
Writing a conference service
How to create a conference service with Aculab Cloud

Aculab Cloud Walkthrough

Writing a conference service with Aculab Cloud
Aculab Cloud provides a simple, easy to learn API for rapid development of

telephony applications.

Using the features provided by Aculab Cloud, you can rapidly develop a

conferencing solution that could be used to provide a feature-rich conferencing

service, with features such as:

� Conference announcements

� Conference recording (for playback after the event)

� Multiple, country specific access numbers

In the following code example, we show how easy it is to create a hosted

conference solution using Aculab Cloud’s RESTful API. The conference service

has the following features:

� Access to ad-hoc conference rooms via unique conference codes

� Leader PIN control for starting a conference

Before you start
Working with Aculab Cloud

2 | aculab.com

Aculab Cloud Walkthrough

The structure of this application
For this code walkthrough, we will use the PHP wrapper for Aculab Cloud’s REST API. The code used

for this walkthrough can be downloaded from the Aculab Cloud website.

Aculab Cloud applications written using the RESTful API consist of one or more web pages, hosted on

your web server. Each web page describes a list of actions Aculab Cloud should perform. Aculab

Cloud makes requests for these pages, when asked to run your telephony application.

An action could be something such as playing a message, or requesting user input, or adding a caller

to a conference.

The code for this solution is provided in a single file, Simple_conference.php. When making requests

for this web page, a ‘page’ URL parameter should also be passed. The value of this parameter

determines the actions Aculab Cloud is asked to perform.

http://your_web_server/Simple_conference.php?page=GetConferenceCode

Once Aculab Cloud has completed the first list of actions provided, it sends another request to the

web server for another list of actions.

The page Aculab Cloud requests may differ, depending on the result of an action – for example,

pressing different keys during a RunMenu action will result in different pages being requested.

aculab.com | 3

Before you start
Conference service web page flow

Figure 1: Conference service web page flow

Web page flow
Below is a diagram that shows the list of possible values for the ‘page’ parameter, and the order in

which they will be requested by Aculab Cloud.

Subsequent sections of this document describe the construction of the web page, and walk through

the actions performed when each ‘page’ is requested.

GetConferenceCode

ConfirmConferenceCode

GetLeaderPin

CheckForLeader

CheckLeaderPin

AddToConference

4 | aculab.com

Aculab Cloud Walkthrough

The structure of the web page
Understanding the stucture of the web page

Understanding the structure of the web page
As mentioned earlier, the code for this conference application is all within one web page, and a ‘page’

parameter is used to determine which section of code on the website is executed when a request for the page

is made.

The structure of the web page looks like this:

[Common Code]

if(isset($_GET[‘page’]))
{

if ($_GET[‘page’] == ‘first_parameter ’)
{

[first_parameter] specific code

}
else if ($_GET[‘page’] == ‘second_parameter ’)

{

[second_parameter] specific code

}
}

[Common Code]

Figure 2: The stucture of the web page

First, we will show you the structure of the common code blocks, which are executed on each page request.

In subsequent sections, we will go through the parameter specific code blocks, which are executed

depending on the value of the ‘page’ URL parameter.

A full code listing can be found in the appendix.

aculab.com | 5

Common code
The structure of the common code

The structure of the common code
The structure of the common code is shown below.

<?php
declare(encoding='UTF-8');

require_once __DIR__.'/vendor/autoload.php';

header("Content-Type: application/json; charset=UTF-8");
// set headers to prevent the page being cached by intermediaries
header("Cache-Control: no-cache, must-revalidate"); // HTTP/1.1
header("Expires: Sat, 26 Jul 1997 05:00:00 GMT"); // Date in the past

use \Aculab\TelephonyRestAPI\InstanceInfo;
use \Aculab\TelephonyRestAPI\Response;
use \Aculab\TelephonyRestAPI\Play;
use \Aculab\TelephonyRestAPI\GetNumber;
use \Aculab\TelephonyRestAPI\ConferenceParticipantConfiguration;
use \Aculab\TelephonyRestAPI\ConnectToConference;
use \Aculab\TelephonyRestAPI\RunMenu;
use \Aculab\TelephonyRestAPI\MessageList;
use \Aculab\TelephonyRestAPI\Redirect;
use \Aculab\TelephonyRestAPI\HangUp;

$info = InstanceInfo::getInstanceInfo();
$response = new Response();
$token = null;
$token_as_json = array();

##
key value pairs used for storing conference code and leader PIN
#
NOTE: In a real system this information would be stored in a database
##
$CONF_CODE_ARRAY = array(

