops            

484  address incomplete     

485  ambiguous      

486  busy here      

487  transaction cancelled    

488  not acceptable here     

500  internal server error    

501  not implemented     

502  bad gateway      

503  service unavailable     

504  gateway timeout     

505  sip version not supported    

600  busy everywhere     

603  decline      

604  does not exist anywhere    

606  global not acceptable 

Raw to generic cause mapping (SIP) 

This shows how raw clearing causes are mapped to generic clearing causes 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 270 

2**  LC_NORMAL 

3**  LC_NUMBER_CHANGED 

486  LC_NUMBER_BUSY 

480,481  LC_NUMBER_UNOBTAINABLE 

488  LC_CALL_REJECTED 

603  LC_CALL_REJECTED 

default  LC_CALL_FAILED 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 271 

Appendix F: Q931 and ISUP 

What is Q931? 

The ITU document Q931 (DSS1) specifies layer 3 call control for an ISDN user-
network interface. This specification is used by different organisations and countries 
as the basis for layer 3 call control for their networks. These implementations usually 
have their own specification document and may not implement all the features 
described in Q931. 

Signalling Systems Based On Q931 

ETS300 (EuroISDN) 

TNA (New Zealand) 

FETEX150 (Singapore) 

AT&T (North America) 

NI2 (North America) 

IDAP (Hong Kong) 

INS (Japan) 

QSIG (Private Signalling Protocol) 

Aculab support for Q931 

Aculab’s Version 5 Call Control API allows support for Q931 based features through 
the use of Q931 structures. Call control drivers for all of the above signalling systems 
allow the use of Q931 specific structures and API, in addition to features supported in 
previous releases of the drivers. 

ISUP 

Many of the information elements available in Q931 protocols are available in 
ISUP\SS7 in the same format. 

Common Fields For Q931 and ISUP Structures 

Fields in these structures allow an application to transparently send and receive Q931 
or ISUP based information. These fields are: 

struct bearer 

{ 

  ACU_UCHAR ie[MAXBEARER]; 

  ACU_UCHAR last_msg; 

}; 

 

struct hilayer 

{ 

  ACU_UCHAR ie[MAXHILAYER]; 

  ACU_UCHAR last_msg; 

}; 

 

struct lolayer 

{ 

  ACU_UCHAR ie[MAXLOLAYER]; 

  ACU_UCHAR last_msg; 

}; 

 

struct progress_indicator 

{ 

  ACU_UCHAR ie[MAXPROGRESS]; 

  ACU_UCHAR last_msg; 

}; 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 272 

struct notify_indicator 

{ 

  ACU_UCHAR ie[MAXBEARER]; 

  ACU_UCHAR last_msg; 

}; 

struct keypad 

{ 

  ACU_UCHAR ie[MAXNUM]; 

  ACU_UCHAR last_msg; 

}; 

 

struct display 

{ 

  ACU_UCHAR ie[MAXDISPLAY]; 

  ACU_UCHAR last_msg; 

}; 

Sending Information 

When encoding these fields for API calls such as call_openout(), 

xcall_incoming_ringing() or call_notify() the procedure is similar. The protocol 

information that will be transmitted transparently should be placed in the ie field of the 
appropriate structure as follows 

ie[0]  number of bytes following 

ie[1..MAX] protocol specific information 

bearer example  (all values are hexadecimal) 

bearer.ie[0] = 0x03 (three bytes follow) 

bearer.ie[1] = 0x80 

bearer.ie[2] = 0x90 

bearer.ie[3] = 0xA3 

This supplies a bearer code for 64kbit A-law speech call. 

The last_msg field should not be used when sending information 

bearer.last_msg = 0 

hilayer example 

hilayer.ie[0] = 0x02 (two bytes follow) 

hilayer.ie[1] = 0x91 

hilayer.ie[2] = 0x81 

 

This supplies high layer information indicating telephony. 

 

The last_msg field should not be used when sending information 

 

 hilayer.last_msg = 0 

 

lolayer example 

lolayer.ie[0] = 0x03 (three bytes follow) 

lolayer.ie[1] = 0x00 

lolayer.ie[2] = 0xC0 

lolayer.ie[3] = 0x90 

This supplies low layer information indicating speech, out-band negotiation and 64 
kbit. 

The last_msg field should not be used when sending information 

lolayer.last_msg = 0 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 273 

progress_indicator example 

progress_indicator.ie [0] = 0x02 (two bytes follow) 

progress_indicator.ie [1] = 0x80 

progress_indicator.ie [2] = 0x83 

This supplies progress information indicating “Origination address is non ISDN”. 

The last_msg field should not be used when sending information 

progress_indicator.last_msg = 0 

notify_indicator example 
notify_indicator.ie [0] = 0x01 (one byte follows) 

notify_indicator.ie [1] = 0x80 

 

This supplies notify information indicating “User Suspended”. 

The last_msg field should not be used when sending information 

notify_indicator.last_msg = 0 

keypad example (ISUP only) 
keypad.ie[0] = 0x03 (three bytes follow) 

keypad.ie[1] = 0x23 

keypad.ie[2] = 0x31 

keypad.ie[3] = 0x32 

This supplies IA5 information “#12”. 