“123456” => array(‘ leader_pin’=>”11111”) ,
 “654321” => array(‘ leader_pin’=>”22222”) ,
) ;

 if ($info != null)
{

// Get token and decode to JSON if provided
$token = $info->getToken() ;
if($token != null)
{

$token_as_json = json_decode($token, true);
}
else
{

// We hit this the first time we call in
$token_as_json[“leader_pin_retries”] = 0;

}

// Retrieve call info and action results
$callInfo = $info->getThisCallInfo() ;
$result = $info->getActionResult() ;

}

Figure 3: Common code

6 | aculab.com

Aculab Cloud Walkthrough

Writing a conference service
How to create a conference service with Aculab Cloud

declare(encoding=’UTF-8’) ;
require_once __DIR__.'/vendor/autoload.php' ;

The first thing to be done is set the character encoding to Unicode, which allows for international characters in any text.

For this example, the required php libraries have been installed using Composer (https://getcomposer.org/). Therefore, we need to

auto-load any classes installed via composer.

Next, set the following HTTP headers so the page requests will not be cached by intermediate servers.

header(“Content-Type: application/json; charset=UTF-8”) ;
// set headers to prevent the page being cached by intermediaries
header(“Cache-Control : no-cache, must-revalidate”) ; // HTTP/1.1
header(“Expires: Sat, 26 Jul 1997 05:00:00 GMT”) ; // Date in the past

Next, import the Aculab classes you are going to use within your web page.

use \Aculab\TelephonyRestAPI\InstanceInfo;
use \Aculab\TelephonyRestAPI\Response;
use \Aculab\TelephonyRestAPI\Play;
use \Aculab\TelephonyRestAPI\GetNumber;
use \Aculab\TelephonyRestAPI\ConferenceParticipantConfiguration;
use \Aculab\TelephonyRestAPI\ConnectToConference;
use \Aculab\TelephonyRestAPI\RunMenu;
use \Aculab\TelephonyRestAPI\MessageList;
use \Aculab\TelephonyRestAPI\Redirect;
use \Aculab\TelephonyRestAPI\HangUp;

Each request from Aculab Cloud includes an instance info object. This Instance info object contains the

following useful information:

Information about the call (callinfo)

Such as called and calling numbers associated with this call.

Results of actions that have occurred (actionResult)

For example, if you requested the user to enter some digits, what those digits were.

User-defined token (token)

A string which is sent back and forth between Aculab Cloud and your web server, in which

you can pass your own application specific information between web pages.

To enable the website to access this useful information, retrieve the instance info from the request received

from Aculab Cloud.

$info = InstanceInfo: :getInstanceInfo() ;

Aculab.com | 7

Then pull out the callinfo, actionResult and user-defined token, for use later.

// Get token and decode to JSON if provided
$token = $info->getToken() ;
if($token != null)
{

$token_as_json = json_decode($token, true);
}
else
{

// We hit this the first time we call in
$token_as_json[“leader_pin_retries”] = 0;

}

// Retrieve call info and action results
$callInfo = $info->getThisCallInfo() ;
$result = $info->getActionResult() ;

Finally, before calling the unique code determined by the value of the ‘page’ parameter, create a new

Response object, to which you add the actions you wish Aculab Cloud to perform.

Writing a conference service
How to create a conference service with Aculab Cloud

$response = new Response() ;

After calling the ‘page’ parameter specific code, encode the user-defined token as a JSON string and

associate it with your actions list.

$token = json_encode($token_as_json);

Finally, print the actions to standard output. This causes an HTTP response to be created, and sends the list of

actions to Aculab Cloud.

// Send actions
print $response ;

8 | aculab.com

GetConferenceCode
Page Structure

The first ‘page’ parameter passed with the request from Aculab Cloud is GetConferenceCode. This code asks

the caller to enter their conference code, and requires an input via a telephone keypad.

// Ask caller to enter conference code
$getConferenceCode = new
GetNumber('Simple_Conference.php?page=ConfirmConferenceCode') ;
 $prompt = Play: :sayText("Hello. Please enter your conference code followed by the pound or
hash sign") ;

 $getConferenceCode->setPrompt($prompt) ;
 $getConferenceCode->setEndDigit('#') ;
 $getConferenceCode->setValidDigits('1234567890') ;

$response->addAction($getConferenceCode);

Figure 4: GetConferenceCode

Page Components

In this code segment, the the GetNumber action is sent to Aculab Cloud to ask the user to enter the code of the

conference they wish to join. The digits entered by the caller are sent to your web server by Aculab Cloud, and

the page to which they are sent is used to confirm the caller has entered a valid conference code.