The last_msg field should not be used when sending information 

keypad.last_msg = 0 

display example 
display.ie[0] = 0x04 (four bytes follow) 

display.ie[1] = 0x41 

display.ie[2] = 0x42 

display.ie[3] = 0x43 

display.ie[4] = 0x44 

This supplies IA5 information “ABCD”. 

The last_msg field should not be used when sending information 

display.last_msg = 0 

Receiving Information 

When extracting information from these fields the information will be in a similar 
format. 

ie[0]  number of bytes following 

ie[1..MAX] protocol specific information 

The last_msg field will contain details of the protocol message that delivered this 

information. Some information (such as progress) can arrive more than once during 
the lifetime of a call. 

Values for these messages include 

Q931_ALERTING   0x01 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 274 

Q931_CALL_PROCEEDING  0x02 

Q931_PROGRESS   0x03 

Q931_SETUP    0x05 

Q931_CONNECT    0x07 

Q931_SETUP_ACK   0x0D 

Q931_USER_INFO   0x20 

Q931_HOLD    0x24 

Q931_HOLD_ACK   0x28 

Q931_HOLD_REJECT   0x30 

Q931_RETRIEVE   0x31 

Q931_RETRIEVE_ACK  0x33 

Q931_RETRIEVE_REJECT  0x37 

Q931_DISCONNECT   0x45 

Q931_RELEASE    0x4D 

Q931_FACILITY   0x62 

Q931_NOTIFY    0x6E 

Q931_INFORMATION   0x7B 

Using Subaddress Information 

The information transmitted in the dest_subaddr, orig_subaddr and conn_subaddr 

fields is different in format from the destination_addr, originating_addr and 

connected_addr fields.  

String handling functions from the standard library can be used to manipulate the 
destination_addr, originating_addr and connected_addr fields but not the 

subaddress fields.  

To use the dest_subaddr, orig_subaddr and conn_subaddr fields correctly requires 

knowledge of the way these fields are structured. 

structure 

The Called Party Subaddress (dest_subaddr), Calling Party Subaddress 

(orig_subaddr)  and Connected Party Subaddress (conn_subaddr) are structured in a 

similar way. 

Bits 

8 7 6 5 4 3 2 1 Octets 

0 1 1 1 0 0 0 1     1     Called Subaddress 

0 1 1 0 1 1 0 1 or 1     Calling Subaddress 

0 1 0 0 1 1 0 1 or 1     Connected Subaddress 

L L L L L L L L     2     Length 

1  T T T E 0 0 0     3  

S S S S S S S S     4-MAX. 

 

Octet 1 contains the code for the information element. In hexadecimal format this is 
0x71 for Called Party Subaddress and 0x6D for the Calling Party Subaddress.  

 

NOTE 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 275 

When supplying subaddress information through Aculab’s API this octet 
should not be included. The first octet supplied should be the length field, 
octet 2. 

 

Octet 2 contains the length of the information element. The value will be the number 
of octets following octet 2. 

Octet 3 contains two user-controlled fields 

1. T T T  Type of subaddress   

0 0 0   NSAP (CCITT Rec. X.213/ISO 8348 AD2) 

 0 1 0   User specified 

 

2.     E     Odd/even Indicator 

0 Even number of address signals 

1 Odd number of address signals 

 

This field is used when type of subaddress is ‘user specified’ and the coding is BCD. 
If the subaddress value is NSAP then this field has no significance. 

Octet 4 and above contains the subaddress information. 

If the type of subaddress is NSAP then the first octet of subaddress information 
(Octet 4) will contain an AFI field (Authority and Format Identifier). This is likely to be 
coded as 50 in hexadecimal. 

How to send subaddress information 

The Call Control driver expects the subaddress information in a similar format to that 
described above. Everything described from ‘octet 2’ onwards needs to be supplied in 
the dest_subaddr, orig_subaddr or conn_subaddr fields. The first octet that contains 

the code for the information element should not be supplied (Octet 1 in the diagram of 
the structure). The choice of whether to use ‘NSAP’ or ‘user defined’ types of 
subaddress is up to the user. If ‘NSAP’ is to be used then there may need to be an 
AFI value supplied or else the decoding party may not receive the information as 
intended. 

Example 

To transmit the hexadecimal values {31, 32, 33} in the dest_subaddr with a type of 

NSAP 

‘0xnn’ represents a hexadecimal value 

dest_subaddr[0] = length (octet 2 of the Called Party Subaddress description)  

dest_subaddr[1] = 0x80((0x80|(000<<4)=0x80 )  

dest_subaddr[2] = 0x50(AFI = 0x50 ) 

dest_subaddr[3] = 0x31 first value 

dest_subaddr[4] = 0x32 second value 

dest_subaddr[5] = 0x33 third value 

 

the value required for the length field in dest_subaddr[0] will be 5 (5 octets following). 