Aculab Cloud Walkthrough

Writing a conference service
How to create a conference service with Aculab Cloud

The user is asked to press the hash (‘#’) key once they have entered all the digits of the conference

code.

$getConferenceCode = new
GetNumber('Simple_Conference.php?page=ConfirmConferenceCode') ;

 $prompt = Play: :sayText("Hello. Please enter your conference code followed by
 the pound or hash sign") ;

 $getConferenceCode->setPrompt($prompt) ;
 $getConferenceCode->setEndDigit('#') ;
 $getConferenceCode->setValidDigits('1234567890') ;

$response->addAction($getConferenceCode);

aculab.com | 9

Writing a conference service
How to create a conference service with Aculab Cloud

ConfirmConferenceCode
Page Structure

In this code segment, the conference code previously entered by the caller is checked. If correct, the next page asks

the caller whether they are the conference leader. If incorrect, the next page asks again for their conference code.

// Retrieve conference code from action result
$conference_code = $actionResult->getEnteredNumber() ;

// Check whether the conference code is valid
if (isValidConferenceCode($conference_code)) {

}
else
{

// Store the conference code in the user-defined token
$token_as_json[“conference_code”] = $conference_code;
// Mark caller as NOT leader in user-defined token
$token_as_json[“isLeader”] = false ;
// Now check whether the caller is the conference leader
$response->addAction(new Redirect(‘Simple_Conference.php?page=CheckForLeader’)) ;

// Invalid conference code. Please try again

$response->addAction(Play: :sayText(“<say-as interpret-
 as=’digits’>” .$conference_code.”</say-as> Is not a valid conference code.”)) ;

$response->addAction(new Redirect(‘Simple_Conference.php?page=GetConferenceCode’)) ;
}

Figure 5: ConfirmConferenceCode

Page Components

Aculab Cloud sends the digits entered by the caller to this page, and they can be retrieved from the

action result.

// Retrieve conference code from action result
$conference_code = $result->getEnteredNumber() ;

The conference code is checked against a list of valid codes. In this application, the codes are stored in a

global array. However in a real life application, the conference codes would more likely be stored in a

database.

// Check whether the conference code is valid
if (isValidConferenceCode($conference_code))

10 | aculabaculab.com.com

If a valid conference code is entered, store it in the caller’s user-defined token.

// Store the conference code in the user-defined token
$token_as_json[“conference_code”] = $conference_code;

Next ask the caller if they are the conference leader, and if yes, ask them for their leader PIN..

Aculab Cloud Walkthrough

Writing a conference service
How to create a conference service with Aculab Cloud

If the conference code entered is invalid, tell the caller, and ask them to re-enter the conference code.

// Invalid conference code. Please try again
$response->addAction(Play: :sayText(“<say-as interpret-
as=’digits’>” .$conference_code.”</say-as> Is not a valid conference code.”)) ;
$response->addAction(new Redirect(‘Simple_Conference.php?
page=GetConferenceCode’))

// Mark caller as NOT leader in user-defined token
$token_as_json[“isLeader”] = false ;
// Now check whether the caller is the conference leader
$response->addAction(new Redirect(‘Simple_Conference.php?page=CheckForLeader’)) ;

aculab.com | 11

Writing a conference service
How to create a conference service with Aculab Cloud

CheckforLeader
Page Structure

In this code segment, the caller is asked to press star (‘*’) if they are the leader. If they are the leader, a

leader PIN is requested, otherwise the caller is added to the requested conference.

 // Ask the caller whether they are the conference leader
 $menu = new RunMenu() ;
 $mp = Play: :sayText("If you are the leader, press star now.") ;
 $menu->setPrompt($mp);
 $menu->setHelpDigit('#') ;
 $menu->addMenuOption('*' , 'Simple_Conference.php?page=GetLeaderPin') ;
 $menu->setOnDigitTimeoutMessages(new MessageList()) ;
 $menu->setOnInvalidDigitMessages(new MessageList()) ;
 $response->addAction($menu);

 // We should fall here on timeout
 $response->addAction(new Redirect('Simple_Conference.php?page=AddToConference')) ;

Figure 6: CheckforLeader

Page Components

A RunMenu action is used to ask the caller whether they are the leader of the conference. If the caller

pressed star (‘*’) to confirm they are the leader, the page to ask for the leader PIN will be requested.