How to read subaddress information 

Received subaddress information has the same format as that for subaddress sent 
on an outgoing call. To extract the information requires knowledge as to which type of 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 276 

subaddress has been sent. If the information has been sent with the type of 
subaddress set to ‘NSAP’ then the first subaddress information octet may contain the 
AFI field (usually 50 in hexadecimal). 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 277 

Appendix G: Call independent signalling for euro ISDN & QSIG 
QSIG and EuroISDN allow bearer independent signalling connections or virtual calls.  

See ETS300 196 8.3.2 for details on EuroISDN. 

See ISO 11582 and 7.3 for details on QSIG 

Open for an incoming virtual call 

To open for an incoming call that is a virtual call, some extra parameters must be 
used when using call_openin(). 

The cnf field must have the CNF_TSVIRTUAL field set to indicate that a virtual call is 

expected. 

The timeslot field ts must be set to –1. 

Open for an outgoing virtual call 

To make an outgoing virtual call the function call_feature_openout() should be 

used. To turn this call into a virtual call the feature_information field in the 

feature_out_xparms structure should be set in the following way: 

EuroISDN  
feature_information = FEATURE_REGISTER + … . 

QSIG 

feature_information = FEATURE_VIRTUAL + … . 

Example 

To make a virtual call in QSIG and send Facility information 

feature_information = FEATURE_VIRTUAL + FEATURE_FACILITY 

NOTE 

In EuroISDN the outgoing call will go to the connected state immediately. 

 

Accepting a virtual call 

EuroISDN 

A virtual call will enter the connected state immediately after an incoming call has 
been detected, EV_INCOMING_CALL_DET using call_event() for example). It is not 

necessary to use call_accept() to move to the connected state. 

QSIG 

A virtual call will go through many of the usual call states before going to the 
connected state. It is necessary to use call_accept() to move the call into the 

connected state.  

Clearing a virtual call 

call_disconnect() can be used to clear a virtual call. A virtual call will clear 

immediately (EV_IDLE using call_state()) rather than go to the remote disconnect 

state (EV_REMOTE_DISCONNECT using call_event()). 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 278 

Appendix H: Generic functional procedures (facility) 

Introduction 

Some Q.931 based protocols support supplementary services using the Facility 
information element. This information element when transmitted in a call control 
message, can be used to invoke and control supplementary services, by sending 
data based upon different protocols such as Remote Operations Protocol. The call 
control driver has the ability to include Facility Information elements in SETUP, 

ALERTING, CONNECT, DISCONNECT, RELEASE and FACILITY messages by using the 

call_feature_openout(), call_feature_enquiry() and call_feature_send() 

functions. In addition the call_feature_details() function can be used to extract 

Facility information from the call. 

Specifications 

The high level definition of the information to be sent in the Facility information 
element can be obtained from different standards, depending upon the signalling 
system.  

The following documents describe the coding and structure of the Facility information 
element for two signalling systems. 

EuroISDN ETS300 196 Generic functional protocol 

QSIG (ISO/IEC 11582, ECMA 165, ETS300 239) Generic functional protocol 

The description of each supplementary service is usually provided in a separate 
standard. These standards also describe the specifics of what kind of data can be 
sent and how it is structured. Examples of these would be  

Call Diversion for EuroISDN ETS300 207-1 

Call Diversion for QSIG  ISO13872 

Abstract Syntax Notation One (ASN.1) is commonly used in supplementary service 
standards. This is defined in CCITT X.208. 

ETSI (http://www.etsi.org/) publish ETS300 documents for EuroISDN and 
QSIG (among other standards). 

ISO publish ISO documents (http://www.iso.ch/). 

ECMA documents are available free of charge from http://www.ecma.ch/ 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 279 

Appendix I: Network side call transfer 

Introduction 

The API functions call_hold(), call_enquiry() and call_transfer() allow a user 

(the transferring party) to transfer a call to another party. This section describes the 
way the transferred to or network side handles these messages 

NOTE 

The following examples apply to Primary Rate EuroISDN only, unless 
otherwise noted. 

 

Handling a call transfer consists of four stages. 

Acknowledgement of a Call Hold request 

Accepting an Enquiry Call 

Handling a linkID request 

Handling a Call Transfer request 

After a call has been put on hold, there may also be a request to reconnect or retrieve 
the call. The following describes the way in which to handle these situations. 

I.1 Acknowledgement of a Call Hold request 
A request for Call Hold is indicated by the arrival of an extended event 
EV_EXT_HOLD_REQUEST. Either a HOLD_ACKNOWLEDGE_CMD or HOLD_REJECT_CMD message 

must answer this request.  

Hold Acknowledge 

HOLD_ACKNOWLEDGE_CMD accepts the Hold Request and allows the user to use that 

timeslot for another call. This can be accomplished by using the call_feature_send() 

API call as follows 

struct feature_details_xparms fd; 

INIT_ACU_CL_STRUCT(&fd); 

fd.handle = state_handle; 

fd.feature_type = FEATURE_HOLD_RECONNECT; 

fd.feature.hold.command = HOLD_ACKNOWLEDGE_CMD; 

rc = call_feature_send(&fd); 

Hold Reject 

HOLD_REJECT_CMD declines the Hold Request. 

INIT_ACU_CL_STRUCT(&fd); 

fd.handle = state_handle; 

fd.feature_type = FEATURE_HOLD_RECONNECT; 

fd.feature.hold.command = HOLD_REJECT_CMD; 

fd.feature.hold.cause = 0; 

/* reject with cause value 79 

   Service or option not implemented, unspecified*/ 

fd.feature.hold.sig_q931.raw = 79; 

rc = call_feature_send(&fd); 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 280 

I.2 Accepting an Enquiry Call 
If Hold and Transfer are supported then the application must be ready to accept an 
incoming call from the user. Under some protocols and with some equipment this 
means that a second call handle must be opened for a call using the same timeslot 
as the call on hold.  

Accepting an enquiry call is exactly the same as any other incoming call. 

I.3 Handling a linkID request 
Indication of a Link ID request  

NOTE 

H.323 Gateway Mode must be enabled to facilitate network operation of 
H.323 calls. 

 

The arrival of information pertaining to this process is indicated by the arrival of the 
extended event, EV_EXT_TRANSFER_INFORMATION. This event will occur on the handle of 

the enquiry call.   

A call to call_feature_details() with feature_type set to FEATURE_TRANSFER will 

return the following information for the link ID request 

operation : OP_ECT_LINK_ID_REQUEST 

operation_type : INVOKE 

Returning a Link ID value 

It is the network’s responsibility to respond to a link ID request by returning a link ID 
value.  This value is used to identify the enquiry call.    The link ID will be included by 
the user side in the transfer request to identify the other call involved in the transfer. 

INIT_ACU_CL_STRUCT(&fd); 

fd.handle = state.handle; 

fd.feature_type = FEATURE_TRANSFER; 

fd.feature.transfer.unique_xparms.sig_q931.operation_type = RETURN_RESULT;

  

fd.feature.transfer.unique_xparms.sig_q931.operation = 

OP_ECT_LINK_ID_REQUEST; 

fd.feature.transfer.unique_xparms.sig_q931.specific.ets.LinkID = 12; 

rc = call_feature_send(&fd); 

Rejecting a Link ID request 

If the network is unable to assign a linkID, it should reject the linkID request in the 
following way. 
 

INIT_ACU_CL_STRUCT(&fd); 

fd.handle = state.handle; 

fd.feature_type = FEATURE_TRANSFER; 

fd.feature.transfer.unique_xparms.sig_q931.operation_type = RETURN_ERROR;  

fd.feature.transfer.unique_xparms.sig_q931.operation = 

OP_ECT_LINK_ID_REQUEST; 

fd.feature.transfer.unique_xparms.sig_q931.error = FE_RESOURCE_UNAVAILABLE; 

rc = call_feature_send(&fd); 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 281 

Forwarding a Link ID request 

NOTE 

This example only applies to H.323 calls. 

 

If H.323 Gateway Mode is enabled, H.323 link ID requests can be sent using 
call_feature_send. This enables H.323 Call Transfer to be forwarded across a 
network gateway and can be achieved as follows: 

 

INIT_ACU_CL_STRUCT(&fd); 

fd.handle = state.handle; 

fd.feature_type = FEATURE_TRANSFER; 

fd.message_control = <message control> 

fd.feature.transfer.unique_xparms.sig_h323.operation_type = INVOKE; 

fd.feature.transfer.unique_xparms.sig_h323.operation = 

OP_ECT_LINK_ID_REQUEST; 

 

rc = call_feature_send(&fd); 

The message_control field of feature_transfer_xparms can be set to CONTROL_DEFAULT 

to send the link ID request immediately or to CONTROL_NEXT_CC_MESSAGE to defer the 

link ID request until the next call control message is sent. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 282 

I.4 Handling a Call Transfer request 

Indication of Transfer request  

NOTE 

H.323 Gateway Mode must be enabled for network operation of H.323 calls. 

 

The arrival of information pertaining to this process is indicated by the arrival of the 
extended event, EV_EXT_TRANSFER_INFORMATION. 

A call to call_feature_details() with feature_type set to FEATURE_TRANSFER will 

return the following information for Call Transfer using the Implicit Linkage procedure 
from ETS300 369 

operation : ECT_EXECUTE 

operation_type : INVOKE 

LinkID : <value assigned in stage 3> 

 

This indicates that a request for transfer has occurred. This should occur on the 
handle of a call on hold. The other call involved in the call transfer is identified by the 
Link ID. 

Transfer – Parties A, B and C 

If A, B and C are the three parties involved in the transfer and A – B is the initial call 
that is on hold, then A – C is the enquiry call. A successful call transfer will result in a 
new connection for parties B and C and clear the two calls involving A. 

Accepting a Call Transfer  

Step 1 

To accept the transfer, party B must be held and party c must be in either a 
connected or alerting state. The party that made the transfer request requires an 
acknowledgement that the call was transferred successfully. This can be achieved 
using the feature_type control parameter as follows: 

INIT_ACU_CL_STRUCT(&fd); 

fd.handle = state.handle;  

fd.feature_type = FEATURE_TRANSFER; 

/* Defer till next call control message */ 

fd.feature.transfer.control = CONTROL_NEXT_CC_MESSAGE; 

fd.feature.transfer.unique_xparms.sig_q931.operation_type = RETURN_RESULT; 

fd.feature.transfer.unique_xparms.sig_q931.operation = 

OP_EXPLICIT_ECT_EXECUTE; 

rc = call_feature_send(&fd); 

 

The information that will be transmitted in the next DISCONNECT message has now 

been set up.  