// Ask the caller whether they are the conference leader

$menu = new RunMenu();
$mp = Play: :sayText(“If you are the leader, press star now.”) ;

$menu->setPrompt($mp);
$menu->setHelpDigit(‘#’) ;

$menu->addMenuOption(‘* ’ , ‘Simple_Conference.php?page=GetLeaderPin’) ;

A MessageList is used to define prompts which will be played when no digits are pressed by the caller, or

when a caller presses a digit not associated with a menu option.

Set the Digit timeout message list and invalid digit message list to an empty MessageList so no prompts are

played when a digit timeout occurs, or an invalid digit is pressed.

$menu->setOnDigitTimeoutMessages(new MessageList()) ;
$menu->setOnInvalidDigitMessages(new MessageList()) ;
$response->addAction($menu);

So when a caller presses any digit other than star (‘*’), or presses no digit, they will be added to the

conference as a participant.

// We should fall here on timeout
$response->addAction(new Redirect(‘Simple_Conference.php?page=AddToConference’)) ;

12 | aculab.com

Aculab Cloud Walkthrough

Writing a conference service
How to create a conference service with Aculab Cloud

GetLeaderPin
Page Structure

The code section is called if the caller pressed star (‘*’) to confirm they wish to be the leader of the conference.

 // Get leader PIN
 $getLeaderPin = new GetNumber('Simple_Conference.php?page=CheckLeaderPin') ;
 $prompt = Play: :sayText("Please enter your leader pin followed by the pound or hash
sign") ;
 $getLeaderPin->setPrompt($prompt) ;
 $getLeaderPin->setEndDigit('#') ;
 $getLeaderPin->setValidDigits('1234567890') ;
 $response->addAction($getLeaderPin);

Figure 7: GetLeaderPin

Page Components

In this code segment, the GetNumber action is sent to Aculab Cloud to ask the user to enter the leader PIN

for the conference they wish to join. The digits entered by the caller are sent to your web server by Aculab

Cloud, and the page to which they are sent is used to confirm the caller has entered the correct leader PIN.

$getLeaderPin = new GetNumber (‘Simple_Conference.php?page=CheckLeaderPin’) ;

The user is asked to press the hash (‘#’) key once they have entered all the digits of the leader PIN.

 $prompt = Play: :sayText("Please enter your leader pin followed by the pound or hash
sign") ;
 $getLeaderPin->setPrompt($prompt) ;
 $getLeaderPin->setEndDigit('#') ;
 $getLeaderPin->setValidDigits('1234567890') ;
 $response->addAction($getLeaderPin);;

Writing a conference service
How to create a conference service with Aculab Cloud

CheckLeaderPin
Page Structure

In this code section, the leader PIN is checked to see whether it is valid. The caller gets three attempts to enter
the PIN.

If the caller has entered an invalid leader PIN, the leader_pin_retries variable is incremented, and this value is

stored in the user-defined token. The leader_pin_retries count will then be checked each time the leader PIN is

validated, and the caller disconnected if they fail to enter a valid leader PIN after three attempts.

$MAX_PIN_RETRIES = 3;

// Retrieve the leader PIN from the action result
$leader_pin = $actionResult->getEnteredNumber() ;

// Check to see whether the leader PIN is valid
if(isValidLeaderPin($token_as_json[‘conference_code’] , $leader_pin))
{

}
else
{

// Mark the caller as the leader in the user-defined token
$token_as_json[“isLeader”] = true ;
// Now add the caller to the conference
$response->addAction(new Redirect(‘Simple_Conference.php?
page=AddToConference’)) ;

// Retrieve and increment leader PIN retries
$retri = $tes oken_as_json[“leader_pin_retries”];
$retri = $res etries + 1;
$token_as_json[“leader_pin_retries”] = $retries;
if($retries < $MAX_PIN_RETRIES)
{ if($retries < $MAX_PIN_RETRIES - 1)

{

}
else
{

}

}
else
{

$response->addAction(Play: :sayText(“That leader pin is not valid. Please try
again.”)) ;

$response->addAction(Play: :sayText(“That leader pin is not valid. This is your
last attempt.”)) ;

$response->addAction(new Redirect(‘Simple_Conference.php?
page=GetLeaderPin’)) ;

$response->addAction(Play: :sayText(“That leader pin is not valid. You have had
“ .$MAX_PIN_RETRIES.” attempts. Please call in again. Good bye.<break/>”)) ;
$response->addAction(new Hangup()) ; }

}

Figure 8: CheckLeaderPin

aculab.com | 13

14 | aculab.com

Aculab Cloud Walkthrough

Writing a conference service
How to create a conference service with Aculab Cloud

Page Components

Aculab Cloud sends the digits entered by the caller to this page, and they can be retrieved from the action result.

// Retrieve the leader PIN from the action result

$leader_pin = $result->getEnteredNumber() ;

The leader PIN is checked against the valid PIN for the conference code. In this application, the PINs are

stored in a global array. However in a real life application, the PINs would probably be stored in a database.

// Check to see whether the leader PIN is valid

if(isValidLeaderPin($token_as_json[‘conference_code’] , $leader_pin))

If a valid leader PIN is entered, the caller is marked as the conference leader, and the page to add the

caller to the conference is requested.

// Mark the caller as the leader in the user-defined token
$token_as_json[“isLeader”] = true ;
// Now add the caller to the conference
$response->addAction(new Redirect(‘Simple_Conference.php?
page=AddToConference’)) ;

If an invalid leader PIN is entered, increment the ‘leader_pin_retries’ variable to reflect the number of failed
PIN attempts.

// Retrieve and increment leader PIN retries
$retries = $token_as_json[“leader_pin_retries”] ;
$retries = $retries + 1 ;
$token_as_json[“leader_pin_retries”] = $retries;

If the caller has entered an invalid leader PIN less than three times, tell them the PIN was invalid, and allow

them further attempts.

if($retries < $MAX_PIN_RETRIES - 1)
{

$response->addAction(Play: :sayText(“That leader pin is not valid.
Please try again.”)) ;

}

Writing a conference service
How to create a conference service with Aculab Cloud

aculab.com | 15

Before the final attempt, let them know this is their final attempt at entering their leader PIN.

else
{

$response->addAction(Play: :sayText(“That leader pin is not valid. This is your
last attempt.”)) ;

}

$response->addAction(new Redirect(‘Simple_Conference.php?page=GetLeaderPin’)) ;

After three attempts at entering the leader PIN, tell the caller they have to call in again, and disconnect

them from the conference service.

$response->addAction(Play: :sayText(“That leader pin is not valid. You have
had “ .$MAX_PIN_RETRIES.” attempts. Please call in again. Good
bye.<break/>”)) ;
$response->addAction(new Hangup()) ;

16 | aculab.com

AddToConference
Page Structure

In this section of code, the caller is added to the required conference. If the caller is a participant, they will

hear music-on-hold, until the leader has joined the conference.

// Get conference code from the user-defined token
$conference_code = $token_as_json[“conference_code”] ;

// Tell the caller they are being added to the conference
$prompt = Play: :sayText(“Adding you to conference <say-as interpret-
as=’digits’>$conference_code</say-as>”);
$response->addAction($prompt) ;

if($token_as_json[“isLeader”])
{

// Tell the caller they are the leader
$response->addAction(Play: :sayText(“As the
leader”)) ; }

else
{

// Tell the caller to wait for the leader to join
$response->addAction(Play: :sayText(“The conference will start when the leader joins”)) ;

}

// Prepare conference room settings
$participant_config = new ConferenceParticipantConfiguration() ;
$participant_config->setTalker(true) ;
$participant_config->setBeepOnEntry(true) ;
$participant_config->setMuteDigit(‘#’) ;
$participant_config->setUnmuteDigit(‘* ’) ;
$participant_config->setExitDigit(‘9 ’) ;
$participant_config->setWhileStoppedMedia(Play: :playFile(‘holdmusic.wav’)) ;

if($token_as_json[“isLeader”])
{

$participant_config->setStartOnEntry(true) ;
$participant_config->setDestroyOnExit(true) ;

}
else
{

$participant_config->setStartOnEntry(false) ;
$participant_config->setDestroyOnExit(false) ;

}

// Add the caller to the conference
$ctc = new ConnectToConference($conference_code, $participant_config) ;
$ctc->setSecondsAnswerTimeout(30);
$response->addAction($ctc) ;

Figure 9: AddToConference

Aculab Cloud Walkthrough

Writing a conference service
How to create a conference service with Aculab Cloud

17 | aculab.com

Writing a conference service
How to create a conference service with Aculab Cloud

Page Components

First, retrieve the conference code that you had stored in the user-defined token.

// Get conference code from the user-defined token

$conference_code = $token_as_json[“conference_code”] ;

Tell the caller they are about to added to the conference.

// Tell the caller they are being added to the conference
$prompt = Play: :sayText(“Adding you to conference <say-as interpret-
as=’digits’>$conference_code</say-as>”);
$response->addAction($prompt) ;

If they are the leader, tell them they are the leader, and if the are a participant, tell them the conference will

not start until the leader has joined the conference.

if($token_as_json[“isLeader”])
{

// Tell the caller they are the leader
$response->addAction(Play: :sayText(“As the leader”)) ;

}
else
{

// Tell the caller to wait for the leader to join
$response->addAction(Play: :sayText(“The conference will start when the leader joins”)) ;

}

Each caller added into the conference has settings, which define how they will be able to interact in the

conference. These settings are defined in a caller’s ConferenceParticipantConfiguration. These settings will be

configured differently, depending on whether the caller is a participant or a conference leader.