Step 2 

The next step sends the DISCONNECT message. This automatically includes the 

information that will tell the user that the call transfer was successful. To do this just 
requires the use of call_disconnect(). The other call must also be cleared with 
call_disconnect(). 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 283 

Rejecting a Call Transfer Request  

To reject a call transfer request a FACILITY message must be returned to the 

requesting party indicating the reason for refusing the request. 

This can be achieved as follows 

 

INIT_ACU_CL_STRUCT(&fd); 

fd.handle = state.handle; 

fd.feature_type = FEATURE_TRANSFER; 

fd.feature.transfer.unique_xparms.sig_q931.operation_type = RETURN_ERROR; 

fd.feature.transfer.unique_xparms.sig_q931.operation = 

OP_EXPLICIT_ECT_EXECUTE; 

fd.feature.transfer.unique_xparms.sig_q931.error = ERROR; 

rc = call_feature_send(&fd); 

The error value can be one of the following 

FE_NOT_SUBSCRIBED  0 

When the service has not been subscribed 

FE_NOT_AVAILABLE   3 

Either a looping condition has been identified 

Or internal network restrictions mean that the request cannot be accepted 

FE_INVALID_CALL_STATE  7 

Either the call is not in the active state  

Or call is not in Held state 

FE_SS_INTERACTION_NOT_ALLOWED 10 

Another supplementary service has been activated and interaction is not permitted in 
this instance 

FE_LINKID_NOT_ASSIGNED_BY_NETWORK  25 

The link ID received in the transfer request was not issued by the network. 

Responding to a Reconnect Request 

Similar to Hold, a Reconnect Request is indicated by the arrival of an extended event, 
EV_EXT_RECONNECT_REQUEST. Again this requires a response – either 

RECONNECT_ACKNOWLEDGE_CMD or RECONNECT_REJECT_CMD. 

Forwarding a Call Transfer request 

NOTE 

This example only applies to H.323 calls. 

 

If H.323 Gateway Mode is enabled, H.323 call transfer requests can be sent using 
call_feature_send. This enables H.323 Call Transfer requests to be forwarded across 
a network gateway and can be achieved as follows: 

 

INIT_ACU_CL_STRUCT(&fd); 

fd.handle = state.handle; 

fd.feature_type = FEATURE_TRANSFER; 

fd.message_control = <message control> 

fd.feature.transfer.unique_xparms.sig_h323.operation_type = INVOKE; 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 284 

fd.feature.transfer.unique_xparms.sig_h323.operation = OP_ECT_EXECUTE; 

strcpy(fd.feature.transfer.unique_xparms.sig_h323.link_id, <link_id>); 

strcpy(fd.feature.transfer.unique_xparms.sig_h323.destination_addr, 

<dest_addr>) 

strcpy(fd.feature.transfer.unique_xparms.sig_h323.destination_alias, 

<dest_alias>) 

rc = call_feature_send(&fd); 

 

Where <dest_addr> and <dest_alias> are the address and alias of the destination 

endpoint and <link_id> is the link ID to be forwarded. 

The message_control field of feature_transfer_xparms can be set to CONTROL_DEFAULT 

to send the link ID request immediately or to CONTROL_NEXT_CC_MESSAGE to defer the 

link ID request until the next call control message is sent. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 285 

I.5 Handling a Call Transfer Setup request 

Indication of transferred call setup 

NOTE 

The following applies to H.323 only. 

 

NOTE 

H.323 Gateway Mode must be enabled for network operation of H.323 
calls. 

 

The arrival of information pertaining to this process is indicated by the arrival of the 
extended event EV_EXT_TRANSFER_INFORMATION. 

A call to call_feature_details() with feature_type set to FEATURE_TRANSFER will 

return the following information for the Call Transfer setup 

link_id:  <value assigned by transferred-to endpoint> 

source_address: <address of transferred endpoint> 

destination_address: <address of transferred-to endpoint>   

 

A call transfer setup message can be forwarded to the destination endpoint by calling 
call_feature_openout with feature_type set to FEATURE_TRANSFER, 

sig_h323.operation set to OP_ECT_SETUP and sig_h323.operation_type set to 
INVOKE as follows: 

 

INIT_ACU_CL_STRUCT(&fd); 

... 

/* setup call openout parms */ 

... 

fd.feature_type = FEATURE_TRANSFER; 

fd.feature.transfer.unique_xparms.sig_h323.operation_type = INVOKE; 

fd.feature.transfer.unique_xparms.sig_h323.operation = OP_ECT_SETUP; 

strcpy(fd.feature.transfer.unique_xparms.sig_h323.link_id, <link ID>) 

rc = call_feature_openout(&fd); 

Where <link ID> is the link ID provided by the transferred-to endpoint. 
It is the network’s responsibility to respond to a call transfer setup request with either 
a call transfer connect or a call transfer reject. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 286 

I.6 Handling a Call Transfer Setup response 

Indication of transferred call setup 

NOTE 

The following example applies to H.323 only. 

 

NOTE 

H.323 Gateway Mode must be enabled for network operation of H.323 
calls. 

 

The arrival of information pertaining to this process is indicated by the arrival of the 
extended event EV_EXT_TRANSFER_INFORMATION or EV_TRANSFER_REJECT. No feature 

details are available for these events; the user application must match response 
events with a previous request. 

Accepting a Call Transfer Setup 

Step 1 

A call transfer setup can be accepted using call_feature_send as follows: 

INIT_ACU_CL_STRUCT(&fd); 

fd.handle = state.handle; 

fd.feature_type = FEATURE_TRANSFER; 

/* Defer till next call control message */ 

fd.message_control = CONTROL_NEXT_CC_MESSAGE; 

fd.feature.transfer.unique_xparms.sig_h323.operation_type = RETURN_RESULT; 

fd.feature.transfer.unique_xparms.sig_h323.operation = OP_ECT_SETUP; 

rc = call_feature_send(&fd); 

 

The information that will be transmitted in the next Q931 message has now been set 

up. The message_control field may alternatively be set to CONTROL_DEFAULT, in which 

case the call transfer setup accept message will be appended to a Q931 ALERTING 

message and sent immediately. 

Step 2 

The next step sends the CONNECT or ALERTING message. This automatically includes 

the information that will tell the user that the call transfer was successful. To do this 
just requires the use of call_accept() or call_incoming_ringing(), respectively. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 287 

Appendix J: Raw data format 

Introduction 

This section describes how to fill out the raw_data_struct, which is used by the 

call_feature_* functions. 

NOTE 

Currently only supported on QSIG, ETS300, NI-2 and AT&T 

 

Generic Structure  

Below is the general format that needs to be followed in order to apply raw data to a 
protocol message. 

Octet 1 Embedded (0x01) or Append (0x02) 

Octet 2 Codeset shift octet (e.g. 0x9E or 0x96) 

Octet 3 Information element 

Octet 4 Length 

Octet 5 Data octet 1 

Octet 5+n Data octet 1+n 

Once the raw_data_struct has been filled out, calling either call_feature_send() or 

call_feature_openout() will send the data.  It's possible to have multiple embedded 

octets, but only one appended octet.  If an appended element is included it must be 
after any embedded octets in the structure. 

Codesets supported 

Codeset 6 supported by QSIG and ETS300 

0x96 Locking shift 

0x9E Non locking shift 

Codeset 7 supported by ETS300 

0x97 Locking shift 

0x9F Non locking shift  

Codeset 5, 6 and 7 supported by NI-2 

       Only ‘Append’ supported 

0x95 Locking shift 

0x96 Locking shift 

0x97 Locking shift 

Codeset 6 and 7 supported by AT&T 

0x96 Locking shift 

0x97 Locking shift 

Example Appended Data 

Below shows how to fill out the raw_data_struct in order to append the following 

octets on to the end of a protocol message (0x96,0x05,0x02,0x12,0x1E) 

raw_data_struct.data[0] = 0x02;  /* Appended information element */ 

raw_data_struct.data[1] = 0x96;  /* locking shift */ 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 288 

raw_data_struct.data[2] = 0x05;  /* Information Element */ 

raw_data_struct.data[3] = 0x02;  /* Length */ 

raw_data_struct.data[4] = 0x12;  /* Data */ 

raw_data_struct.data[5] = 0x1E;  /* Data */ 

 

raw_data_struct.length = 6; 

Example Embedded Data 

Below shows how to fill out the raw_data_struct in order to embed the following 

octets in a protocol message (0x9E,0x4D,0x02,0x2F,0xD1) 

raw_data_struct.data[0] = 0x01;  /* Embedded information element */ 

raw_data_struct.data[1] = 0x9E;  /* Non locking Shift */ 

raw_data_struct.data[2] = 0x4D;  /* Information Element */ 

raw_data_struct.data[3] = 0x02;  /* Length */ 

raw_data_struct.data[4] = 0x2F;  /* Data */ 

raw_data_struct.data[5] = 0xD1;  /* Data */ 

 

raw_data_struct.length = 6; 

Example Embedded and Appended Data. 