All callers to the conference will be able to talk, so set each caller as a ‘talker’.

Also, configure the participant settings so that a tone is played when the caller is initially added to the

conference, as well as setting the keys, the user can press to mute/unmute their line, or leave the conference.

A message or music can be looped for the participants to hear while they are waiting for the leader to join the

conference, and for the leader to hear while he is the only caller in the conference. In this example we are

using a music file stored on your cloud account.

18 | aculab.com

Aculab Cloud Walkthrough

Writing a conference service
How to create a conference service with Aculab Cloud

// Prepare conference room settings
$participant_config = new ConferenceParticipantConfiguration() ;
$participant_config->setTalker(true) ;
$participant_config->setBeepOnEntry(true) ;
$participant_config->setMuteDigit(‘#’) ;
$participant_config->setUnmuteDigit(‘* ’) ;
$participant_config->setExitDigit(‘9 ’) ;

$participant_config->setWhileStoppedMedia(Play: :playFile(‘holdmusic.wav’)) ;

That completes the walkthrough of all the code required to build a conference service. A full code listing for this

conference application can be found in the appendix.

In this application note we have focused on PHP. However, Aculab Cloud offers a number of API wrappers for its REST

API.

If you have any questions, you can email Aculab’s support team support@aculab.com

If the caller is the leader, specify that the conference should be started when they enter the conference, and finish when

they leave the conference.

$participant_config->setStartOnEntry(true) ;

$participant_config->setDestroyOnExit(true) ;

If the caller is a participant then they need to wait for the leader of the conference to start and when they leave the

conference will continue.

$participant_config->setStartOnEntry(false) ;

$participant_config->setDestroyOnExit(false) ;

Finally connect the caller to the conference.

// Add the caller to the conference
$ctc = new ConnectToConference($conference_code, $participant_config) ;
$ctc->setSecondsAnswerTimeout(30);

$response->addAction($ctc) ;

19 | aculab.com

Appendix
Full Code Listing

<?php
declare(encoding=’UTF-8’) ;
require_once __DIR__.'/vendor/autoload.php' ;

header(“Content-Type: application/json; charset=UTF-8”) ;
// set headers to prevent the page being cached by intermediaries
header(“Cache-Control : no-cache, must-revalidate”) ; // HTTP/1.1
header(“Expires: Sat, 26 Jul 1997 05:00:00 GMT”) ; // Date in the past

use \Aculab\TelephonyRestAPI\InstanceInfo;
use \Aculab\TelephonyRestAPI\Actions;
use \Aculab\TelephonyRestAPI\Play;
use \Aculab\TelephonyRestAPI\GetNumber;
use \Aculab\TelephonyRestAPI\ConferenceParticipantConfiguration;
use \Aculab\TelephonyRestAPI\ConnectToConference;
use \Aculab\TelephonyRestAPI\RunMenu;
use \Aculab\TelephonyRestAPI\MessageList ;
use \Aculab\TelephonyRestAPI\Redirect;
use \Aculab\TelephonyRestAPI\HangUp;

$info = InstanceInfo: :getInstanceInfo() ;
$response = new Response() ;
$token = null ;
$token_as_json = array() ;

key value pairs used for storing conference code and leader PIN

NOTE: In a real system this information would be stored in a database

$CONF_CODE_ARRAY = array(

“123456” => array(‘ leader_pin’=>”11111”) ,
 “654321” => array(‘ leader_pin’=>”22222”) ,
) ;

 if ($info != null)
{

// Get token and decode to JSON if provided
$token = $info->getToken() ;
if($token != null)
{

$token_as_json = json_decode($token, true);
}
else
{

// We hit this the first time we call in
$token_as_json[“leader_pin_retries”] = 0;

}

// Retrieve call info and action results
$callInfo = $i nfo->getThisCallInfo() ;
$actionresu = $ilt nfo->getActionResult() ;

}
if(isset($_GET[‘page’]))
{

error_log(“Page is “ .$_GET[‘page’] .”\ntoken\n”.json_encode($token_as_json,
JSON_PRETTY_PRINT)) ;

20 | aculab.com

Aculab Cloud Walkthrough

Appendix
Full Code Listing

if ($_GET[‘page’] == ‘GetConferenceCode’)
{

// Ask caller to enter conference code
$prompt = Play::sayText("Hello. Please enter your conference code followed by the pound or hash sign”) ;
$getConferenceCode = new GetNumber($prompt) ;
$getConferenceCode->setEndDigit(‘#’) ;
$getConferenceCode->setValidDigits(‘1234567890’) ;
$getConferenceCode->setNextPage(‘Simple_Conference.php?page=ConfirmConferenceCode’) ;
$response->addAction($getConferenceCode);

}
else if ($_GET[‘page’] == ‘ConfirmConferenceCode’)
{

// Retrieve conference code from action result
$conference_code = $result->getEnteredNumber() ;

// Check whether the conference code is valid
if (isValidConferenceCode($conference_code))
{

}
else
{

// Store the conference code in the user-defined token
$token_as_json[“conference_code”] = $conference_code;
// Mark caller as NOT leader in user-defined token
$token_as_json[“isLeader”] = false ;
// Now check whether the caller is the conference leader
$response->addAction(new Redirect(‘Simple_Conference.php?page=CheckForLeader’)) ;

// Invalid conference code. Please try again
$response->addAction(Play: :sayText(“
<say-as interpret-as=’digits’>” .$conference_code.”</say-as> Is not a valid conference
code.”)) ;
$response->addAction(new Redirect(‘Simple_Conference.php?
page=GetConferenceCode’)) ; }

}
else if ($_GET[‘page’] == ‘CheckForLeader’)
{

// Ask the caller whether they are the conference leader
$mp = Play: :sayText(“If you are the leader, press star now.”) ;
$menu = new RunMenu($mp);
$menu->setHelpDigit(‘#’) ;
$menu->addMenuOption(‘* ’ , ‘Simple_Conference.php?page=GetLeaderPin’) ;
$menu->setOnDigitTimeoutMessages(new MessageList()) ;
$menu->setOnInvalidDigitMessages(new MessageList()) ;
$response->addAction($menu);

// We fall here on timeout
$response->addAction(new Redirect(‘Simple_Conference.php?page=AddToConference’)) ;

}
else if ($_GET[‘page’] == ‘GetLeaderPin’)
{

// Get leader PIN
$prompt = Play: :sayText(“Please enter your leader pin followed by the pound or hash sign”) ;
$getLeaderPin = new GetNumber($prompt) ;
$getLeaderPin->setEndDigit(‘#’) ;
$getLeaderPin->setValidDigits(‘1234567890’) ;
$getLeaderPin->setNextPage(‘Simple_Conference.php?page=CheckLeaderPin’) ;
$response->addAction($getLeaderPin);

}
else if ($_GET[‘page’] == ‘CheckLeaderPin’)
{

21 | aculab.com

Appendix
Full Code Listing

$MAX_PIN_RETRIES = 3;

// Retrieve the leader PIN from the action result
$leader_pin = $result->getEnteredNumber() ;

// Check to see whether the leader PIN is valid
if(isValidLeaderPin($token_as_json[‘conference_code’] , $leader_pin))
{

}
else
{

// Mark the caller as the leader in the user-defined token
$token_as_json[“isLeader”] = true ;
// Now add the caller to the conference
$response->addAction(new Redirect(‘Simple_Conference.php?page=AddToConference’)) ;

// Retrieve and increment leader PIN retries
$retri = $tes oken_as_json[“leader_pin_retries”];
$retri = $res etries + 1;
$token_as_json[“leader_pin_retries”] = $retries;
if($retries < $MAX_PIN_RETRIES)
{

if($retries < $MAX_PIN_RETRIES - 1)
{

}
else
{

}

}
else
{

$response->addAction(Play: :sayText(“That leader pin is not valid. Please try
again.”)) ;

$response->addAction(Play: :sayText(“That leader pin is not valid. This is your
last attempt.”)) ;

$response->addAction(new Redirect(‘Simple_Conference.php?
page=GetLeaderPin’)) ;

$response->addAction(Play: :sayText(“That leader pin is not valid. You have had “ .
$MAX_PIN_RETRIES.” attempts. Please call in again. Good bye.<break/>”)) ;
$response->addAction(new Hangup()) ; }

}
}
else if ($_GET[‘page’] == ‘AddTo Conference’)
{

// Get conference code from the user-defined token
$conference_code = $token_as_json[“conference_code”] ;

// Tell the caller they are being added to the conference
$prompt = Play: :sayText(“Adding you to conference <say-as interpret-

 as=’digits’>$conference_code</say-as>”) ;
$response->addAction($prompt) ;

if($token_as_json[“isLeader”]) {

// Tell the caller they are the leader
$response->addAction(Play: :sayText(“As the
leader”)) ; }