Below shows how to fill out the raw_data_struct in order to embed the octets 

(0x9E,0x14,0x02,0x01,0x02,0x9E,0x21,0x01,0x4E) and append the octets 

(0x96,0x12,0x02,0x03,0x04,0xE1,0x01,0x03) in a protocol message 

raw_data_struct.data[0] = 0x01;  /* Embedded information element */ 

raw_data_struct.data[1] = 0x9E;  /* Non locking Shift */ 

raw_data_struct.data[2] = 0x14;  /* Information Element */ 

raw_data_struct.data[3] = 0x02;  /* Length */ 

raw_data_struct.data[4] = 0x01;  /* Data */ 

raw_data_struct.data[5] = 0x02;  /* Data */ 

raw_data_struct.data[6] = 0x01;  /* Embedded information element */ 

raw_data_struct.data[7] = 0x9E;  /* Non locking Shift */ 

raw_data_struct.data[8] = 0x21;  /* Information Element */ 

raw_data_struct.data[9] = 0x01;  /* Length */ 

raw_data_struct.data[10] = 0x4E; /* Data */ 

raw_data_struct.data[11] = 0x02 ; /* Appended information element */ 

raw_data_struct.data[12] = 0x96 ; /* locking shift */ 

raw_data_struct.data[13] = 0x12 ; /* Information Element */ 

raw_data_struct.data[14] = 0x02 ; /* Length */ 

raw_data_struct.data[15] = 0x03 ; /* Data */ 

raw_data_struct.data[16] = 0x04 ; /* Data */ 

raw_data_struct.data[17] = 0xE1; /* Information Element */ 

raw_data_struct.data[18] = 0x01 ; /* Length */ 

raw_data_struct.data[19] = 0x03 ; /* Data */ 

 

raw_data_struct.length = 20; 

 

The above example shows 2 non locking shift elements that will be embedded into 
the message and one locking shift octet containing two information elements that will 
be appended to the message. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 289 

Appendix K: TiNG media configuration 

K.1 Introduction 
In conjunction with Prosody X and Prosody S, it is now possible for applications to 
take control of the media resources away from the call API.  This allows the 
application to be responsible for the allocation and de-allocation of media resources, 
while the call API will simply configure the supplied media according to the 
parameters negotiated during the call setup. 

NOTE 

This is only applicable to IP Telephony protocols using the Call API 

 

K.2 Benefits 
There are several reasons why an application may wish to have separate control of 
the media resources 

• Potentially more efficient use of resources 

• Direct access to TiNG VMP objects, which is particularly advantageous for 
applications such as IP to IP gateways. 

• Allows the application to bypass the TiNG Media Resource Manager 

• For setups such as on-board H.323 it reduces the system load on the board, and 
may therefore reduce call setup times. 

K.3 The traditional call API for IP telephony calls 
Previously, an application’s only access to the configured media on an IP Telephony 
call was via the stream and timeslot returned from the call API.  While for traditional 
telephony this makes perfect sense, for IP Telephony calls it is encapsulating rather a 
lot. 

For example, when using Prosody X and the traditional Call API there are a number 
of resources being reserved (although they will not necessarily be allocated) via the 
TiNG resource manager.  These may include echo cancellation, multiple codec types, 
tone detection, multiple channels, TDM resources and tone generation.  Once this 
call has been setup the only access to the media is via the stream and timeslot, 
effectively reducing the application’s control of that media stream to switching only. 

With this setup the media is allocated, configured and de-allocated by the call API.  
This may be a useful abstraction in an IP to TDM gatewaying scenario, and 
significantly aids porting of TDM based applications, but it can be limiting in other 
applications. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 290 

K.4 TiNG media configuration  
Prosody X and Prosody S provide a powerful IP Media API called the Prosody RTP 
processing API.  This allows for the creation of VMP (Voice Media Processing) 
objects that can handle incoming or outgoing IP media.  These can then be 
connected to each other or to traditional Prosody channels etc. 

The call API now allows these VMPs to be passed into it: one for incoming media and 
one for outgoing media.  When the call has been setup, the VMPs will be configured 
according to the parameters negotiated during call setup (this includes the codec 
type, packet length, VAD settings and the remote RTP address).  In short, the call 
API will only configure these parameters, the VMP objects are owned by the user 
application, which is responsible for allocating them, de-allocating, and connecting 
them in whatever way it sees fit. 

Essentially ‘under the hood’ the call API uses: 

int sm_vmprx_config_codec_xxx(…); 

(e.g. sm_vmprx_config_codec_mulaw(SM_VMPRX_CODEC_MULAW_PARMS* parms);) 

int sm_vmptx_config_codec_xxx(…); 

(e.g. sm_vmptx_config_codec_mulaw(SM_VMPTX_CODEC_MULAW_PARMS* parms);) 

int sm_vmptx_config(SM_VMPTX_CONFIG_PARMS* configp); 

 

This means that while RTP and RTCP TOS will be configured from the 
media_settings set by the user, the other settings such as DTMF detection, echo 

cancellation, echo suppression TDM encoding etc. will not be configured. 

K.5 How to use TiNG media configuration with a system wide port 
Since the application now controls on which ports media will be allocated, the call API 
allows for a special system-wide IP Telephony port to be opened to support these 
calls.  This is done via: 

ACU_ERR call_open_iptel_port(CALL_OPEN_IPTEL_PORT_PARMS* port_parms) 

 

typedef struct tCALL_OPEN_IPTEL_PORT_PARMS 

{ 

  ACU_ULONG   size;   /* IN */ 

  ACU_INT   protocol_type;  /* IN */ 

  ACU_PORT_ID   port_id;  /* OUT */ 

} CALL_OPEN_IPTEL_PORT_PARMS; 

 

Where protocol_type is either SIP (S_SIP) or H.323 (S_H323).  The returned 

port_id is then used, like any other port, with call_openin and call_openout. 