Aculab Cloud Walkthrough

Appendix
Full Code Listing

else
{

// Tell the caller to wait for the leader to join
$response->addAction(Play: :sayText(“The conference will start when the leader joins”)) ;

}

// Prepare conference room settings
$participant_config = new ConferenceParticipantConfiguration() ;
$participant_config->setTalker(true) ;
$participant_config->setBeepOnEntry(true) ;
$participant_config->setMuteDigit(‘#’) ;
$participant_config->setUnmuteDigit(‘* ’) ;
$participant_config->setExitDigit(‘9 ’) ;
$participant_config->setWhileStoppedMedia(Play: :playFile(‘holdmusic.wav’)) ;

if($token_as_json[“isLeader”])
{

$participant_config->setStartOnEntry(true) ;
$participant_config->setDestroyOnExit(true) ;

}
else
{

$participant_config->setStartOnEntry(false) ;
$participant_config->setDestroyOnExit(false) ;

}

// Add the caller to the conference
= $ctc new ConnectToConference($conference_code, $participant_config) ;
$ctc->setSecondsAnswerTimeout(30);
$response->addAction($ctc) ;

}
else if ($_GET[‘page’] == ‘FinalPage’)
{

// Nothing to clear up on end of call
}
else if ($_GET[‘page’] == ‘ErrorPage’)
{

// Record the error string in webserver logging
error_log(“Error: “ .$info->getErrorResult()->getResult()) ;

// Tell the user an error occurred
$response->addAction(Play: :sayText(“An error has occurred, please dial in again.<break /
>”)) ; }

}
else
{

// Return Error
}
// Convert JSON token to string
$token = json_encode($token_as_json) ;
$response->setToken($token) ;

// Send actions
print $response ;

Appendix
Full Code Listing

/*
* Lookup to see whether conference code is valid
*/

function isValidConferenceCode($conference_code)
{

global $CONF_CODE_ARRAY;
return array_key_exists($conference_code, $CONF_CODE_ARRAY);

}

/*
* Lookup to see whether leader pin is valid
*/

function isValidLeaderPin($conference_code, $leader_pin)
{

global $CONF_CODE_ARRAY;
return $CONF_CODE_ARRAY[$conference_code][‘ leader_pin’] == $leader_pin;

}

24 | aculab.com

Aculab Cloud
Three decades of innovation - in the cloud

About Aculab
Aculab provides deployment proven

telephony products to the global

communications market

Whether you need telephony resources on a

board, on a host server processor or from a

cloud-based platform, Aculab ensures that

you have the choice. We are an innovative,

market leading company that places product

quality and support right at the top of our

agenda. With over 35 years of experience in

helping to drive our customers’ success, our

technology is used to deliver multimodal

voice, data and fax solutions for use within

IP, PSTN and mobile networks – with

performance levels that are second to none.

For more information
To learn more about Aculab Cloud and

Aculab’s extensive telephony solutions visit:

www.aculab.com

aculab.com

AMERICAS
+1 (781) 352 3550 | sales@aculab.com

EMEAA
+44 (0) 1908 273802 | sales@aculab.com

Leverage the heritage of Aculab when you move to the cloud
Moving your application development environment to a cloud infrastructure is a big

step. Despite the clear benefits of cloud migration, it’s natural for developers of

hardware-based solutions to be concerned about the risks of moving their technology

IP – and the years of investment and knowledge that has gone into creating it – to a

new cloud development platform. Most of the big names in cloud communications

are relatively new entrants to the communications market; some are working with

open source technologies and, as the market consolidates, it is likely that many will

not be in business in just a few years’ time. So how do you know that a cloud platform

can deliver the same level of reliability and performance that you’ve come to expect

from a hardware deployment, and that it will be around for decades?

Three decades of innovation — the next chapter

Aculab Cloud deploys Aculab’s industry

benchmark technology and has been built

organically out of more than 35 years’ worth

of experience in the communications

enablement market. Put simply, it’s the result

of more than three decades of experience and

innovation.

Aculab Cloud developers can be assured that

the technology that powers Aculab Cloud has

been used to enable tens of thousands of

mission-critical applications

across the world. Aculab Cloud features robust,

field-proven protocols that have been

developed and honed in conjunction with

thousands of developers and deployed across

hundreds of networks.

It’s the only cloud communications platform

that delivers the expertise, experience and

reliability that you get from working with a

proven communications enabler.

Leverage our heritage when you move to the cloud.

Aculab Cloud Walkthrough