The incoming and outgoing TiNG media resources are created via the TiNG Prosody 
RTP processing API (see that documentation for more specific information). 

int sm_vmprx_create(SM_VMPRX_CREATE_PARMS rxcreatep) 

 

typedef struct sm_vmprx_create_parms  

{ 

  tSMVMPrxId   vmprx; 

  tSMModuleId   module; 

} SM_VMPRX_CREATE_PARMS; 

 

int sm_vmptx_create(SM_VMPTX_CREATE_PARMS txcreatep) 

 

typedef struct sm_vmptx_create_parms  

{ 

  tSMVMPtxId   vmptx; 

  tSMModuleId   module; 

} SM_VMPTX_CREATE_PARMS; 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 291 

The vmptx and vmprx returned from these are then passed into call_openout, 

call_accept, call_progress or xcall_incoming_ringing.  E.g. 

out_parms.unique_xparms.sig_iptel.vmprxid = TiNG_TO_ACU_POINTER(vmprx); 

out_parms.unique_xparms.sig_iptel.vmptxid = TiNG_TO_ACU_POINTER(vmptx); 

or 

accept_parms.unique_xparms.sig_iptel.vmprxid = TiNG_TO_ACU_POINTER(vmprx); 

accept_parms.unique_xparms.sig_iptel.vmptxid = TiNG_TO_ACU_POINTER(vmptx); 

 

NOTE 

The macro TiNG_TO_ACU_POINTER is provided to convert tSMVMPtxId 
and tSMVMPtxId to ACU_POINTER 

 

Before the EV_CONNECTED event is received the VMP objects will have been 

configured. 

After the call has been released the application may destroy the VMP resources 
when it likes via: 

int sm_vmptx_destroy(tSMVMPtxId vmptx) 

int sm_vmprx_destroy(tSMVMPrxId vmprx) 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 292 

K.6 On-board H.323 
Obviously for on-board H.323 a system wide port does not make sense.  In these 
cases calls are opened as normal on the on-board H.323 port.  For outgoing calls 
VMP ids are passed in with call_openout, however for incoming calls it is necessary 
to set the VMP ids to ACU_WILL_PROVIDE_VMP.  

in_parms.unique_xparms.sig_iptel.vmprxid = ACU_WILL_PROVIDE_VMP; 

in_parms.unique_xparms.sig_iptel.vmptxid = ACU_WILL_PROVIDE_VMP; 

 

This ensures that the call API will not attempt to allocate any resources before 
EV_INCOMING_CALL_DET is raised.  The VMP ids to be configured can then be passed in 

with call_accept, xcall_incoming_ringing or call_progress as with the system port. 

 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 293 

Appendix L: H.323 registration 
This section includes guidance on H.323 registration with Aculab’s H.323 products.   

L.1 Adding Aliases 
For best results, it is advised to add aliases before calling set_h323_gatekeeper. This 

means that after the first RCF is received all of your aliases will be registered, and 
removes the requirement to send additional RCFs for each add_alias request. 

Aliases are registered with the service and persist across all applications using the 
system.  For on board H.323 this means that the port registrations are valid for all 
applications using that port 

L.2 Alias Format 
Aliases are defined in URI format: <scheme>:<alias name> 

Valid schemes are:  

Scheme Meaning 
“h323” H.323 URI 

“mailto” Email address 

“http” URL 

“h323id” H.323 ID 

“tel” E.164 number 

 

Alternatively, an IP address or a hostname may be provided. If no scheme is given, 
the system will try to "guess". If it is entirely numeric it will be assumed to be an E.164 
number, if it is a dotted quad it will be assumed to be an IP address, if we can resolve 
it, it will be assumed to be a hostname. If all of these fail, an ERR_PARM will be 

returned. 

L.3 Removing Aliases and Clearing the Gatekeeper 
When an application controlling registration exits, it should first remove it's aliases, 
then clear the gatekeeper (if it set it) and delete any aliases it registered.  
Alternatively, an application should on start up deal with the current registration state 
being active, and/or aliases already being present. 

Removing an alias does not delete it from the system. This allows the application to 
check it's status if any problems develop during un-registration. Aliases, which are no 
longer used, should be deleted. This is somewhat analogous to call_disconnect and 

call_release -- there is a separation between un-registering and deleting associated 

resources.   

Clearing the gatekeeper does not delete aliases, although it will remove all registered 
aliases. After clearing a gatekeeper, it is good practise to delete any aliases, which 
are no longer necessary. If they are not deleted, they will be re-registered the next 
time set_h323_gatekeeper is called. This is to facilitate manual gatekeeper failovers. 



  

MAN 1781 Revison 6.8.7 PUBLIC Page 294 

L.4 General Points to Note 
It is possible to get a list of all current aliases by using snapshot_registrations. If 

you do not know for sure if another application has been storing aliases, or if you are 
unsure if a previous run of your application cleaned up correctly, this can be used to 
discover which aliases currently exist in the system. 

We generally try to cope with applications trying to re-add aliases that are already 
present, and return the same handle.   

If you are rapidly clearing and then setting the H.323 gatekeeper then it is required to 
wait for the un-registration to complete before calling set_h323_gatekeeper.   

 

  



  

MAN 1781 Revison 6.8.7 PUBLIC Page 295 

 


